1
|
Wu SD, Meng R, Nie ZL, Song MY, Chen XR, Wen J, Meng Y. Conserved genome structure and phylogenetic insights for the heterogeneous subfamily of Convallarioideae (Asparagaceae) revealed from plastome data. BMC PLANT BIOLOGY 2025; 25:710. [PMID: 40426051 PMCID: PMC12107852 DOI: 10.1186/s12870-025-06711-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025]
Abstract
BACKGROUND Convallarioideae, a subfamily of Asparagaceae, encompasses a wide range of morphologically diverse lineages previously classified under different traditional families and holds significant economic value. Despite its importance, chloroplast genome data for Convallarioideae remain limited, hindering a comprehensive understanding of their genome structural evolution and phylogenetic relationships. This study aims to provide a detailed characterization of chloroplast genome features and to conduct robust phylogenetic analyses of this subfamily using an expanded dataset of chloroplast genomes. RESULTS The plastomes of the subfamily exhibit a typical circular quadripartite structure with conserved genomic organization and gene content. However, variations were observed in genome size, SSRs, and codon usage across the subfamily. Nine highly variable regions and positive selection genes were identified. Phylogenetic analyses based on complete plastid genomes resolved the non-monophyly of Polygonateae. Compared to Eriospermum mackenii, the chloroplast genomes of tribe Rusceae, tribe Dracaeneae, and the Polygonatum-Disporopsis lineage showed significant size reduction. CONCLUSIONS Chloroplast genomes across Convallarioideae exhibit remarkable structural conservation. The phylogenetic analyses revealed weakly resolved backbone relationships among core members of this subfamily. Indels in the LSC region and gene loss were identified as key drivers of structural divergence in plastome size. These results clarify the interplay between genomic architecture and phylogenetic discordance, advancing our understanding of genomic evolution within Convallarioideae.
Collapse
Affiliation(s)
- Shao-De Wu
- Hunan Provincial key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Ran Meng
- Hunan Provincial key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Ze-Long Nie
- Hunan Provincial key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Ming-Yang Song
- Hunan Provincial key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Xing-Ru Chen
- Hunan Provincial key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Ying Meng
- Hunan Provincial key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China.
| |
Collapse
|
2
|
Shao S, Li Y, Feng X, Jin C, Liu M, Zhu R, Tracy ME, Guo Z, He Z, Shi S, Xu S. Chromosomal-Level Genome Suggests Adaptive Constraints Leading to the Historical Population Decline in an Extremely Endangered Plant. Mol Ecol Resour 2025; 25:e14045. [PMID: 39575519 DOI: 10.1111/1755-0998.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 03/08/2025]
Abstract
Increased human activity and climate change have significantly impacted wild habitats and increased the number of endangered species. Exploring evolutionary history and predicting adaptive potential using genomic data will facilitate species conservation and biodiversity recovery. Here, we examined the genome evolution of a critically endangered tree Pellacalyx yunnanensis, a plant species with extremely small populations (PSESP) that is narrowly distributed in Xishuangbanna, China. The species has neared extinction due to economic exploitation in recent decades. We assembled a chromosome-level genome of 334 Mb, with the N50 length of 20.5 Mb. Using the genome, we discovered that P. yunnanensis has undergone several population size reductions, leading to excess deleterious mutations. The species may possess low adaptive potential due to reduced genetic diversity and the loss of stress-responsive genes. We estimate that P. yunnanensis is the basal species of its genus and diverged from its relatives during global cooling, suggesting it was stranded in unsuitable environments during periods of dramatic climate change. In particular, the loss of seed dormancy leads to germination under unfavourable conditions and reproduction challenges. This dormancy loss may have occurred through genetic changes that suppress ABA signalling and the loss of genes involved in seed maturation. The high-quality genome has also enabled us to reveal phenotypic trait evolution in Rhizophoraceae and identify divergent adaptation to intertidal and inland habitats. In summary, our study elucidates mechanisms underlying the decline and evaluates the adaptive potential of P. yunnanensis to future climate change, informing future conservation efforts.
Collapse
Affiliation(s)
- Shao Shao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yulong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Xiao Feng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chuanfeng Jin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ranran Zhu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Miles E Tracy
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Zhang L, Yang Y, Zhang Y, Yang F. Genome-Wide Investigation of MADS-Box Genes in Flower Development and Environmental Acclimation of Lumnitzera littorea (Jack) Voigt. Int J Mol Sci 2025; 26:1680. [PMID: 40004145 PMCID: PMC11855919 DOI: 10.3390/ijms26041680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Lumnitzera littorea (Jack) Voigt is an endangered mangrove species in China. Low fecundity and environmental pressure are supposed to be key factors limiting the population expansion of L. littorea. Transcription factors with the MADS-box domain are crucial regulators of plant flower development, reproduction, and stress response. In this study, we performed a comprehensive investigation into the features and functions of MADS-box genes of L. littorea. Sixty-three LlMADS genes with similar structure and motif composition were identified in the L. littorea genome, and these genes were unevenly distributed on the 11 chromosomes. Segmental duplication was suggested to make a main contribution to the expansion of the LlMADS gene family. Some LIMADS genes exhibited differential expression in different flower types or in response to cold stress. Overexpression of the B-class gene LlMADS37 had substantial effects on the flower morphology and flowering time of transgenic Arabidopsis plants, demonstrating its key role in regulating flower morphogenesis and inflorescence. These findings largely enrich our understanding of the functional importance of MADS-box genes in the inflorescence and stress acclimation of L. littorea and provide valuable resources for future genetic research to improve the conservation of this species.
Collapse
Affiliation(s)
- Linbi Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| | - Yuchen Yang
- School of Ecology, Sun Yat-sen University, Shenzhen 518107, China;
| | - Ying Zhang
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
| | - Fusun Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| |
Collapse
|
4
|
Xu S, Shi S. Plant reproduction: Mangroves use 'child-care' in extreme environments. Curr Biol 2024; 34:R868-R871. [PMID: 39317160 DOI: 10.1016/j.cub.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Using population genomics and molecular biological methods, a recent study reveals the molecular mechanisms of vivipary in mangroves, a term designating all woody plants of the tropical intertidal zones.
Collapse
Affiliation(s)
- Shaohua Xu
- School of Ecology and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Suhua Shi
- School of Ecology and School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|