1
|
Matoba N, McAfee JC, Krupa O, Bell J, Le BD, Valone JM, Crawford GE, Won H, Stein JL. Massively parallel assessment of gene regulatory activity at human cortical structure associated variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.08.635393. [PMID: 39974944 PMCID: PMC11839127 DOI: 10.1101/2025.02.08.635393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Genetic association studies have identified hundreds of largely non-coding loci associated with inter-individual differences in the structure of the human cortex, though the specific genetic variants that impact regulatory activity are unknown. We implemented a Massively Parallel Reporter Assay (MPRA) to measure the regulatory activity of 9,092 cortical structure associated DNA variants in human neural progenitor cells during Wnt stimulation and at baseline. We identified 918 variants with regulatory potential from 150 cortical structure associated loci (76% of loci studied), of which >50% showed allelic effects. Wnt stimulation modified regulatory activity at a subset of loci that functioned as condition-dependent enhancers. Regulatory activity in MPRA was largely induced by Alu elements that were hypothesized to contribute to cortical expansion. The regionally specific impact of genetic variants that disrupt motifs is likely mediated through the levels of transcription factor expression during development, further clarifying the molecular mechanisms altering cortical structure.
Collapse
Affiliation(s)
- Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Jessica C. McAfee
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Oleh Krupa
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Jess Bell
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Brandon D. Le
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Jordan M. Valone
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | | | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Jason L. Stein
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| |
Collapse
|
2
|
Ding W, Li X, Zhang J, Ji M, Zhang M, Zhong X, Cao Y, Liu X, Li C, Xiao C, Wang J, Li T, Yu Q, Mo F, Zhang B, Qi J, Yang JC, Qi J, Tian L, Xu X, Peng Q, Zhou WZ, Liu Z, Fu A, Zhang X, Zhang JJ, Sun Y, Hu B, An NA, Zhang L, Li CY. Adaptive functions of structural variants in human brain development. SCIENCE ADVANCES 2024; 10:eadl4600. [PMID: 38579006 DOI: 10.1126/sciadv.adl4600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/01/2024] [Indexed: 04/07/2024]
Abstract
Quantifying the structural variants (SVs) in nonhuman primates could provide a niche to clarify the genetic backgrounds underlying human-specific traits, but such resource is largely lacking. Here, we report an accurate SV map in a population of 562 rhesus macaques, verified by in-house benchmarks of eight macaque genomes with long-read sequencing and another one with genome assembly. This map indicates stronger selective constrains on inversions at regulatory regions, suggesting a strategy for prioritizing them with the most important functions. Accordingly, we identified 75 human-specific inversions and prioritized them. The top-ranked inversions have substantially shaped the human transcriptome, through their dual effects of reconfiguring the ancestral genomic architecture and introducing regional mutation hotspots at the inverted regions. As a proof of concept, we linked APCDD1, located on one of these inversions and down-regulated specifically in humans, to neuronal maturation and cognitive ability. We thus highlight inversions in shaping the human uniqueness in brain development.
Collapse
Affiliation(s)
- Wanqiu Ding
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Xiangshang Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Mingjun Ji
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Mengling Zhang
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Xiaoming Zhong
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
| | - Xiaoge Liu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Chunqiong Li
- Chinese Institute for Brain Research, Beijing, China
| | - Chunfu Xiao
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jiaxin Wang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Ting Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Qing Yu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Fan Mo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Boya Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianhuan Qi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jie-Chun Yang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Juntian Qi
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Lu Tian
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Xinwei Xu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Qi Peng
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Wei-Zhen Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhijin Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Aisi Fu
- Wuhan Dgensee Clinical Laboratory, Wuhan, China
| | - Xiuqin Zhang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jian-Jun Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ni A An
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Chuan-Yun Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
3
|
Xiao Y, Xiao Z, Liu L, Ma Y, Zhao H, Wu Y, Huang J, Xu P, Liu J, Li J. Innovative approach for high-throughput exploiting sex-specific markers in Japanese parrotfish Oplegnathus fasciatus. Gigascience 2024; 13:giae045. [PMID: 39028586 PMCID: PMC11258905 DOI: 10.1093/gigascience/giae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/21/2024] [Accepted: 06/22/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND The use of sex-specific molecular markers has become a prominent method in enhancing fish production and economic value, as well as providing a foundation for understanding the complex molecular mechanisms involved in fish sex determination. Over the past decades, research on male and female sex identification has predominantly employed molecular biology methodologies such as restriction fragment length polymorphism, random amplification of polymorphic DNA, simple sequence repeat, and amplified fragment length polymorphism. The emergence of high-throughput sequencing technologies, particularly Illumina, has led to the utilization of single nucleotide polymorphism and insertion/deletion variants as significant molecular markers for investigating sex identification in fish. The advancement of sex-controlled breeding encounters numerous challenges, including the inefficiency of current methods, intricate experimental protocols, high costs of development, elevated rates of false positives, marker instability, and cumbersome field-testing procedures. Nevertheless, the emergence and swift progress of PacBio high-throughput sequencing technology, characterized by its long-read output capabilities, offers novel opportunities to overcome these obstacles. FINDINGS Utilizing male/female assembled genome information in conjunction with short-read sequencing data survey and long-read PacBio sequencing data, a catalog of large-segment (>100 bp) insertion/deletion genetic variants was generated through a genome-wide variant site-scanning approach with bidirectional comparisons. The sequence tagging sites were ranked based on the long-read depth of the insertion/deletion site, with markers exhibiting lower long-read depth being considered more effective for large-segment deletion variants. Subsequently, a catalog of bulk primers and simulated PCR for the male/female variant loci was developed, incorporating primer design for the target region and electronic PCR (e-PCR) technology. The Japanese parrotfish (Oplegnathus fasciatus), belonging to the Oplegnathidae family within the Centrarchiformes order, holds significant economic value as a rocky reef fish indigenous to East Asia. The criteria for rapid identification of male and female differences in Japanese parrotfish were established through agarose gel electrophoresis, which revealed 2 amplified bands for males and 1 amplified band for females. A high-throughput identification catalog of sex-specific markers was then constructed using this method, resulting in the identification of 3,639 (2,786 INS/853 DEL, ♀ as reference) and 3,672 (2,876 INS/833 DEL, ♂ as reference) markers in conjunction with 1,021 and 894 high-quality genetic sex identification markers, respectively. Sixteen differential loci were randomly chosen from the catalog for validation, with 11 of them meeting the criteria for male/female distinctions. The implementation of cost-effective and efficient technological processes would facilitate the rapid advancement of genetic breeding through expediting the high-throughput development of sex genetic markers for various species. CONCLUSIONS Our study utilized assembled genome information from male and female individuals obtained from PacBio, in addition to data from short-read sequencing data survey and long-read PacBio sequencing data. We extensively employed genome-wide variant site scanning and identification, high-throughput primer design of target regions, and e-PCR batch amplification, along with statistical analysis and ranking of the long-read depth of the variant sites. Through this integrated approach, we successfully compiled a catalog of large insertion/deletion sites (>100 bp) in both male and female Japanese parrotfish.
Collapse
Affiliation(s)
- Yongshuang Xiao
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhizhong Xiao
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Weihai Hao Huigan Marine Biotechnology Co., Weihai, 26449, China
| | - Lin Liu
- Wuhan Frasergen Bioinformatics Co., Ltd, East Lake High-Tech Zone, Wuhan, 430073, China
| | - Yuting Ma
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Haixia Zhao
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yanduo Wu
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jinwei Huang
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Pingrui Xu
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jing Liu
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jun Li
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|