1
|
López-Unzu MA, Teresa Soto-Navarrete M, Sans-Coma V, Fernández B, Carmen Durán A. The myoarchitecture of the vertebrate cardiac ventricles: evolution and classification. J Exp Biol 2024; 227:jeb247441. [PMID: 39392075 DOI: 10.1242/jeb.247441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The ventricle of the vertebrate heart is the main segment of the cardiac outflow region. Compared with other cardiac components, it shows remarkable histomorphological variation among different animal groups. This variation is especially apparent in the myocardium, which is generally classified into three main types: trabeculated, compact and mixed. The trabeculated or 'spongy' myocardium is characterized by the existence of trabeculae and deep recesses or intertrabecular spaces, lined by the endocardium. The compact type is composed of condensed myocardial fibers, with almost no trabeculated layer. The mixed type consists of an outer compact layer and an inner trabeculated layer. Among vertebrates, fishes show a great diversity of myocardial types. On this basis, the ventricular myoarchitecture has been categorized into four groups of varying complexity. This classification is made according to (i) the proportion of the two types of myocardium, trabeculated versus compact, and (ii) the vascularization of the heart wall. Here, we review the morphogenetic mechanisms that give rise to the different ventricular myoarchitecture in gnathostomes (i.e. jawed vertebrates) with special emphasis on the diversity of the ventricular myocardium throughout the phylogeny of ancient actinopterygians and teleosts. Finally, we propose that the classification of the ventricular myoarchitecture should be reconsidered, given that the degrees of myocardial compactness on which the current classification system is based do not constitute discrete states, but an anatomical continuum.
Collapse
Affiliation(s)
- Miguel A López-Unzu
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - María Teresa Soto-Navarrete
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29590 Málaga, Spain
| | - Valentín Sans-Coma
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29590 Málaga, Spain
| | - Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29590 Málaga, Spain
- Instituto de Biotecnología y Desarrollo Azul-IBYDA, 29004 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares-CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana Carmen Durán
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29590 Málaga, Spain
- Instituto de Biotecnología y Desarrollo Azul-IBYDA, 29004 Málaga, Spain
| |
Collapse
|
2
|
Muramatsu B, Suzuki DG, Suzuki M, Higashiyama H. Gross anatomy of the Pacific hagfish, Eptatretus burgeri, with special reference to the coelomic viscera. Anat Rec (Hoboken) 2024; 307:155-171. [PMID: 36958942 DOI: 10.1002/ar.25208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Hagfish (Myxinoidea) are a deep-sea taxon of cyclostomes, the extant jawless vertebrates. Many researchers have examined the anatomy and embryology of hagfish to shed light on the early evolution of vertebrates; however, the diversity within hagfish is often overlooked. Hagfish have three lineages, Myxininae, Eptatretinae, and Rubicundinae. Usually, textbook illustrations of hagfish anatomy reflect the morphology of the Myxininae lineage, especially Myxine glutinosa, with its single pair of external branchial pores. Here, we instead report the gross anatomy of an Eptatretinae, Eptatretus burgeri, which has six pairs of branchial pores, especially focusing on the coelomic organs. Dissections were performed on fixed and unfixed specimens to provide a guide for those doing organ- or tissue-specific molecular experiments. Our dissections revealed that the ventral aorta is Y-branched in E. burgeri, which differs from the unbranched morphology of Myxine. Otherwise, there were no differences in the morphology of the lingual apparatus or heart in the pharyngeal domain. The thyroid follicles were scattered around the ventral aorta, as has been reported for adult lampreys. The hepatobiliary system more closely resembled those of jawed vertebrates than those of adult lampreys, with the liver having two lobes and a bile duct connecting the gallbladder to each lobe. Overall, the visceral morphology of E. burgeri does not differ significantly from that of the known Myxine at the level of gross anatomy, although the branchial morphology is phylogenetically ancestral compared to Myxine.
Collapse
Affiliation(s)
- Banri Muramatsu
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Daichi G Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, 305-8572, Japan
| | - Masakazu Suzuki
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Hiroki Higashiyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
3
|
Luo Q, Zhou X, Lv X, Zheng W, Geng S, Xu T, Sun Y. Identification and functional regulation of three alternative splicing isoforms of the fthl27 gene in miiuy croaker, Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109147. [PMID: 37805112 DOI: 10.1016/j.fsi.2023.109147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Alternative splicing is an important basic mechanism for eukaryotes to control gene expression. Different forms of alternative splicing may lead to the production of protein subtypes with different functions, leading to the expansion of protein diversity in organisms, affecting cell production and metabolism, and is even related to the occurrence of many diseases. Many studies have shown that ferritin is usually associated with inflammation, vascular proliferation, and tumors, which is the focus of immunological research. It not only plays a role in iron metabolism and storage in the body, but also plays an important regulatory role in pathways related to immune and inflammatory regulation. However, there are few studies on alternative splicing events of the ferritin gene nowadays. Therefore, this study identified three different splicing isoforms in its ferritin gene fthl27 of Miichthys miiuy through Sanger sequencing, qRT-PCR, and other experimental techniques, and we found that three different splicing isoforms of the ferritin gene fthl27 in M. Miiuy cells showed an upregulation trend after being stimulated by Lipopolysaccharide (LPS) and poly (I: C). The experiment also found that the three isoforms may have different regulatory effects on the expression of inflammatory factors and antiviral immune factors, playing an important role in the innate immune response of fish.
Collapse
Affiliation(s)
- Qiang Luo
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xuefeng Zhou
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xing Lv
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shang Geng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China.
| |
Collapse
|
4
|
Morel B, Schade P, Lutteropp S, Williams TA, Szöllősi GJ, Stamatakis A. SpeciesRax: A Tool for Maximum Likelihood Species Tree Inference from Gene Family Trees under Duplication, Transfer, and Loss. Mol Biol Evol 2022; 39:msab365. [PMID: 35021210 PMCID: PMC8826479 DOI: 10.1093/molbev/msab365] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Species tree inference from gene family trees is becoming increasingly popular because it can account for discordance between the species tree and the corresponding gene family trees. In particular, methods that can account for multiple-copy gene families exhibit potential to leverage paralogy as informative signal. At present, there does not exist any widely adopted inference method for this purpose. Here, we present SpeciesRax, the first maximum likelihood method that can infer a rooted species tree from a set of gene family trees and can account for gene duplication, loss, and transfer events. By explicitly modeling events by which gene trees can depart from the species tree, SpeciesRax leverages the phylogenetic rooting signal in gene trees. SpeciesRax infers species tree branch lengths in units of expected substitutions per site and branch support values via paralogy-aware quartets extracted from the gene family trees. Using both empirical and simulated data sets we show that SpeciesRax is at least as accurate as the best competing methods while being one order of magnitude faster on large data sets at the same time. We used SpeciesRax to infer a biologically plausible rooted phylogeny of the vertebrates comprising 188 species from 31,612 gene families in 1 h using 40 cores. SpeciesRax is available under GNU GPL at https://github.com/BenoitMorel/GeneRax and on BioConda.
Collapse
Affiliation(s)
- Benoit Morel
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Paul Schade
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sarah Lutteropp
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Gergely J Szöllősi
- ELTE-MTA “Lendület” Evolutionary Genomics Research Group, Budapest, Hungary
- Department of Biological Physics, Eötvös University, Budapest, Hungary
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
5
|
Dong EM, Allison WT. Vertebrate features revealed in the rudimentary eye of the Pacific hagfish ( Eptatretus stoutii). Proc Biol Sci 2021; 288:20202187. [PMID: 33434464 DOI: 10.1098/rspb.2020.2187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hagfish eyes are markedly basic compared to the eyes of other vertebrates, lacking a pigmented epithelium, a lens and a retinal architecture built of three cell layers: the photoreceptors, interneurons and ganglion cells. Concomitant with hagfish belonging to the earliest-branching vertebrate group (the jawless Agnathans), this lack of derived characters has prompted competing interpretations that hagfish eyes represent either a transitional form in the early evolution of vertebrate vision, or a regression from a previously elaborate organ. Here, we show the hagfish retina is not extensively degenerating during its ontogeny, but instead grows throughout life via a recognizable PAX6+ ciliary marginal zone. The retina has a distinct layer of photoreceptor cells that appear to homogeneously express a single opsin of the RH1 rod opsin class. The epithelium that encompasses these photoreceptors is striking because it lacks the melanin pigment that is universally associated with animal vision; notwithstanding, we suggest this epithelium is a homologue of gnathosome retinal pigment epithelium (RPE) based on its robust expression of RPE65 and its engulfment of photoreceptor outer segments. We infer that the hagfish retina is not entirely rudimentary in its wiring, despite lacking a morphologically distinct layer of interneurons: multiple populations of cells exist in the hagfish inner retina and subsets of these express markers of vertebrate retinal interneurons. Overall, these data clarify Agnathan retinal homologies, reveal characters that now appear to be ubiquitous across the eyes of vertebrates, and refine interpretations of early vertebrate visual system evolution.
Collapse
Affiliation(s)
- Emily M Dong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T7Y 1C4
| | - W Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T7Y 1C4
| |
Collapse
|
6
|
Zhu T, Li Y, Pang Y, Han Y, Li J, Wang Z, Liu X, Li H, Hua Y, Jiang H, Teng H, Quan J, Liu Y, Geng M, Li M, Hui F, Liu J, Qiu Q, Li Q, Ren Y. Chromosome-level genome assembly of Lethenteron reissneri provides insights into lamprey evolution. Mol Ecol Resour 2020; 21:448-463. [PMID: 33053263 DOI: 10.1111/1755-0998.13279] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 11/29/2022]
Abstract
The reissner lamprey Lethenteron reissneri, belonging to the class Cyclostomata, serves as a bridge between invertebrates and jawed vertebrates, and is considered the sister group of jawed vertebrates. However, despite this evolutionary significance, the genetic mechanisms underlying the adaptive evolution of the lamprey lineage remain unclear. Here, we assembled a 1.06 Gb chromosome-level draft genome of L. reissneri, with 72 chromosomes (ranging in length from 4.5 Mb to 25.9 Mb) and a scaffold N50 length of 13.23 Mb. Genome quality comparisons revealed that the reissner lamprey genome has higher completeness and contiguity than the previously published sea lamprey and Japanese lamprey genomes. Moreover, reissner lamprey, sea lamprey, and Japanese lamprey species share similar transposable element profiles and Hox gene cluster compositions, suggesting that a burst of transposable element activity and whole genome duplication occurred before their divergence. Additionally, the Lip gene copy numbers, which have been studied for their functions in the host defence system, were found to be expanded uniquely in lamprey lineages, suggesting key roles for these genes in lamprey evolution and adaptation. We also identified two neural-related genes, Nrn1 and Unc13a, with copy number expansions in jawed vertebrates, which may be functionally relevant to the origin of lamprey brains. Hence, this study not only provides the first chromosome-level reference genome for Cyclostomata, but also highlights features of the unique biology and adaptive evolution of the lamprey lineage.
Collapse
Affiliation(s)
- Ting Zhu
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yongxin Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yinglun Han
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Jun Li
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Zhongkai Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Xin Liu
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Haorong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yishan Hua
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Hui Jiang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Hongming Teng
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Jian Quan
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yu Liu
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Ming Geng
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Meiao Li
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Fan Hui
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Jinzhao Liu
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yandong Ren
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
7
|
Dichiera AM, McMillan OJL, Clifford AM, Goss GG, Brauner CJ, Esbaugh AJ. The importance of a single amino acid substitution in reduced red blood cell carbonic anhydrase function of early-diverging fish. J Comp Physiol B 2020; 190:287-296. [PMID: 32146532 DOI: 10.1007/s00360-020-01270-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/27/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
In most vertebrates, red blood cell carbonic anhydrase (RBC CA) plays a critical role in carbon dioxide (CO2) transport and excretion across epithelial tissues. Many early-diverging fishes (e.g., hagfish and chondrichthyans) are unique in possessing plasma-accessible membrane-bound CA-IV in the gills, allowing some CO2 excretion to occur without involvement from the RBCs. However, implications of this on RBC CA function are unclear. Through homology cloning techniques, we identified the putative protein sequences for RBC CA from nine early-diverging species. In all cases, these sequences contained a modification of the proton shuttle residue His-64, and activity measurements from three early-diverging fish demonstrated significantly reduced CA activity. Site-directed mutagenesis was used to restore the His-64 proton shuttle, which significantly increased RBC CA activity, clearly illustrating the functional significance of His-64 in fish red blood cell CA activity. Bayesian analyses of 55 vertebrate cytoplasmic CA isozymes suggested that independent evolutionary events led to the modification of His-64 and thus reduced CA activity in hagfish and chondrichthyans. Additionally, in early-diverging fish that possess branchial CA-IV, there is an absence of His-64 in RBC CAs and the absence of the Root effect [where a reduction in pH reduces hemoglobin's capacity to bind with oxygen (O2)]. Taken together, these data indicate that low-activity RBC CA may be present in all fish with branchial CA-IV, and that the high-activity RBC CA seen in most teleosts may have evolved in conjunction with enhanced hemoglobin pH sensitivity.
Collapse
Affiliation(s)
- Angelina M Dichiera
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373-5015, USA.
| | - Olivia J L McMillan
- Zoology Department, The University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Alexander M Clifford
- Scripps Institute of Oceanography, The University of California, San Diego, 9500 Gilman Drive #0202, La Jolla, CA, 92093-0202, USA
| | - Greg G Goss
- Department of Biological Sciences, The University of Alberta, 116 St. and 85 Ave., Edmonton, AB, T6G 2R3, Canada.,Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, V0R 1B0, Canada
| | - Colin J Brauner
- Zoology Department, The University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Andrew J Esbaugh
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373-5015, USA
| |
Collapse
|
8
|
Kim KY, Park HK, Choi SG, Jung YH, Lee DS, Kim YS, Yoo JS, Yoon M. The full-length mitochondrial genome of the Fernholm’s hagfish, Myxine fernholmi (Myxini; Myxiniformes; Myxinidae). Mitochondrial DNA B Resour 2019; 4:3482-3483. [PMID: 33366049 PMCID: PMC7707226 DOI: 10.1080/23802359.2019.1674731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The full-length mitochondrial genome of the Fernholm’s hagfish, Myxine fernholmi (Myxini; Myxiniformes; Myxinidae) was analyzed by the primer walking method. Its mitogenome was 18,862 bp in total length and was composed of 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes. The gene content and order were congruent with those of typical vertebrates. In the phylogenetic tree, M. fernholmi showed the closest relationship to M. glutinosa in the same genus and subfamily and well separated from the other hagfish in the subfamily Eptatretinae.
Collapse
Affiliation(s)
| | - Hong Keun Park
- Department of Science, Trine University, Angola, IN, USA
| | - Seok-Gwan Choi
- Distant Water Fisheries Resources Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Yun-Hwan Jung
- National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Dae-Sung Lee
- National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Yun-Sook Kim
- National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Jong Su Yoo
- National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Moongeun Yoon
- National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| |
Collapse
|
9
|
Irie N, Satoh N, Kuratani S. The phylum Vertebrata: a case for zoological recognition. ZOOLOGICAL LETTERS 2018; 4:32. [PMID: 30607258 PMCID: PMC6307173 DOI: 10.1186/s40851-018-0114-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
The group Vertebrata is currently placed as a subphylum in the phylum Chordata, together with two other subphyla, Cephalochordata (lancelets) and Urochordata (ascidians). The past three decades, have seen extraordinary advances in zoological taxonomy and the time is now ripe for reassessing whether the subphylum position is truly appropriate for vertebrates, particularly in light of recent advances in molecular phylogeny, comparative genomics, and evolutionary developmental biology. Four lines of current research are discussed here. First, molecular phylogeny has demonstrated that Deuterostomia comprises Ambulacraria (Echinodermata and Hemichordata) and Chordata (Cephalochordata, Urochordata, and Vertebrata), each clade being recognized as a mutually comparable phylum. Second, comparative genomic studies show that vertebrates alone have experienced two rounds of whole-genome duplication, which makes the composition of their gene family unique. Third, comparative gene-expression profiling of vertebrate embryos favors an hourglass pattern of development, the most conserved stage of which is recognized as a phylotypic period characterized by the establishment of a body plan definitively associated with a phylum. This mid-embryonic conservation is supported robustly in vertebrates, but only weakly in chordates. Fourth, certain complex patterns of body plan formation (especially of the head, pharynx, and somites) are recognized throughout the vertebrates, but not in any other animal groups. For these reasons, we suggest that it is more appropriate to recognize vertebrates as an independent phylum, not as a subphylum of the phylum Chordata.
Collapse
Affiliation(s)
- Naoki Irie
- Department of Biological Sciences, School of Science, University of Tokyo, Tokyo, 113-0033 Japan
- Universal Biology Institute, University of Tokyo, Tokyo, 113-0033 Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, and Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| |
Collapse
|
10
|
DeLaurier A. Evolution and development of the fish jaw skeleton. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 8:e337. [PMID: 30378758 DOI: 10.1002/wdev.337] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022]
Abstract
The evolution of the jaw represents a key innovation in driving the diversification of vertebrate body plans and behavior. The pharyngeal apparatus originated as gill bars separated by slits in chordate ancestors to vertebrates. Later, with the acquisition of neural crest, pharyngeal arches gave rise to branchial basket cartilages in jawless vertebrates (agnathans), and later bone and cartilage of the jaw, jaw support, and gills of jawed vertebrates (gnathostomes). Major events in the evolution of jaw structure from agnathans to gnathostomes include axial regionalization of pharyngeal elements and formation of a jaw joint. Hox genes specify the anterior-posterior identity of arches, and edn1, dlx, hand2, Jag1b-Notch2 signaling, and Nr2f factors specify dorsal-ventral identity. The formation of a jaw joint, an important step in the transition from an un-jointed pharynx in agnathans to a hinged jaw in gnathostomes involves interaction between nkx3.2, hand2, and barx1 factors. Major events in jaw patterning between fishes and reptiles include changes to elements of the second pharyngeal arch, including a loss of opercular and branchiostegal ray bones and transformation of the hyomandibula into the stapes. Further changes occurred between reptiles and mammals, including the transformation of the articular and quadrate elements of the jaw joint into the malleus and incus of the middle ear. Fossils of transitional jaw phenotypes can be analyzed from a developmental perspective, and there exists potential to use genetic manipulation techniques in extant taxa to test hypotheses about the evolution of jaw patterning in ancient vertebrates. This article is categorized under: Comparative Development and Evolution > Evolutionary Novelties Early Embryonic Development > Development to the Basic Body Plan Comparative Development and Evolution > Body Plan Evolution.
Collapse
Affiliation(s)
- April DeLaurier
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina
| |
Collapse
|
11
|
Leow CH, Fischer K, Leow CY, Braet K, Cheng Q, McCarthy J. Isolation and characterization of malaria PfHRP2 specific V NAR antibody fragments from immunized shark phage display library. Malar J 2018; 17:383. [PMID: 30355309 PMCID: PMC6201582 DOI: 10.1186/s12936-018-2531-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/16/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Malaria rapid diagnostic tests (RDTs) represent an important antibody based immunoassay platform. Unfortunately, conventional monoclonal antibodies are subject to degradation shortening shelf lives of RDTs. The variable region of the receptor (VNAR) from shark has a potential as alternative to monoclonal antibodies in RDTs due to high thermal stability. METHODS In this study, new binders derived from shark VNAR domains library were investigated. Following immunization of a wobbegong shark (Orectolobus ornatus) with three recombinant malaria biomarker proteins (PfHRP2, PfpLDH and Pvaldolase), a single domain antibody (sdAb) library was constructed from splenocytes. Target-specific VNAR phage were isolated by panning. One specific clone was selected for expression in Escherichia coli expression system, and study of binding reactivity undertaken. RESULTS The primary VNAR domain library possessed a titre of 1.16 × 106 pfu/mL. DNA sequence analysis showed 82.5% of isolated fragments appearing to contain an in-frame sequence. After multiple rounds of biopanning, a highly dominant clone specific to PfHRP2 was identified and selected for protein production in an E. coli expression system. Biological characterization showed the recombinant protein expressed in periplasmic has better detection sensitivity than that of cytoplasmic proteins. Assays of binding activity indicated that its reactivity was inferior to the positive control mAb C1-13. CONCLUSIONS Target-specific bacteriophage VNARs were successfully isolated after a series of immunization, demonstrating that phage display technology is a useful tool for selection of antigen binders. Generation of new binding reagents such as VNAR antibodies that specifically recognize the malaria biomarkers represents an appealing approach to improve the performance of RDTs.
Collapse
Affiliation(s)
- Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia.
| | - Katja Fischer
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Chiuan Yee Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Katleen Braet
- Department of Research, BioMARIC, Zwijnaarde, Belgium
| | - Qin Cheng
- Australian Army Malaria Institute, Brisbane, Australia
| | - James McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
12
|
Recent Advances in Hagfish Developmental Biology in a Historical Context: Implications for Understanding the Evolution of the Vertebral Elements. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-4-431-56609-0_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
13
|
Lorenzale M, López-Unzu MA, Rodríguez C, Fernández B, Durán AC, Sans-Coma V. The anatomical components of the cardiac outflow tract of chondrichthyans and actinopterygians. Biol Rev Camb Philos Soc 2018; 93:1604-1619. [DOI: 10.1111/brv.12411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Miguel Lorenzale
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
| | - Miguel A. López-Unzu
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA); Universidad de Málaga; 29071 Málaga Spain
| | - Cristina Rodríguez
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA); Universidad de Málaga; 29071 Málaga Spain
| | - Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA); Universidad de Málaga; 29071 Málaga Spain
| | - Ana C. Durán
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA); Universidad de Málaga; 29071 Málaga Spain
| | - Valentín Sans-Coma
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
| |
Collapse
|
14
|
Endsin MJ, Michalec O, Manzon LA, Lovejoy DA, Manzon RG. CRH peptide evolution occurred in three phases: Evidence from characterizing sea lamprey CRH system members. Gen Comp Endocrinol 2017; 240:162-173. [PMID: 27777046 DOI: 10.1016/j.ygcen.2016.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/06/2016] [Accepted: 10/20/2016] [Indexed: 02/08/2023]
Abstract
The corticotropin releasing hormone (CRH) system, which includes the CRH family of peptides, their receptors (CRHRs) and a binding protein (CRHBP), has been strongly conserved throughout vertebrate evolution. The identification of invertebrate homologues suggests this system evolved over 500 million years ago. However, the early vertebrate evolution of the CRH system is not understood. Current theory indicates that agnathans (hagfishes and lampreys) are monophyletic with a conservative evolution over the past 500million years and occupy a position at the root of vertebrate phylogeny. We isolated the cDNAs for three CRH family members, two CRHRs and a CRHBP from the sea lamprey, Petromyzon marinus. Two of the CRH peptides are related to the CRH/urotensin-1 (UI) lineage, whereas the other is a urocortin (Ucn) 3 orthologue. The predicted amino acid identity of CRH and UI is 61% but they possess distinct motifs indicative of each peptide, suggesting an early divergence of the two genes. Based on our findings we propose the CRH peptides evolved in at least 3 distinct phases. The first occurring prior to the agnathans gave rise to the CRH/UI-like and Ucn2/3-like paralogous lineages. The second was a partial sub-genomic duplication of the ancestral CRH/UI-like gene, but not the Ucn2/3-like gene, giving rise to the CRH and UI (Ucn) lineages. The third event which resulted in the appearance of Ucn2 and Ucn3 must have occurred after the evolution of the cartilaginous fishes. Interestingly, unlike other vertebrate CRHRs, we were unable to classify our two P. marinus receptors (designated CRHRα and CRHRβ) as either type 1 or type 2, indicating that this split evolved later in vertebrate evolution. A single CRHBP gene was found suggesting that either this gene has not been affected by the vertebrate genome duplications or there have been a series of paralogous gene deletions. This study suggests that P. marinus possess a functional CRH system that differs from that of the gnathostomes and may represent a model for the earliest functioning CRH system in vertebrates.
Collapse
Affiliation(s)
- Matthew J Endsin
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Ola Michalec
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Lori A Manzon
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - David A Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Richard G Manzon
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada.
| |
Collapse
|
15
|
Irisarri I, Meyer A. The Identification of the Closest Living Relative(s) of Tetrapods: Phylogenomic Lessons for Resolving Short Ancient Internodes. Syst Biol 2016; 65:1057-1075. [PMID: 27425642 DOI: 10.1093/sysbio/syw057] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 06/08/2016] [Indexed: 01/08/2023] Open
Abstract
Identifying the closest living relative(s) of tetrapods is an important, yet still contested question in vertebrate phylogenetics. Three hypotheses are possible and ruling out alternatives has proven difficult even with large molecular data sets due to weak phylogenetic signal coupled nonphylogenetic noise resulting from relatively rapid speciation events that occurred a long time ago ([Formula: see text]400 Ma). Here, we revisit the identity of the closest living relative of land vertebrates from a phylogenomic perspective and include new genomic data for all extant lungfish genera. RNA-seq proves to be a great alternative to genomic sequencing, which currently is technically not feasible in lungfishes due to their huge (50-130 Gb) and repetitive genomes. We examined the most important sources of systematic error, namely long-branch attraction (LBA), compositional heterogeneity and distribution of missing data and applied different correction techniques. A multispecies coalescent approach is used to account for deep coalescence that might come from the short and deep internodes separating early sarcopterygian splits. Concatenation methods favored lungfishes as the closest living relatives of tetrapods with strong statistical support. Amino acid profile mixture models can unambiguously resolve this difficult internode thanks to their ability to avoid systematic error. We assessed the performance of different site-heterogeneous models and data partitioning and compared the ability of different strategies designed to overcome LBA, including taxon manipulation, reduction of among-lineage rate heterogeneity and removal of fast-evolving or compositionally heterogeneous positions. The identification of lungfish as sister group of tetrapods is robust regarding the effects of nonstationary composition and distribution of missing data. The multispecies coalescent method reconstructed strongly supported topologies that were congruent with concatenation, despite pervasive gene tree heterogeneity. We reject alternative topologies for early sarcopterygian relationships by increasing the signal-to-noise ratio in our alignments. The analytical pipeline outlined here combines probabilistic phylogenomic inference with methods for evaluating data quality, model adequacy, and assessing systematic error, and thus is likely to help resolve similarly difficult internodes in the tree of life. [Coalescence; coelacanth; compositional heterogeneity; gene tree; long-branch attraction; lungfish; missing data; model misspecification; phylogenomic; species tree; systematic error.].
Collapse
Affiliation(s)
- Iker Irisarri
- Laboratory for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Axel Meyer
- Laboratory for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
16
|
Kuratani S, Oisi Y, Ota KG. Evolution of the Vertebrate Cranium: Viewed from Hagfish Developmental Studies. Zoolog Sci 2016; 33:229-38. [DOI: 10.2108/zs150187] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN, Kobe 650-0047, Japan
| | - Yasuhiro Oisi
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL 33458-2906, USA
| | - Kinya G. Ota
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan 26242, Taiwan
| |
Collapse
|
17
|
Higashiyama H, Hirasawa T, Oisi Y, Sugahara F, Hyodo S, Kanai Y, Kuratani S. On the vagal cardiac nerves, with special reference to the early evolution of the head-trunk interface. J Morphol 2016; 277:1146-58. [PMID: 27216138 DOI: 10.1002/jmor.20563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
Abstract
The vagus nerve, or the tenth cranial nerve, innervates the heart in addition to other visceral organs, including the posterior visceral arches. In amniotes, the anterior and posterior cardiac branches arise from the branchial and intestinal portions of the vagus nerve to innervate the arterial and venous poles of the heart, respectively. The evolution of this innervation pattern has yet to be elucidated, due mainly to the lack of morphological data on the vagus in basal vertebrates. To investigate this topic, we observed the vagus nerves of the lamprey (Lethenteron japonicum), elephant shark (Callorhinchus milii), and mouse (Mus musculus), focusing on the embryonic patterns of the vagal branches in the venous pole. In the lamprey, no vagus branch was found in the venous pole throughout development, whereas the arterial pole was innervated by a branch from the branchial portion. In contrast, the vagus innervated the arterial and venous poles in the mouse and elephant shark. Based on the morphological patterns of these branches, the venous vagal branches of the mouse and elephant shark appear to belong to the intestinal part of the vagus, implying that the cardiac nerve pattern is conserved among crown gnathostomes. Furthermore, we found a topographical shift of the structures adjacent to the venous pole (i.e., the hypoglossal nerve and pronephros) between the extant gnathostomes and lamprey. Phylogenetically, the lamprey morphology is likely to be the ancestral condition for vertebrates, suggesting that the evolution of the venous branch occurred early in the gnathostome lineage, in parallel with the remodeling of the head-trunk interfacial domain during the acquisition of the neck. J. Morphol. 277:1146-1158, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hiroki Higashiyama
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.,Evolutionary Morphology Laboratory, RIKEN, Kobe, 650-0047, Japan.,Laboratory of Veterinary Anatomy, the University of Tokyo, Tokyo, 113-8657, Japan
| | - Tatsuya Hirasawa
- Evolutionary Morphology Laboratory, RIKEN, Kobe, 650-0047, Japan
| | - Yasuhiro Oisi
- Evolutionary Morphology Laboratory, RIKEN, Kobe, 650-0047, Japan.,Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
| | - Fumiaki Sugahara
- Evolutionary Morphology Laboratory, RIKEN, Kobe, 650-0047, Japan.,Division of Biology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, the University of Tokyo, Chiba, 277-8564, Japan
| | - Yoshiakira Kanai
- Laboratory of Veterinary Anatomy, the University of Tokyo, Tokyo, 113-8657, Japan
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN, Kobe, 650-0047, Japan
| |
Collapse
|
18
|
Durán AC, López-Unzu MA, Rodríguez C, Fernández B, Lorenzale M, Linares A, Salmerón F, Sans-Coma V. Structure and vascularization of the ventricular myocardium in Holocephali: their evolutionary significance. J Anat 2016; 226:501-10. [PMID: 25994124 DOI: 10.1111/joa.12317] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2015] [Indexed: 11/27/2022] Open
Abstract
It was generally assumed that the ventricle of the primitive vertebrate heart was composed of trabeculated, or spongy, myocardium, supplied by oxygen-poor luminal blood. In addition, it was presumed that the mixed ventricular myocardium, consisting of a compacta and a spongiosa, and its supply through coronary arteries appeared several times throughout fish evolution. Recent work has suggested, however, that a fully vascularized, mixed myocardium may be the primitive condition in gnathostomes. The present study of the heart ventricles of four holocephalan species aimed to clarify this controversy. Our observations showed that the ventricular myocardium of Chimaera monstrosa and Harriotta raleighana consists of a very thin compacta overlying a widespread spongiosa. The ventricle of Hydrolagus affinis is composed exclusively of trabeculated myocardium. In these three species there is a well-developed coronary artery system. The main coronary artery trunks run along the outflow tract, giving off subepicardial ventricular arteries. The trabeculae of the spongiosa are irrigated by branches of the subepicardial arteries and by penetrating arterial vessels arising directly from the main coronary trunks at the level of the conoventricular junction. The ventricle of Rhinochimaera atlantica has only spongy myocardium supplied by luminal blood. Small coronary arterial vessels are present in the subepicardium, but they do not enter the myocardial trabeculae. The present findings show for the first time that in a wild living vertebrate species, specifically H. affinis, an extensive coronary artery system supplying the whole cardiac ventricle exists in the absence of a well-developed compact ventricular myocardium. This is consistent with the notion derived from experimental work that myocardial cell proliferation and coronary vascular growth rely on distinct developmental programs. Our observations, together with data in the literature on elasmobranchs, support the view that the mixed ventricular myocardium is primitive for chondrichthyans. The reduction or even lack of compacta in holocephali has to be regarded as a derived anatomical trait. Our findings also fit in with the view that the mixed myocardium was the primitive condition in gnathostomes, and that the absence of compact ventricular myocardium in different actinopterygian groups is the result of a repeated loss of such type of cardiac muscle during fish evolution.
Collapse
Affiliation(s)
- Ana C Durán
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Biomedical Research Institute of Málaga (IBIMA), University of Málaga, Málaga, Spain
| | - Miguel A López-Unzu
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain
| | - Cristina Rodríguez
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain
| | - Borja Fernández
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Biomedical Research Institute of Málaga (IBIMA), University of Málaga, Málaga, Spain
| | - Miguel Lorenzale
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain
| | - Andrea Linares
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain
| | - Francisca Salmerón
- Spanish Institute of Oceanography, Oceanographic Centre of Málaga, Fuengirola, Málaga, Spain
| | - Valentín Sans-Coma
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Biomedical Research Institute of Málaga (IBIMA), University of Málaga, Málaga, Spain
| |
Collapse
|
19
|
Chung-Davidson YW, Yeh CY, Bussy U, Li K, Davidson PJ, Nanlohy KG, Brown CT, Whyard S, Li W. Hsp90 and hepatobiliary transformation during sea lamprey metamorphosis. BMC DEVELOPMENTAL BIOLOGY 2015; 15:47. [PMID: 26627605 PMCID: PMC4667476 DOI: 10.1186/s12861-015-0097-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/23/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Biliary atresia (BA) is a human infant disease with inflammatory fibrous obstructions in the bile ducts and is the most common cause for pediatric liver transplantation. In contrast, the sea lamprey undergoes developmental BA with transient cholestasis and fibrosis during metamorphosis, but emerges as a fecund adult. Therefore, sea lamprey liver metamorphosis may serve as an etiological model for human BA and provide pivotal information for hepatobiliary transformation and possible therapeutics. RESULTS We hypothesized that liver metamorphosis in sea lamprey is due to transcriptional reprogramming that dictates cellular remodeling during metamorphosis. We determined global gene expressions in liver at several metamorphic landmark stages by integrating mRNA-Seq and gene ontology analyses, and validated the results with real-time quantitative PCR, histological and immunohistochemical staining. These analyses revealed that gene expressions of protein folding chaperones, membrane transporters and extracellular matrices were altered and shifted during liver metamorphosis. HSP90, important in protein folding and invertebrate metamorphosis, was identified as a candidate key factor during liver metamorphosis in sea lamprey. Blocking HSP90 with geldanamycin facilitated liver metamorphosis and decreased the gene expressions of the rate limiting enzyme for cholesterol biosynthesis, HMGCoA reductase (hmgcr), and bile acid biosynthesis, cyp7a1. Injection of hsp90 siRNA for 4 days altered gene expressions of met, hmgcr, cyp27a1, and slc10a1. Bile acid concentrations were increased while bile duct and gall bladder degeneration was facilitated and synchronized after hsp90 siRNA injection. CONCLUSIONS HSP90 appears to play crucial roles in hepatobiliary transformation during sea lamprey metamorphosis. Sea lamprey is a useful animal model to study postembryonic development and mechanisms for hsp90-induced hepatobiliary transformation.
Collapse
Affiliation(s)
- Yu-Wen Chung-Davidson
- Departments of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA.
| | - Chu-Yin Yeh
- Physiology & College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Ugo Bussy
- Departments of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA.
| | - Ke Li
- Departments of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA.
| | - Peter J Davidson
- Departments of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA.
| | - Kaben G Nanlohy
- Departments of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA.
| | - C Titus Brown
- Computer Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
| | - Steven Whyard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Weiming Li
- Departments of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA.
- Physiology & College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
20
|
Covelo-Soto L, Saura M, Morán P. Does DNA methylation regulate metamorphosis? The case of the sea lamprey (Petromyzon marinus) as an example. Comp Biochem Physiol B Biochem Mol Biol 2015; 185:42-6. [DOI: 10.1016/j.cbpb.2015.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/20/2015] [Accepted: 03/31/2015] [Indexed: 02/03/2023]
|
21
|
Oisi Y, Fujimoto S, Ota KG, Kuratani S. On the peculiar morphology and development of the hypoglossal, glossopharyngeal and vagus nerves and hypobranchial muscles in the hagfish. ZOOLOGICAL LETTERS 2015; 1:6. [PMID: 26605051 PMCID: PMC4604111 DOI: 10.1186/s40851-014-0005-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 12/20/2014] [Indexed: 05/28/2023]
Abstract
INTRODUCTION The vertebrate body is characterized by its dual segmental organization: pharyngeal arches in the head and somites in the trunk. Muscular and nervous system morphologies are also organized following these metameric patterns, with distinct differences between head and trunk; branchiomeric nerves innervating pharyngeal arches are superficial to spinal nerves innervating somite derivatives. Hypobranchial muscles originate from rostral somites and occupy the "neck" at the head-trunk interface. Hypobranchial muscles, unlike ventral trunk muscles in the lateral body wall, develop from myocytes that migrate ventrally to occupy a space that is ventrolateral to the pharynx and unassociated with coelomic cavities. Occipitospinal nerves innervating these muscles also extend ventrally, thereby crossing the vagus nerve laterally. RESULTS In hagfishes, the basic morphological pattern of vertebrates is obliterated by the extreme caudal shift of the posterior part of the pharynx. The vagus nerve is found unusually medially, and occipitospinal nerves remain unfasciculated, appearing as metameric spinal nerves as in the posterior trunk region. Moreover, the hagfish exhibits an undifferentiated body plan, with the hypobranchial muscles not well dissociated from the abaxial muscles in the trunk. Comparative embryological observation showed that this hagfish-specific morphology is established by secondary modification of the common vertebrate embryonic pattern, and the hypobranchial muscle homologue can be found in the rostral part of the oblique muscle with pars decussata. CONCLUSION The morphological pattern of the hagfish represents an extreme case of heterotopy that led to the formation of the typical hypoglossal nerve, and can be regarded as an autapomorphic trait of the hagfish lineage.
Collapse
Affiliation(s)
- Yasuhiro Oisi
- />Laboratory for Evolutionary Morphology, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Satoko Fujimoto
- />Laboratory for Evolutionary Morphology, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Kinya G Ota
- />Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, No. 23-10, Dawen Road, Jiaoxi, Yilan 26242 Taiwan
| | - Shigeru Kuratani
- />Laboratory for Evolutionary Morphology, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| |
Collapse
|
22
|
Cytogenetic evidences of genome rearrangement and differential epigenetic chromatin modification in the sea lamprey (Petromyzon marinus). Genetica 2014; 142:545-54. [PMID: 25432678 DOI: 10.1007/s10709-014-9802-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/22/2014] [Indexed: 10/24/2022]
Abstract
This work explores both the chromatin loss and the differential genome methylation in the sea lamprey (Petromyzon marinus) from a molecular cytogenetic point of view. Fluorescent in situ hybridization experiments on meiotic bivalents and mitotic chromosomes corroborate the chromatin loss previously observed during the development of the sea lamprey and demonstrate that the elimination affects not only to Germ1 sequences but also to the rpt200 satellite DNA and most part of the major ribosomal DNA present on the germinal line. 5-Methylcytosine immunolocation revealed that the GC-rich heterochromatin is highly methylated in the germ line but significantly less in somatic chromosomes. These findings not only support previous observations about genome rearrangements but also give new information about epigenetic changes in P. marinus. The key position of lampreys in the vertebrate phylogenetic tree makes them an interesting taxon to provide relevant information about genome evolution in vertebrates.
Collapse
|
23
|
Ziermann JM, Miyashita T, Diogo R. Cephalic muscles of Cyclostomes (hagfishes and lampreys) and Chondrichthyes (sharks, rays and holocephalans): comparative anatomy and early evolution of the vertebrate head muscles. Zool J Linn Soc 2014. [DOI: 10.1111/zoj.12186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Janine M. Ziermann
- Department of Anatomy; Howard University College of Medicine; Washington DC 20059 USA
| | - Tetsuto Miyashita
- Department of Biological Sciences; University of Alberta; Edmonton AB T6E 2N4 Canada
| | - Rui Diogo
- Department of Anatomy; Howard University College of Medicine; Washington DC 20059 USA
| |
Collapse
|
24
|
Lee JH, Pooley NJ, Mohd-Adnan A, Martin SAM. Cloning and characterisation of multiple ferritin isoforms in the Atlantic salmon (Salmo salar). PLoS One 2014; 9:e103729. [PMID: 25078784 PMCID: PMC4117605 DOI: 10.1371/journal.pone.0103729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/06/2014] [Indexed: 12/21/2022] Open
Abstract
Ferritin is a highly-conserved iron-storage protein that has also been identified as an acute phase protein within the innate immune system. The iron-storage function is mediated through complementary roles played by heavy (H)-chain subunit as well as the light (L) in mammals or middle (M)-chain in teleosts, respectively. In this study, we report the identification of five ferritin subunits (H1, H2, M1, M2, M3) in the Atlantic salmon that were supported by the presence of iron-regulatory regions, gene structure, conserved domains and phylogenetic analysis. Tissue distribution analysis across eight different tissues showed that each of these isoforms is differentially expressed. We also examined the expression of the ferritin isoforms in the liver and kidney of juvenile Atlantic salmon that was challenged with Aeromonas salmonicida as well as in muscle cell culture stimulated with interleukin-1β. We found that each isoform displayed unique expression profiles, and in certain conditions the expressions between the isoforms were completely diametrical to each other. Our study is the first report of multiple ferritin isoforms from both the H- and M-chains in a vertebrate species, as well as ferritin isoforms that showed decreased expression in response to infection. Taken together, the results of our study suggest the possibility of functional differences between the H- and M-chain isoforms in terms of tissue localisation, transcriptional response to bacterial exposure and stimulation by specific immune factors.
Collapse
Affiliation(s)
- Jun-Hoe Lee
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
- School of Biosciences and Biotechnology, Faculty of Science & Technology, University of Kebangsaan, Selangor, Malaysia
| | - Nicholas J. Pooley
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Adura Mohd-Adnan
- School of Biosciences and Biotechnology, Faculty of Science & Technology, University of Kebangsaan, Selangor, Malaysia
- Malaysia Genome Institute, Ministry of Science, Technology and Innovation, Selangor, Malaysia
| | - Samuel A. M. Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Suzuki A, Endo K, Kitano T. Phylogenetic positions of RH blood group-related genes in cyclostomes. Gene 2014; 543:22-7. [DOI: 10.1016/j.gene.2014.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/24/2014] [Accepted: 04/06/2014] [Indexed: 11/26/2022]
|
26
|
Brazeau MD, Friedman M. The characters of Palaeozoic jawed vertebrates. Zool J Linn Soc 2014; 170:779-821. [PMID: 25750460 PMCID: PMC4347021 DOI: 10.1111/zoj.12111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/27/2013] [Indexed: 12/01/2022]
Abstract
Newly discovered fossils from the Silurian and Devonian periods are beginning to challenge embedded perceptions about the origin and early diversification of jawed vertebrates (gnathostomes). Nevertheless, an explicit cladistic framework for the relationships of these fossils relative to the principal crown lineages of the jawed vertebrates (osteichthyans: bony fishes and tetrapods; chondrichthyans: sharks, batoids, and chimaeras) remains elusive. We critically review the systematics and character distributions of early gnathostomes and provide a clearly stated hierarchy of synapomorphies covering the jaw-bearing stem gnathostomes and osteichthyan and chondrichthyan stem groups. We show that character lists, designed to support the monophyly of putative groups, tend to overstate their strength and lack cladistic corroboration. By contrast, synapomorphic hierarchies are more open to refutation and must explicitly confront conflicting evidence. Our proposed synapomorphy scheme is used to evaluate the status of the problematic fossil groups Acanthodii and Placodermi, and suggest profitable avenues for future research. We interpret placoderms as a paraphyletic array of stem-group gnathostomes, and suggest what we regard as two equally plausible placements of acanthodians: exclusively on the chondrichthyan stem, or distributed on both the chondrichthyan and osteichthyan stems.
Collapse
Affiliation(s)
- Martin D Brazeau
- Naturalis Biodiversity CenterP.O. Box 9514, 2300 RA, Leiden, The Netherlands
| | - Matt Friedman
- Department of Earth Sciences, University of OxfordSouth Parks Road, Oxford, OX1 3AN, UK
| |
Collapse
|
27
|
Nozaki M. Hypothalamic-pituitary-gonadal endocrine system in the hagfish. Front Endocrinol (Lausanne) 2013; 4:200. [PMID: 24416029 PMCID: PMC3874551 DOI: 10.3389/fendo.2013.00200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/17/2013] [Indexed: 11/26/2022] Open
Abstract
The hypothalamic-pituitary system is considered to be a seminal event that emerged prior to or during the differentiation of the ancestral agnathans (jawless vertebrates). Hagfishes as one of the only two extant members of the class of agnathans are considered the most primitive vertebrates known, living or extinct. Accordingly, studies on their reproduction are important for understanding the evolution and phylogenetic aspects of the vertebrate reproductive endocrine system. In gnathostomes (jawed vertebrates), the hormones of the hypothalamus and pituitary have been extensively studied and shown to have well-defined roles in the control of reproduction. In hagfish, it was thought that they did not have the same neuroendocrine control of reproduction as gnathostomes, since it was not clear whether the hagfish pituitary gland contained tropic hormones of any kind. This review highlights the recent findings of the hypothalamic-pituitary-gonadal endocrine system in the hagfish. In contrast to gnathostomes that have two gonadotropins (GTH: luteinizing hormone and follicle-stimulating hormone), only one pituitary GTH has been identified in the hagfish. Immunohistochemical and functional studies confirmed that this hagfish GTH was significantly correlated with the developmental stages of the gonads and showed the presence of a steroid (estradiol) feedback system at the hypothalamic-pituitary levels. Moreover, while the identity of hypothalamic gonadotropin-releasing hormone (GnRH) has not been determined, immunoreactive (ir) GnRH has been shown in the hagfish brain including seasonal changes of ir-GnRH corresponding to gonadal reproductive stages. In addition, a hagfish PQRFamide peptide was identified and shown to stimulate the expression of hagfish GTHβ mRNA in the hagfish pituitary. These findings provide evidence that there are neuroendocrine-pituitary hormones that share common structure and functional features compared to later evolved vertebrates.
Collapse
Affiliation(s)
- Masumi Nozaki
- Sado Marine Biological Station, Faculty of Science, Niigata University, Sado, Japan
| |
Collapse
|
28
|
Oisi Y, Ota KG, Fujimoto S, Kuratani S. Development of the Chondrocranium in Hagfishes, with Special Reference to the Early Evolution of Vertebrates. Zoolog Sci 2013; 30:944-61. [DOI: 10.2108/zsj.30.944] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Yasuhiro Oisi
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Kinya G. Ota
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan 26242, Taiwan
| | - Satoko Fujimoto
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| |
Collapse
|
29
|
Nozaki M, Uchida K, Honda K, Shimotani T, Nishiyama M. Effects of estradiol or testosterone treatment on expression of gonadotropin subunit mRNAs and proteins in the pituitary of juvenile brown hagfish, Paramyxine atami. Gen Comp Endocrinol 2013; 189:111-8. [PMID: 23684771 DOI: 10.1016/j.ygcen.2013.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 11/26/2022]
Abstract
A single functional gonadotropin (GTH) comprising two subunits, α and β, was recently identified in the pituitary of brown hagfish (Paramyxine atami). Little is known about the feedback mechanisms that regulate these GTH subunits by sex steroids in the hagfish. The present study was designed to examine feedback effects of estradiol and testosterone on mRNA expression and protein expression of both GTHα and GTHβ subunits in the pituitary of the juvenile P. atami. Intraperitoneal administration of estradiol over the course of 27days resulted in substantial accumulation of immunoreactive (ir)-GTHα and ir-GTHβ in the adenohypophysis, but testosterone treatments over 27days had no effects on ir-GTHα or ir-GTHβ. Estradiol treatment for 1, 2, 4 or 14days had no effect on GTHα mRNA levels. In contrast, after 2days of estradiol treatment, GTHβ mRNA levels had increased significantly from baseline, while these levels were not affected after treatment over 1, 4, or 14days. After 14days of testosterone treatment, both GTHα and GTHβ mRNA levels had decreased significantly from baseline levels. These results indicate that estradiol acted primarily to suppress the secretion of GTH, and hence resulted in the accumulations of ir-GTHα and ir-GTHβ in the pituitary. On the other hand, testosterone appeared to suppress both the synthesis and the secretion of GTH. Thus, estradiol and testosterone probably differ in their effects on the regulation of pituitary GTH synthesis and secretion in juvenile hagfish.
Collapse
Affiliation(s)
- Masumi Nozaki
- Sado Marine Biological Station, Faculty of Science, Niigata University, Tassha, Sado, Niigata 952-2135, Japan.
| | | | | | | | | |
Collapse
|
30
|
Ota KG, Fujimoto S, Oisi Y, Kuratani S. Late development of hagfish vertebral elements. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:129-39. [PMID: 23401412 PMCID: PMC3646255 DOI: 10.1002/jez.b.22489] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/26/2012] [Accepted: 01/02/2013] [Indexed: 01/08/2023]
Abstract
It has been demonstrated recently that hagfishes, one of two groups of extant jawless vertebrates, have cartilaginous vertebral elements. Embryological and gene expression analyses have also shown that this group of animals develops a sclerotome, the potential primordium of the axial skeleton. However, it has not been shown unequivocally that the hagfish sclerotome truly differentiates into cartilage, because access to late-stage embryos and information about the cartilaginous extracellular matrix (ECM) are lacking for these animals. Here we investigated the expression patterns of the biglycan/decorin (BGN/DCN) gene in the inshore hagfish, Eptatretus burgeri. The homologue of this gene encodes the major noncollagenous component of the cartilaginous ECM among gnathostomes. We clearly identified the expression of this gene in adult vertebral tissues and in embryonic mesenchymal cells on the ventral aspect of the notochord. Taking into account that the sclerotome in the gnathostomes expresses BGN/DCN gene during the chondrogenesis, it is highly expected the hagfish BGN/DCN-positive mesenchymal cells are derived from the sclerotomes. We propose that hagfishes and gnathostomes share conserved developmental mechanisms not only in their somite differentiation, but also in chondrogenesis of their vertebral elements.
Collapse
Affiliation(s)
- Kinya G Ota
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan.
| | | | | | | |
Collapse
|
31
|
Fujimoto S, Oisi Y, Kuraku S, Ota KG, Kuratani S. Non-parsimonious evolution of hagfish Dlx genes. BMC Evol Biol 2013; 13:15. [PMID: 23331926 PMCID: PMC3552724 DOI: 10.1186/1471-2148-13-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/11/2013] [Indexed: 11/28/2022] Open
Abstract
Background The number of members of the Dlx gene family increased during the two rounds of whole-genome duplication that occurred in the common ancestor of the vertebrates. Because the Dlx genes are involved in the development of the cranial skeleton, brain, and sensory organs, their expression patterns have been analysed in various organisms in the context of evolutionary developmental biology. Six Dlx genes have been isolated in the lampreys, a group of living jawless vertebrates (cyclostomes), and their expression patterns analysed. However, little is known about the Dlx genes in the hagfish, the other cyclostome group, mainly because the embryological analysis of this animal is difficult. Results To identify the hagfish Dlx genes and describe their expression patterns, we cloned the cDNA from embryos of the Japanese inshore hagfish Eptatretus burgeri. Our results show that the hagfish has at least six Dlx genes and one pseudogene. In a phylogenetic analysis, the hagfish Dlx genes and those of the lampreys tended to be excluded from the clade of the gnathostome Dlx genes. In several cases, the lamprey Dlx genes clustered with the clade consisting of two hagfish genes, suggesting that independent gene duplications have occurred in the hagfish lineage. Analysis of the expression of these genes showed distinctive overlapping expression patterns in the cranial mesenchymal cells and the inner ear. Conclusions Independent duplication, pseudogenization, and loss of the Dlx genes probably occurred in the hagfish lineage after its split from the other vertebrate lineages. This pattern is reminiscent of the non-parsimonious evolution of its morphological traits, including its inner ear and vertebrae, which indicate that this group is an early-branching lineage that diverged before those characters evolved.
Collapse
Affiliation(s)
- Satoko Fujimoto
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | | | | | | | | |
Collapse
|
32
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Craniofacial development of hagfishes and the evolution of vertebrates. Nature 2012; 493:175-80. [PMID: 23254938 DOI: 10.1038/nature11794] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/19/2012] [Indexed: 12/16/2022]
Abstract
Cyclostomes, the living jawless vertebrates including hagfishes and lampreys, represent the most basal lineage of vertebrates. Although the monophyly of cyclostomes has been supported by recent molecular analyses, the phenotypic traits of hagfishes, especially the lack of some vertebrate-defining features and the reported endodermal origin of the adenohypophysis, have been interpreted as hagfishes exhibiting a more ancestral state than those of all other vertebrates. Furthermore, the adult anatomy of hagfishes cannot be compared easily with that of lampreys. Here we describe the craniofacial development of a series of staged hagfish embryos, which shows that their adenohypophysis arises ectodermally, consistent with the molecular phylogenetic data. This finding also allowed us to identify a pan-cyclostome pattern, one not shared by jawed vertebrates. Comparative analyses indicated that many of the hagfish-specific traits can be explained by changes secondarily introduced into the hagfish lineage. We also propose a possibility that the pan-cyclostome pattern may reflect the ancestral programme for the craniofacial development of all living vertebrates.
Collapse
|
34
|
Razy-Krajka F, Brown ER, Horie T, Callebert J, Sasakura Y, Joly JS, Kusakabe TG, Vernier P. Monoaminergic modulation of photoreception in ascidian: evidence for a proto-hypothalamo-retinal territory. BMC Biol 2012; 10:45. [PMID: 22642675 PMCID: PMC3414799 DOI: 10.1186/1741-7007-10-45] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/29/2012] [Indexed: 12/12/2022] Open
Abstract
Background The retina of craniates/vertebrates has been proposed to derive from a photoreceptor prosencephalic territory in ancestral chordates, but the evolutionary origin of the different cell types making the retina is disputed. Except for photoreceptors, the existence of homologs of retinal cells remains uncertain outside vertebrates. Methods The expression of genes expressed in the sensory vesicle of the ascidian Ciona intestinalis including those encoding components of the monoaminergic neurotransmission systems, was analyzed by in situ hybridization or in vivo transfection of the corresponding regulatory elements driving fluorescent reporters. Modulation of photic responses by monoamines was studied by electrophysiology combined with pharmacological treatments. Results We show that many molecular characteristics of dopamine-synthesizing cells located in the vicinity of photoreceptors in the sensory vesicle of the ascidian Ciona intestinalis are similar to those of amacrine dopamine cells of the vertebrate retina. The ascidian dopamine cells share with vertebrate amacrine cells the expression of the key-transcription factor Ptf1a, as well as that of dopamine-synthesizing enzymes. Surprisingly, the ascidian dopamine cells accumulate serotonin via a functional serotonin transporter, as some amacrine cells also do. Moreover, dopamine cells located in the vicinity of the photoreceptors modulate the light-off induced swimming behavior of ascidian larvae by acting on alpha2-like receptors, instead of dopamine receptors, supporting a role in the modulation of the photic response. These cells are located in a territory of the ascidian sensory vesicle expressing genes found both in the retina and the hypothalamus of vertebrates (six3/6, Rx, meis, pax6, visual cycle proteins). Conclusion We propose that the dopamine cells of the ascidian larva derive from an ancestral multifunctional cell population located in the periventricular, photoreceptive field of the anterior neural tube of chordates, which also gives rise to both anterior hypothalamus and the retina in craniates/vertebrates. It also shows that the existence of multiple cell types associated with photic responses predates the formation of the vertebrate retina.
Collapse
Affiliation(s)
- Florian Razy-Krajka
- Neurobiology and Development, UPR, Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Chen M, Zou M, Yang L, He S. Basal jawed vertebrate phylogenomics using transcriptomic data from Solexa sequencing. PLoS One 2012; 7:e36256. [PMID: 22558409 PMCID: PMC3338709 DOI: 10.1371/journal.pone.0036256] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 03/29/2012] [Indexed: 11/18/2022] Open
Abstract
The traditionally accepted relationships among basal jawed vertebrates have been challenged by some molecular phylogenetic analyses based on mitochondrial sequences. Those studies split extant gnathostomes into two monophyletic groups: tetrapods and piscine branch, including Chondrichthyes, Actinopterygii and sarcopterygian fishes. Lungfish and bichir are found in a basal position on the piscine branch. Based on transcriptomes of an armored bichir (Polypterus delhezi) and an African lungfish (Protopterus sp.) we generated, expressed sequences and whole genome sequences available from public databases, we obtained 111 genes to reconstruct the phylogenetic tree of basal jawed vertebrates and estimated their times of divergence. Our phylogenomic study supports the traditional relationship. We found that gnathostomes are divided into Chondrichthyes and the Osteichthyes, both with 100% support values (posterior probabilities and bootstrap values). Chimaeras were found to have a basal position among cartilaginous fishes with a 100% support value. Osteichthyes were divided into Actinopterygii and Sarcopterygii with 100% support value. Lungfish and tetrapods form a monophyletic group with 100% posterior probability. Bichir and two teleost species form a monophyletic group with 100% support value. The previous tree, based on mitochondrial data, was significantly rejected by an approximately unbiased test (AU test, p = 0). The time of divergence between lungfish and tetrapods was estimated to be 391.8 Ma and the divergence of bichir from pufferfish and medaka was estimated to be 330.6 Ma. These estimates closely match the fossil record. In conclusion, our phylogenomic study successfully resolved the relationship of basal jawed vertebrates based on transtriptomes, EST and whole genome sequences.
Collapse
Affiliation(s)
- Ming Chen
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Graduate University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ming Zou
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Graduate University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lei Yang
- Laboratory of Integrated Biodiversity, Conservation, and Genomics, Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Shunping He
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- * E-mail:
| |
Collapse
|
36
|
Gustafsson OSE, Ekström P, Kröger RHH. Sturgeons, sharks, and rays have multifocal crystalline lenses and similar lens suspension apparatuses. J Morphol 2012; 273:746-53. [PMID: 22467468 DOI: 10.1002/jmor.20020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 01/20/2012] [Accepted: 02/18/2012] [Indexed: 11/10/2022]
Abstract
Crystalline lenses with multiple focal lengths in monochromatic light (multifocal lenses) are present in many vertebrate groups. These lenses compensate for chromatic aberration and create well-focused color images. Stabilization of the lens within the eye and the ability to adjust focus are further requirements for vision in high detail. We investigated the occurrence of multifocal lenses by photorefractometry and lens suspension structures by light and electron microscopy in sturgeons (Acipenseriformes, Chondrostei) as well as sharks and rays (Elasmobranchii, Chondrichthyes). Multifocal lenses were found in two more major vertebrate groups, the Chondrostei represented by Acipenseriformes and Chondrichthyes represented by Elasmobranchii. The lens suspension structures of sturgeons, sharks, and rays are more complex than described previously. The lens is suspended by many delicate suspensory fibers in association with a ventral papilla in all groups studied. The arrangements of the suspensory fibers are most similar between sturgeons and sharks. In rays, the lens is suspended by a smaller ventral papilla and the suspensory fibers are arranged more concentrically to the lens.
Collapse
Affiliation(s)
- Ola S E Gustafsson
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden.
| | | | | |
Collapse
|
37
|
Grim JM, Hyndman KA, Kriska T, Girotti AW, Crockett EL. Relationship between oxidizable fatty acid content and level of antioxidant glutathione peroxidases in marine fish. ACTA ACUST UNITED AC 2012; 214:3751-9. [PMID: 22031739 DOI: 10.1242/jeb.058214] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biological membranes can be protected from lipid peroxidation by antioxidant enzymes including catalase (CAT) and selenium-dependent glutathione peroxidases 1 and 4 (GPx1 and GPx4). Unlike GPx1, GPx4 can directly detoxify lipid hydroperoxides in membranes without prior action of phospholipase A(2). We hypothesized that (1) GPx4 is enhanced in species that contain elevated levels of highly oxidizable polyunsaturated fatty acids (PUFA) and (2) activities of antioxidant enzymes are prioritized to meet species-specific oxidative stresses. In this study we examined (i) activities of the oxidative enzyme citrate synthase (CS) and antioxidant (CAT, GPx1 and GPx4) enzymes, (ii) GPx4 protein expression, and (iii) phospholipid composition in livers of five species of marine fish (Myxine glutinosa, Petromyzon marinus, Squalus acanthias, Fundulus heteroclitus and Myoxocephalus octodecemspinosus) that contain a range of PUFA. GPx4 activity was, on average, 5.8 times higher in F. heteroclitus and S. acanthias than in the other three marine fish species sampled. Similarly, activities of CAT and GPx1 were highest in S. acanthias and F. heteroclitus, respectively. GPx4 activity for all species correlates with membrane unsaturation, as well as oxidative activity as indicated by CS. These data support our hypothesis that GPx4 level in marine fish is a function, at least in part, of high PUFA content in these animals. GPx1 activity was also correlated with membrane unsaturation, indicating that marine species partition resources among glutathione-dependent defenses for protection from the initial oxidative insult (e.g. H(2)O(2)) and to repair damaged lipids within biological membranes.
Collapse
Affiliation(s)
- Jeffrey M Grim
- Ohio University, Department of Biological Sciences, Athens, OH 45701, USA.
| | | | | | | | | |
Collapse
|
38
|
Isolation and gene expression of yellow grouper ferritin heavy chain subunit after lipopolysaccharide treatment. Biochem Genet 2012; 50:467-75. [PMID: 22210544 DOI: 10.1007/s10528-011-9491-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 12/07/2011] [Indexed: 02/05/2023]
Abstract
Ferritin is a ubiquitous and conserved iron storage protein that plays a central role in iron metabolism. The ferritin heavy chain subunit (FerH) homolog was isolated from yellow grouper (Epinephelus awoara) spleen using suppression subtractive hybridization and RACE-PCR. The nucleotide sequence of FerH full-length cDNA was 1173 bp and contained an open reading frame of 534 bp, encoding a putative protein of 177 amino acids. The encoded protein shows 78-94% identity with homologs. Based on phylogenetic analysis, yellow grouper FerH is highly conserved throughout evolution and is closer to European seabass than to other species. RT-PCR analysis demonstrated that FerH was widely expressed in various healthy tissues and significantly up-regulated in liver, spleen, and anterior kidney by lipopolysaccharide. The results suggest that yellow grouper FerH may play a role in immune response.
Collapse
|
39
|
Hagfish predatory behaviour and slime defence mechanism. Sci Rep 2011; 1:131. [PMID: 22355648 PMCID: PMC3216612 DOI: 10.1038/srep00131] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/12/2011] [Indexed: 11/30/2022] Open
Abstract
Hagfishes (Myxinidae), a family of jawless marine pre-vertebrates, hold a unique evolutionary position, sharing a joint ancestor with the entire vertebrate lineage. They are thought to fulfil primarily the ecological niche of scavengers in the deep ocean. However, we present new footage from baited video cameras that captured images of hagfishes actively preying on other fish. Video images also revealed that hagfishes are able to choke their would-be predators with gill-clogging slime. This is the first time that predatory behaviour has been witnessed in this family, and also demonstrates the instantaneous effectiveness of hagfish slime to deter fish predators. These observations suggest that the functional adaptations and ecological role of hagfishes, past and present, might be far more diverse than previously assumed. We propose that the enduring success of this oldest extant family of fishes over 300 million years could largely be due to their unique combination of functional traits.
Collapse
|
40
|
Takechi M, Takeuchi M, Ota KG, Nishimura O, Mochii M, Itomi K, Adachi N, Takahashi M, Fujimoto S, Tarui H, Okabe M, Aizawa S, Kuratani S. Overview of the transcriptome profiles identified in hagfish, shark, and bichir: current issues arising from some nonmodel vertebrate taxa. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:526-46. [PMID: 21809437 DOI: 10.1002/jez.b.21427] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/28/2011] [Accepted: 06/14/2011] [Indexed: 02/02/2023]
Abstract
Because of their crucial phylogenetic positions, hagfishes, sharks, and bichirs are recognized as key taxa in our understanding of vertebrate evolution. The expression patterns of the regulatory genes involved in developmental patterning have been analyzed in the context of evolutionary developmental studies. However, in a survey of public sequence databases, we found that the large-scale sequence data for these taxa are still limited. To address this deficit, we used conventional Sanger DNA sequencing and a next-generation sequencing technology based on 454 GS FLX sequencing to obtain expressed sequence tags (ESTs) of the Japanese inshore hagfish (Eptatretus burgeri; 161,482 ESTs), cloudy catshark (Scyliorhinus torazame; 165,819 ESTs), and gray bichir (Polypterus senegalus; 34,336 ESTs). We deposited the ESTs in a newly constructed database, designated the "Vertebrate TimeCapsule." The ESTs include sequences from genes that can be effectively used in evolutionary developmental studies; for instance, several encode cartilaginous extracellular matrix proteins, which are central to an understanding of the ways in which evolutionary processes affected the skeletal elements, whereas others encode regulatory genes involved in craniofacial development and early embryogenesis. Here, we discuss how hagfishes, sharks, and bichirs contribute to our understanding of vertebrate evolution, we review the current status of the publicly available sequence data for these three taxa, and we introduce our EST projects and newly developed database.
Collapse
Affiliation(s)
- Masaki Takechi
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Identification of vertebra-like elements and their possible differentiation from sclerotomes in the hagfish. Nat Commun 2011; 2:373. [PMID: 21712821 PMCID: PMC3157150 DOI: 10.1038/ncomms1355] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/19/2011] [Indexed: 11/30/2022] Open
Abstract
The hagfish, a group of extant jawless fish, are known to lack true vertebrae and, for this reason, have often been excluded from the group Vertebrata. However, it has yet to be conclusively shown whether hagfish lack all vertebra-like structures, and whether their somites follow developmental processes and patterning distinct from those in lampreys and gnathostomes. Here we report the presence of vertebra-like cartilages in the in-shore hagfish, Eptatretus burgeri. These elements arise as small nodules occupying anatomical positions comparable to those of gnathostome vertebrae. Examination of hagfish embryos suggests that the ventromedial portion of a somite transforms into mesenchymal cells that express cognates of Pax1/9 and Twist, strikingly similar to the pattern of sclerotome development in gnathostomes. We conclude that the vertebra-like elements in the hagfish are homologous to gnathostome vertebrae, implying that this animal underwent secondary reduction of vertebrae in most of the trunk. Hagfish, a group of extant jawless fish, lack true vertebrae, but it is not clear if hagfish lack all vertebrata-like structures. Here the authors report the presence of vertebra-like cartilages in the in-shore hagfish, suggesting that the hagfish underwent secondary reduction of vertebra.
Collapse
|
42
|
Abstract
Approximately 500 million years ago, two types of recombinatorial adaptive immune systems (AISs) arose in vertebrates. The jawed vertebrates diversify their repertoire of immunoglobulin domain-based T and B cell antigen receptors mainly through the rearrangement of V(D)J gene segments and somatic hypermutation, but none of the fundamental AIS recognition elements in jawed vertebrates have been found in jawless vertebrates. Instead, the AIS of jawless vertebrates is based on variable lymphocyte receptors (VLRs) that are generated through recombinatorial usage of a large panel of highly diverse leucine-rich-repeat (LRR) sequences. Whereas the appearance of transposon-like, recombination-activating genes contributed uniquely to the origin of the AIS in jawed vertebrates, the use of activation-induced cytidine deaminase for receptor diversification is common to both the jawed and jawless vertebrates. Despite these differences in anticipatory receptor construction, the basic AIS design featuring two interactive T and B lymphocyte arms apparently evolved in an ancestor of jawed and jawless vertebrates within the context of preexisting innate immunity and has been maintained since as a consequence of powerful and enduring selection, most probably for pathogen defense purposes.
Collapse
Affiliation(s)
- Masayuki Hirano
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
43
|
Heimberg AM, Cowper-Sal·lari R, Sémon M, Donoghue PCJ, Peterson KJ. microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proc Natl Acad Sci U S A 2010; 107:19379-83. [PMID: 20959416 PMCID: PMC2984222 DOI: 10.1073/pnas.1010350107] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hagfish and lampreys are the only living representatives of the jawless vertebrates (agnathans), and compared with jawed vertebrates (gnathostomes), they provide insight into the embryology, genomics, and body plan of the ancestral vertebrate. However, this insight has been obscured by controversy over their interrelationships. Morphological cladistic analyses have identified lampreys and gnathostomes as closest relatives, whereas molecular phylogenetic studies recover a monophyletic Cyclostomata (hagfish and lampreys as closest relatives). Here, we show through deep sequencing of small RNA libraries, coupled with genomic surveys, that Cyclostomata is monophyletic: hagfish and lampreys share 4 unique microRNA families, 15 unique paralogues of more primitive microRNA families, and 22 unique substitutions to the mature gene products. Reanalysis of morphological data reveals that support for cyclostome paraphyly was based largely on incorrect character coding, and a revised dataset is not decisive on the mono- vs. paraphyly of cyclostomes. Furthermore, we show fundamental conservation of microRNA expression patterns among lamprey, hagfish, and gnathostome organs, implying that the role of microRNAs within specific organs is coincident with their appearance within the genome and is conserved through time. Together, these data support the monophyly of cyclostomes and suggest that the last common ancestor of all living vertebrates was a more complex organism than conventionally accepted by comparative morphologists and developmental biologists.
Collapse
Affiliation(s)
| | | | - Marie Sémon
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; and
| | - Philip C. J. Donoghue
- Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, United Kingdom
| | - Kevin J. Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
44
|
Smith JJ, Saha NR, Amemiya CT. Genome biology of the cyclostomes and insights into the evolutionary biology of vertebrate genomes. Integr Comp Biol 2010; 50:130-7. [PMID: 21558194 PMCID: PMC3140258 DOI: 10.1093/icb/icq023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The jawless vertebrates (lamprey and hagfish) are the closest extant outgroups to all jawed vertebrates (gnathostomes) and can therefore provide critical insight into the evolution and basic biology of vertebrate genomes. As such, it is notable that the genomes of lamprey and hagfish possess a capacity for rearrangement that is beyond anything known from the gnathostomes. Like the jawed vertebrates, lamprey and hagfish undergo rearrangement of adaptive immune receptors. However, the receptors and the mechanisms for rearrangement that are utilized by jawless vertebrates clearly evolved independently of the gnathostome system. Unlike the jawed vertebrates, lamprey and hagfish also undergo extensive programmed rearrangements of the genome during embryonic development. By considering these fascinating genome biologies in the context of proposed (albeit contentious) phylogenetic relationships among lamprey, hagfish, and gnathostomes, we can begin to understand the evolutionary history of the vertebrate genome. Specifically, the deep shared ancestry and rapid divergence of lampreys, hagfish and gnathostomes is considered evidence that the two versions of programmed rearrangement present in lamprey and hagfish (embryonic and immune receptor) were present in an ancestral lineage that existed more than 400 million years ago and perhaps included the ancestor of the jawed vertebrates. Validating this premise will require better characterization of the genome sequence and mechanisms of rearrangement in lamprey and hagfish.
Collapse
Affiliation(s)
- J J Smith
- Benaroya Research Institute at Virginia Mason, 1201 9th Avenue, Seattle, WA 98101, USA.
| | | | | |
Collapse
|
45
|
Nikitina N, Bronner-Fraser M, Sauka-Spengler T. The sea lamprey Petromyzon marinus: a model for evolutionary and developmental biology. Cold Spring Harb Protoc 2010; 2009:pdb.emo113. [PMID: 20147008 DOI: 10.1101/pdb.emo113] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sea lampreys (Petromyzon marinus) are cyclostomes, the most basal extant group of vertebrates, and are thought to have existed largely unchanged for more than 500 million years. They are aquatic, eel-shaped animals that spend a major part of their life as filter-feeding larvae called ammocoetes, inhabiting many freshwater bodies in the northern hemisphere. After metamorphosis, sea lampreys migrate to the ocean (or to the Great Lakes), where they feed on the blood and bodily fluids of salmonid fish and ultimately return to freshwater streams and rivers to spawn and die. The unique evolutionary position of lampreys and the relative ease of obtaining mature adults and embryos make this animal an ideal model for investigations into early vertebrate evolution. Studies of features shared between lampreys and jawed vertebrates, but distinct from those in nonvertebrate chordates, have provided information on the origin and evolution of hallmark vertebrate characteristics such as the neural crest, ectodermal placodes, and jaw. In addition, studies of features that are unique to lampreys (e.g., the variable lymphocyte receptor-mediated immune system) provide insights into mechanisms of parallel evolution (e.g., the adaptive immune system). With the establishment of techniques for the extended maintenance and spawning of lampreys in the laboratory, the sequencing of the lamprey genome, and the adaptation and optimization of many established molecular biology and histochemistry techniques for use in this species, P. marinus is poised to become an evolutionary developmental model of choice.
Collapse
Affiliation(s)
- Natalya Nikitina
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
46
|
Mulley JF, Holland PWH. Parallel retention of Pdx2 genes in cartilaginous fish and coelacanths. Mol Biol Evol 2010; 27:2386-91. [PMID: 20463047 PMCID: PMC2944030 DOI: 10.1093/molbev/msq121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Pdx1 or Ipf1 gene encodes an important homeodomain-containing protein with key roles in pancreas development and function. Mutations in human PDX1 are implicated in developmental defects and disease of the pancreas. Extensive research, including genome sequencing, has indicated that Pdx1 is the only member of its gene family in mammals, birds, amphibians, and ray-finned fish, and with the exception of teleost fish, this gene forms part of the ParaHox gene cluster along with Gsx1 and Cdx2. The ParaHox cluster, however, is a remnant of a 4-fold genome duplication; the three other ParaHox paralogues lack a Pdx-like gene in all vertebrate genomes examined to date. We have used bacterial artificial chromosome cloning and synteny analysis to show that the ancestor of living jawed vertebrates in fact had more ParaHox genes, including two Pdx genes (Pdx1 and Pdx2). Surprisingly, the two Pdx genes have been retained in parallel in two quite distantly related lineages, the cartilaginous fish (sharks, skates, and chimeras) and the Indonesian coelacanth, Latimeria menadoensis. The Pdx2 gene has been lost independently in ray-finned fish and in tetrapods.
Collapse
Affiliation(s)
- John F Mulley
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | | |
Collapse
|
47
|
Ota KG, Kuratani S. Expression pattern of two collagen type 2 alpha1 genes in the Japanese inshore hagfish (Eptatretus burgeri) with special reference to the evolution of cartilaginous tissue. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:157-65. [PMID: 19750486 DOI: 10.1002/jez.b.21322] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Collagen type 2 alpha1 (Col2A1) protein is a major component of the cartilaginous extracellular matrix (ECM) in vertebrates. Over the past two decades, the evolutionary origin of Col2A1 has been studied at the biochemical and molecular levels in extant jawless vertebrates (hagfishes and lampreys). Although these studies have contributed to our understanding of ECM protein evolution, the expression profile of the Col2A1 gene in hagfishes has not been fully described. We have performed molecular cloning and analyzed the gene expression pattern of the Col2A1 gene in the Japanese inshore hagfish (Eptatretus burgeri). We succeeded in isolating two Col2A1 genes, EbCol2A1A and EbCol2A1B, in which EbCol2A1A was expressed in the noncartilaginous connective tissues whereas EbCol2A1B was detected in some cartilaginous elements. Based on these results, we discuss the evolutionary history of Col2A1 genes in early vertebrates.
Collapse
Affiliation(s)
- Kinya G Ota
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, Minatojima-minami, Chuo, Kobe, Hyogo, Japan.
| | | |
Collapse
|
48
|
Near TJ. Conflict and resolution between phylogenies inferred from molecular and phenotypic data sets for hagfish, lampreys, and gnathostomes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:749-61. [PMID: 19402130 DOI: 10.1002/jez.b.21293] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
One of the most problematic issues in vertebrate phylogenetics is the disagreement between phenotypic and molecular inferences regarding the relationships among hagfishes, lampreys, and gnathostomes. Phenotypic characters support monophyly of lampreys and gnathostomes, whereas nearly all published analyses of molecular data sets support monophyly of hagfishes and lampreys. In this study I present results of phylogenetic analyses of combined phenotypic and molecular data sets that focus on relationships among hagfishes, lampreys, and gnathostomes. Maximum parsimony analyses of 115 phenotypic characters combined with 4,638 rRNA sites and more than 10,000 amino acids each result in monophyly of lampreys and gnathostomes, demonstrating that the addition of relatively few phenotypic characters can alter phylogenetic inferences from large molecular data sets. On the other hand, Bayesian analyses of the combined data sets support monophyly of hagfish and lampreys, indicating that model-based analyses may be prone to data "swamping," where the phylogenetic signal of the larger molecular data sets overwhelm the signal present in the much smaller phenotypic data set. Nodes that relate hagfish and lampreys were recovered at a low frequency in parametric bootstrapping analyses, indicating that the timing of diversification among hagfishes, lampreys, and gnathostomes has created a difficult phylogenetic problem for molecular data. The fact that addition of relatively few phenotypic characters can alter phylogenetic inferences of cyclostome monophyly obtained from molecular data sets, and the inability of simulated data sets to recover key nodes in the craniate phylogeny provide reasons to view the strong support for cyclostome monophyly inferred from molecular data sets with a measured degree of skepticism.
Collapse
Affiliation(s)
- Thomas J Near
- Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, Connecticut 06520, USA.
| |
Collapse
|
49
|
Larhammar D, Nordström K, Larsson TA. Evolution of vertebrate rod and cone phototransduction genes. Philos Trans R Soc Lond B Biol Sci 2009; 364:2867-80. [PMID: 19720650 DOI: 10.1098/rstb.2009.0077] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vertebrate cones and rods in several cases use separate but related components for their signal transduction (opsins, G-proteins, ion channels, etc.). Some of these proteins are also used differentially in other cell types in the retina. Because cones, rods and other retinal cell types originated in early vertebrate evolution, it is of interest to see if their specific genes arose in the extensive gene duplications that took place in the ancestor of the jawed vertebrates (gnathostomes) by two tetraploidizations (genome doublings). The ancestor of teleost fishes subsequently underwent a third tetraploidization. Our previously reported analyses showed that several gene families in the vertebrate visual phototransduction cascade received new members in the basal tetraploidizations. We here expand these data with studies of additional gene families and vertebrate species. We conclude that no less than 10 of the 13 studied phototransduction gene families received additional members in the two basal vertebrate tetraploidizations. Also the remaining three families seem to have undergone duplications during the same time period but it is unclear if this happened as a result of the tetraploidizations. The implications of the many early vertebrate gene duplications for functional specialization of specific retinal cell types, particularly cones and rods, are discussed.
Collapse
Affiliation(s)
- Dan Larhammar
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, SE-751 24 Uppsala, Sweden.
| | | | | |
Collapse
|
50
|
Neves JV, Wilson JM, Rodrigues PNS. Transferrin and ferritin response to bacterial infection: the role of the liver and brain in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:848-857. [PMID: 19428486 DOI: 10.1016/j.dci.2009.02.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/03/2009] [Accepted: 02/09/2009] [Indexed: 05/27/2023]
Abstract
Iron is essential for growth and survival, but it is also toxic when in excess. Thus, there is a tight regulation of iron that is accomplished by the interaction of several genes including the iron transporter transferrin and iron storage protein ferritin. These genes are also known to be involved in response to infection. The aim of this study was to understand the role of transferrin and ferritin in infection and iron metabolism in fish. Thus, sea bass transferrin and ferritin H cDNAs were isolated from liver, cloned and characterized. Transferrin constitutive expression was found to be highest in the liver, but also with significant expression in the brain, particularly in the highly vascularized region connecting the inferior lobe of the hypothalamus and the saccus vasculosus. Ferritin, on the other hand, was expressed in all tested organs, but also significantly higher in the liver. Fish were subjected to either experimental bacterial infection or iron modulation and transferrin and ferritin mRNA expression levels were analyzed, along with several iron regulatory parameters. Transferrin expression was found to decrease in the liver and increase in the brain in response to infection and to increase in the liver in iron deficiency. Ferritin expression was found to inversely reflect transferrin in the liver, increasing in infection and iron overload and decreasing in iron deficiency, whereas in the brain, ferritin expression was also increased in infection. These findings demonstrate the evolutionary conservation of transferrin and ferritin dual functions in vertebrates, being involved in both the immune response and iron metabolism.
Collapse
Affiliation(s)
- João V Neves
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | | | | |
Collapse
|