1
|
Inoue Y, Suzuki H. Temporal dynamics of mildly deleterious nonsynonymous substitutions in mitochondrial gene sequences in rodents and moles. Gene 2022; 97:111-121. [PMID: 35753758 DOI: 10.1266/ggs.21-00079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We have previously estimated the evolutionary rate (number of substitutions/site/million years) of mitochondrial cytochrome b gene (Cytb) sequences in rodents and moles to be about 0.11 at more recent divergence times of tens of thousands of years, and to decrease rapidly to about 0.03 at more distant divergence times. Because this time dependency is thought to be caused by the removal of mildly deleterious substitutions in later generations, we focused in this study on the abundance of nonsynonymous substitutions. We collected 23 haplogroups of Cytb with signals of late Quaternary population expansion events from rodents and moles and categorized them into three groups for comparison based on predicted expansion start time: 5,000-15,000 years ago (Group I), ca. 53,000 years ago (Group II) and 130,000-230,000 years ago (Group III). We counted the numbers of nonsynonymous and synonymous substitutions in all haplogroups. The rates of nonsynonymous substitutions were lowest in Groups II and III (0.08-0.22), whereas those in Group I varied markedly. We further classified Group I into two subgroups based on high (0.29-0.43) and low (0.09-0.20) nonsynonymous substitution rates, which were likely to be associated with the start of the expansion within 10,000 years and at around 15,000 years ago, respectively. The Group II and III networks had two- or three-step star-shaped structures and tended to exhibit frequent and less frequent nonsynonymous substitutions on exterior and interior branches, respectively. Based on temporal dynamics, nonsynonymous mitochondrial DNA (mtDNA) substitutions in small mammals accounted for at most 40% of all substitutions during the early evolutionary stage and then rapidly declined, dropping to approximately 15%. The results of this study provide a good explanation of the time-dependent trend in the mtDNA evolution rate predicted in previous work.
Collapse
Affiliation(s)
- Yuta Inoue
- Laboratory of Ecology and Genetics, Graduate School of Environmental Science, Hokkaido University
| | - Hitoshi Suzuki
- Laboratory of Ecology and Genetics, Graduate School of Environmental Science, Hokkaido University
| |
Collapse
|
2
|
Subramanian S. Harmful mutation load in the mitochondrial genomes of cattle breeds. BMC Res Notes 2021; 14:241. [PMID: 34176488 PMCID: PMC8237412 DOI: 10.1186/s13104-021-05664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/18/2021] [Indexed: 12/03/2022] Open
Abstract
Objective Domestication of wild animals results in a reduction in the effective population size, and this could affect the deleterious mutation load of domesticated breeds. Furthermore, artificial selection will also contribute to the accumulation of deleterious mutations due to the increased rate of inbreeding among these animals. The process of domestication, founder population size, and artificial selection differ between cattle breeds, which could lead to a variation in their deleterious mutation loads. We investigated this using mitochondrial genome data from 364 animals belonging to 18 cattle breeds of the world. Results Our analysis revealed more than a fivefold difference in the deleterious mutation load among cattle breeds. We also observed a negative correlation between the breed age and the proportion of deleterious amino acid-changing polymorphisms. This suggests a proportionally higher deleterious SNPs in young breeds compared to older breeds. Our results highlight the magnitude of difference in the deleterious mutations present in the mitochondrial genomes of various breeds. The results of this study could be useful in predicting the rate of incidence of genetic diseases in different breeds. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05664-y.
Collapse
Affiliation(s)
- Sankar Subramanian
- GeneCology Research Centre, School of Science, Technology and Engineering, The University of the Sunshine Coast, 1 Moreton Parade, Petrie, Moreton Bay, QLD, 4502, Australia.
| |
Collapse
|
3
|
What does mitogenomics tell us about the evolutionary history of the Drosophila buzzatii cluster (repleta group)? PLoS One 2019; 14:e0220676. [PMID: 31697700 PMCID: PMC6837510 DOI: 10.1371/journal.pone.0220676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/01/2019] [Indexed: 12/05/2022] Open
Abstract
The Drosophila repleta group is an array of more than 100 species endemic to the “New World”, many of which are cactophilic. The ability to utilize decaying cactus tissues as breeding and feeding sites is a key aspect that allowed the successful diversification of the repleta group in American deserts and arid lands. Within this group, the Drosophila buzzatii cluster is a South American clade of seven closely related species in different stages of divergence, making them a valuable model system for evolutionary research. Substantial effort has been devoted to elucidating the phylogenetic relationships among members of the D. buzzatii cluster, including molecular phylogenetic studies that have generated ambiguous results where different tree topologies have resulted dependent on the kinds of molecular marker used. Even though mitochondrial DNA regions have become useful markers in evolutionary biology and population genetics, none of the more than twenty Drosophila mitogenomes assembled so far includes this cluster. Here, we report the assembly of six complete mitogenomes of five species: D. antonietae, D. borborema, D. buzzatii, two strains of D. koepferae and D. seriema, with the aim of revisiting phylogenetic relationships and divergence times by means of mitogenomic analyses. Our recovered topology using complete mitogenomes supports the hypothesis of monophyly of the D. buzzatii cluster and shows two main clades, one including D. buzzatii and D. koepferae (both strains), and the other containing the remaining species. These results are in agreement with previous reports based on a few mitochondrial and/or nuclear genes, but conflict with the results of a recent large-scale nuclear phylogeny, indicating that nuclear and mitochondrial genomes depict different evolutionary histories.
Collapse
|
4
|
Shakeel M, Irfan M, Khan IA. Estimating the mutational load for cardiovascular diseases in Pakistani population. PLoS One 2018; 13:e0192446. [PMID: 29420653 PMCID: PMC5805289 DOI: 10.1371/journal.pone.0192446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/23/2018] [Indexed: 02/05/2023] Open
Abstract
The deleterious genetic variants contributing to certain diseases may differ in terms of number and allele frequency from population to population depending on their evolutionary background. Here, we prioritize the deleterious variants from Pakistani population in manually curated gene list already reported to be associated with common, Mendelian, and congenital cardiovascular diseases (CVDs) using the genome/exome sequencing data of Pakistani individuals publically available in 1000 Genomes Project (PJL), and Exome Aggregation Consortium (ExAC) South Asia. By applying a set of tools such as Combined Annotation Dependent Depletion (CADD), ANNOVAR, and Variant Effect Predictor (VEP), we highlighted 561 potentially detrimental variants from PJL data, and 7374 variants from ExAC South Asian data. Likewise, filtration from ClinVar for CVDs revealed 03 pathogenic and 02 likely pathogenic variants from PJL and 112 pathogenic and 42 likely pathogenic variants from ExAC South Asians. The comparison of derived allele frequencies (DAF) revealed many of these prioritized variants having two fold and higher DAF in Pakistani individuals than in other populations. The highest number of deleterious variants contributing to common CVDs in descending order includes hypertension, atherosclerosis, heart failure, aneurysm, and coronary heart disease, and for Mendelian and congenital CVDs cardiomyopathies, cardiac arrhythmias, and atrioventricular septal defects.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Irfan
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ishtiaq Ahmad Khan
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
5
|
Subramanian S. Europeans have a higher proportion of high‑frequency deleterious variants than Africans. Hum Genet 2016; 135:1-7. [PMID: 26462918 DOI: 10.1007/s00439-015-1604-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/01/2015] [Indexed: 12/11/2022]
Abstract
Recent studies have shown that a high proportion of rare variants in European and African populations are deleterious in nature. However, the deleterious fraction of high-frequency variants is unclear. Using more than 6500 exomes we show a much higher fraction (11 %) of relatively high-frequency nonsynonymous (amino acid altering) variants (DAF 0.1–10 %) in European Americans (EA) compared to those from African Americans (AA). In contrast, this difference was only marginal (<2 %) for low-frequency nonsynonymous variants (DAF <0.1 %). Our results also revealed that the proportion of high-frequency deleterious nonsynonymous variants in EA was much higher (24 %) than that in AA and this difference was very small (4 %) for the low-frequency deleterious amino acid altering variants. We also show that EA have significantly more number of high-frequency deleterious nonsynonymous variants per genome than AA. The high proportion of high-frequency deleterious variants in EA could be the result of the well-known bottleneck experienced by European populations in which harmful mutations may have drifted to high frequencies. The estimated ages of deleterious variants support this prediction. Our results suggest that high-frequency variants could be relatively more likely to be associated with diseases in Europeans than in Africans and hence emphasize the need for population-specific strategies in genomic medicine studies.
Collapse
Affiliation(s)
- Sankar Subramanian
- Environmental Futures Research Institute, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| |
Collapse
|
6
|
Hoareau TB. Late Glacial Demographic Expansion Motivates a Clock Overhaul for Population Genetics. Syst Biol 2015; 65:449-64. [PMID: 26683588 DOI: 10.1093/sysbio/syv120] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 12/10/2015] [Indexed: 12/18/2022] Open
Abstract
The molecular clock hypothesis is fundamental in evolutionary biology as by assuming constancy of the molecular rate it provides a timeframe for evolution. However, increasing evidence shows time dependence of inferred molecular rates with inflated values obtained using recent calibrations. As recent demographic calibrations are virtually non-existent in most species, older phylogenetic calibration points (>1 Ma) are commonly used, which overestimate demographic parameters. To obtain more reliable rates of molecular evolution for population studies, I propose the calibration of demographic transition (CDT) method, which uses the timing of climatic changes over the late glacial warming period to calibrate expansions in various species. Simulation approaches and empirical data sets from a diversity of species (from mollusk to humans) confirm that, when compared with other genealogy-based calibration methods, the CDT provides a robust and broadly applicable clock for population genetics. The resulting CDT rates of molecular evolution also confirm rate heterogeneity over time and among taxa. Comparisons of expansion dates with ecological evidence confirm the inaccuracy of phylogenetically derived divergence rates when dating population-level events. The CDT method opens opportunities for addressing issues such as demographic responses to past climate change and the origin of rate heterogeneity related to taxa, genes, time, and genetic information content.
Collapse
Affiliation(s)
- Thierry B Hoareau
- Molecular Ecology and Evolution Programme, Department of Genetics, University of Pretoria, Private bag X20, Hatfield, Pretoria 0028, South Africa
| |
Collapse
|
7
|
Demographic History of Indigenous Populations in Mesoamerica Based on mtDNA Sequence Data. PLoS One 2015; 10:e0131791. [PMID: 26292226 PMCID: PMC4546282 DOI: 10.1371/journal.pone.0131791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022] Open
Abstract
The genetic characterization of Native American groups provides insights into their history and demographic events. We sequenced the mitochondrial D-loop region (control region) of 520 samples from eight Mexican indigenous groups. In addition to an analysis of the genetic diversity, structure and genetic relationship between 28 Native American populations, we applied Bayesian skyline methodology for a deeper insight into the history of Mesoamerica. AMOVA tests applying cultural, linguistic and geographic criteria were performed. MDS plots showed a central cluster of Oaxaca and Maya populations, whereas those from the North and West were located on the periphery. Demographic reconstruction indicates higher values of the effective number of breeding females (Nef) in Central Mesoamerica during the Preclassic period, whereas this pattern moves toward the Classic period for groups in the North and West. Conversely, Nef minimum values are distributed either in the Lithic period (i.e. founder effects) or in recent periods (i.e. population declines). The Mesomerican regions showed differences in population fluctuation as indicated by the maximum Inter-Generational Rate (IGRmax): i) Center-South from the lithic period until the Preclassic; ii) West from the beginning of the Preclassic period until early Classic; iii) North characterized by a wide range of temporal variation from the Lithic to the Preclassic. Our findings are consistent with the genetic variations observed between central, South and Southeast Mesoamerica and the North-West region that are related to differences in genetic drift, structure, and temporal survival strategies (agriculture versus hunter-gathering, respectively). Interestingly, although the European contact had a major negative demographic impact, we detect a previous decline in Mesoamerica that had begun a few hundred years before.
Collapse
|
8
|
Subramanian S, Mohandesan E, Millar CD, Lambert DM. Distance-dependent patterns of molecular divergences in Tuatara mitogenomes. Sci Rep 2015; 5:8703. [PMID: 25731894 PMCID: PMC4346810 DOI: 10.1038/srep08703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 02/02/2015] [Indexed: 01/21/2023] Open
Abstract
Population genetic models predict that populations that are geographically close to each other are expected to be genetically more similar to each other compared to those that are widely separate. However the patterns of relationships between geographic distance and molecular divergences at neutral and constrained regions of the genome are unclear. We attempted to clarify this relationship by sequencing complete mitochondrial genomes of the relic species Tuatara (Sphenodon punctatus) from ten offshore islands of New Zealand. We observed a positive relationship that showed a proportional increase in the neutral diversity at synonymous sites (dS), with increasing geographical distance. In contrast we showed that diversity at evolutionarily constrained sites (dC) was elevated in the case of comparisons involving closely located populations. Conversely diversity was reduced in the case of comparisons between distantly located populations. These patterns were confirmed by a significant negative relationship between the ratio of dC/dS and geographic distance. The observed high dC/dS could be explained by the abundance of deleterious mutations in comparisons involving closely located populations, due to the recent population divergence times. Since distantly related populations were separated over long periods of time, deleterious mutations might have been removed by purifying selection.
Collapse
Affiliation(s)
- Sankar Subramanian
- Enviromental Futures Research Institute, Griffith University, Nathan 4111, Australia
| | - Elmira Mohandesan
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, New Zealand
| | - Craig D Millar
- Allan Wilson Centre for Molecular Ecology and Evolution, School of Biological Sciences, University of Auckland, Private 92019, Auckland, New Zealand
| | - David M Lambert
- Enviromental Futures Research Institute, Griffith University, Nathan 4111, Australia
| |
Collapse
|
9
|
Breton S, Milani L, Ghiselli F, Guerra D, Stewart DT, Passamonti M. A resourceful genome: updating the functional repertoire and evolutionary role of animal mitochondrial DNAs. Trends Genet 2014; 30:555-64. [PMID: 25263762 DOI: 10.1016/j.tig.2014.09.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 11/24/2022]
Abstract
Recent data from mitochondrial genomics and proteomics research demonstrate the existence of several atypical mitochondrial protein-coding genes (other than the standard set of 13) and the involvement of mtDNA-encoded proteins in functions other than energy production in several animal species including humans. These results are of considerable importance for evolutionary and cellular biology because they indicate that animal mtDNAs have a larger functional repertoire than previously believed. This review summarizes recent studies on animal species with a non-standard mitochondrial functional repertoire and discusses how these genetic novelties represent promising candidates for studying the role of the mitochondrial genome in speciation.
Collapse
Affiliation(s)
- Sophie Breton
- Département de Sciences Biologiques, Université de Montréal, 90 Avenue Vincent d'Indy, Montréal, Québec H2V 2S9, Canada.
| | - Liliana Milani
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Fabrizio Ghiselli
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Davide Guerra
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Donald T Stewart
- Department of Biology, Acadia University, 24 University Avenue, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Marco Passamonti
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
10
|
Variation and association to diabetes in 2000 full mtDNA sequences mined from an exome study in a Danish population. Eur J Hum Genet 2014; 22:1040-5. [PMID: 24448545 PMCID: PMC4350597 DOI: 10.1038/ejhg.2013.282] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 08/22/2013] [Accepted: 10/10/2013] [Indexed: 11/08/2022] Open
Abstract
In this paper, we mine full mtDNA sequences from an exome capture data set of 2000 Danes, showing that it is possible to get high-quality full-genome sequences of the mitochondrion from this resource. The sample includes 1000 individuals with type 2 diabetes and 1000 controls. We characterise the variation found in the mtDNA sequence in Danes and relate the variation to diabetes risk as well as to several blood phenotypes of the controls but find no significant associations. We report 2025 polymorphisms, of which 393 have not been reported previously. These 393 mutations are both very rare and estimated to be caused by very recent mutations but individuals with type 2 diabetes do not possess more of these variants. Population genetics analysis using Bayesian skyline plot shows a recent history of rapid population growth in the Danish population in accordance with the fact that >40% of variable sites are observed as singletons.
Collapse
|
11
|
Subramanian S, Lambert DM. Selective constraints determine the time dependency of molecular rates for human nuclear genomes. Genome Biol Evol 2013; 4:1127-32. [PMID: 23059453 PMCID: PMC3514959 DOI: 10.1093/gbe/evs092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In contrast to molecular rates for neutral mitochondrial sequences, rates for constrained sites (including nonsynonymous sites, D-loop, and RNA) in the mitochondrial genome are known to vary with the time frame used for their estimation. Here, we examined this issue for the nuclear genomes using single-nucleotide polymorphisms (SNPs) from six complete human genomes of individuals belonging to different populations. We observed a strong time-dependent distribution of nonsynonymous SNPs (nSNPs) in highly constrained genes. Typically, the proportion of young nSNPs specific to a single population was found to be up to three times higher than that of the ancient nSNPs shared between diverse human populations. In contrast, this trend disappeared, and a uniform distribution of young and old nSNPs was observed in genes under relaxed selective constraints. This suggests that because mutations in constrained genes are highly deleterious, they are removed over time, resulting in a relative overabundance of young nSNPs. In contrast, mutations in genes under relaxed constraints are nearly neutral, which leads to similar proportions of young and old SNPs. These results could be useful to researchers aiming to select appropriate genes or genomic regions for estimating evolutionary rates and species or population divergence times.
Collapse
|
12
|
Soares P, Abrantes D, Rito T, Thomson N, Radivojac P, Li B, Macaulay V, Samuels DC, Pereira L. Evaluating purifying selection in the mitochondrial DNA of various mammalian species. PLoS One 2013; 8:e58993. [PMID: 23533597 PMCID: PMC3606437 DOI: 10.1371/journal.pone.0058993] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/08/2013] [Indexed: 01/23/2023] Open
Abstract
Mitochondrial DNA (mtDNA), the circular DNA molecule inside the mitochondria of all eukaryotic cells, has been shown to be under the effect of purifying selection in several species. Traditional testing of purifying selection has been based simply on ratios of nonsynonymous to synonymous mutations, without considering the relative age of each mutation, which can be determined by phylogenetic analysis of this non-recombining molecule. The incorporation of a mutation time-ordering from phylogeny and of predicted pathogenicity scores for nonsynonymous mutations allow a quantitative evaluation of the effects of purifying selection in human mtDNA. Here, by using this additional information, we show that purifying selection undoubtedly acts upon the mtDNA of other mammalian species/genera, namely Bos sp., Canis lupus, Mus musculus, Orcinus orca, Pan sp. and Sus scrofa. The effects of purifying selection were comparable in all species, leading to a significant major proportion of nonsynonymous variants with higher pathogenicity scores in the younger branches of the tree. We also derive recalibrated mutation rates for age estimates of ancestors of these various species and proposed a correction curve in order to take into account the effects of selection. Understanding this selection is fundamental to evolutionary studies and to the identification of deleterious mutations.
Collapse
Affiliation(s)
- Pedro Soares
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pennarun E, Kivisild T, Metspalu E, Metspalu M, Reisberg T, Moisan JP, Behar DM, Jones SC, Villems R. Divorcing the Late Upper Palaeolithic demographic histories of mtDNA haplogroups M1 and U6 in Africa. BMC Evol Biol 2012. [PMID: 23206491 PMCID: PMC3582464 DOI: 10.1186/1471-2148-12-234] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background A Southwest Asian origin and dispersal to North Africa in the Early Upper Palaeolithic era has been inferred in previous studies for mtDNA haplogroups M1 and U6. Both haplogroups have been proposed to show similar geographic patterns and shared demographic histories. Results We report here 24 M1 and 33 U6 new complete mtDNA sequences that allow us to refine the existing phylogeny of these haplogroups. The resulting phylogenetic information was used to genotype a further 131 M1 and 91 U6 samples to determine the geographic spread of their sub-clades. No southwest Asian specific clades for M1 or U6 were discovered. U6 and M1 frequencies in North Africa, the Middle East and Europe do not follow similar patterns, and their sub-clade divisions do not appear to be compatible with their shared history reaching back to the Early Upper Palaeolithic. The Bayesian Skyline Plots testify to non-overlapping phases of expansion, and the haplogroups’ phylogenies suggest that there are U6 sub-clades that expanded earlier than those in M1. Some M1 and U6 sub-clades could be linked with certain events. For example, U6a1 and M1b, with their coalescent ages of ~20,000–22,000 years ago and earliest inferred expansion in northwest Africa, could coincide with the flourishing of the Iberomaurusian industry, whilst U6b and M1b1 appeared at the time of the Capsian culture. Conclusions Our high-resolution phylogenetic dissection of both haplogroups and coalescent time assessments suggest that the extant main branching pattern of both haplogroups arose and diversified in the mid-later Upper Palaeolithic, with some sub-clades concomitantly with the expansion of the Iberomaurusian industry. Carriers of these maternal lineages have been later absorbed into and diversified further during the spread of Afro-Asiatic languages in North and East Africa.
Collapse
Affiliation(s)
- Erwan Pennarun
- Estonian Biocentre and Department of Evolutionary Biology, University of Tartu, Tartu, Estonia.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Here I show a gradual decline in the proportion of deleterious nonsynonymous SNPs (nSNPs) from tip to root of the human population tree. This study reveals that up to 48% of nSNPs specific to a single genome are deleterious in nature, which underscores the abundance of deleterious polymorphisms in humans.
Collapse
|
15
|
Duchêne S, Archer FI, Vilstrup J, Caballero S, Morin PA. Mitogenome phylogenetics: the impact of using single regions and partitioning schemes on topology, substitution rate and divergence time estimation. PLoS One 2011; 6:e27138. [PMID: 22073275 PMCID: PMC3206919 DOI: 10.1371/journal.pone.0027138] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 10/10/2011] [Indexed: 01/10/2023] Open
Abstract
The availability of mitochondrial genome sequences is growing as a result of recent technological advances in molecular biology. In phylogenetic analyses, the complete mitogenome is increasingly becoming the marker of choice, usually providing better phylogenetic resolution and precision relative to traditional markers such as cytochrome b (CYTB) and the control region (CR). In some cases, the differences in phylogenetic estimates between mitogenomic and single-gene markers have yielded incongruent conclusions. By comparing phylogenetic estimates made from different genes, we identified the most informative mitochondrial regions and evaluated the minimum amount of data necessary to reproduce the same results as the mitogenome. We compared results among individual genes and the mitogenome for recently published complete mitogenome datasets of selected delphinids (Delphinidae) and killer whales (genus Orcinus). Using Bayesian phylogenetic methods, we investigated differences in estimation of topologies, divergence dates, and clock-like behavior among genes for both datasets. Although the most informative regions were not the same for each taxonomic group (COX1, CYTB, ND3 and ATP6 for Orcinus, and ND1, COX1 and ND4 for Delphinidae), in both cases they were equivalent to less than a quarter of the complete mitogenome. This suggests that gene information content can vary among groups, but can be adequately represented by a portion of the complete sequence. Although our results indicate that complete mitogenomes provide the highest phylogenetic resolution and most precise date estimates, a minimum amount of data can be selected using our approach when the complete sequence is unavailable. Studies based on single genes can benefit from the addition of a few more mitochondrial markers, producing topologies and date estimates similar to those obtained using the entire mitogenome.
Collapse
Affiliation(s)
- Sebastián Duchêne
- Laboratorio de Ecología Molecular de Vertebrados Acuáticos, Universidad de los Andes, Bogotá, Colombia
| | - Frederick I. Archer
- Protected Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, California, United States of America
| | - Julia Vilstrup
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Susana Caballero
- Laboratorio de Ecología Molecular de Vertebrados Acuáticos, Universidad de los Andes, Bogotá, Colombia
| | - Phillip A. Morin
- Protected Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Ho SYW, Lanfear R, Bromham L, Phillips MJ, Soubrier J, Rodrigo AG, Cooper A. Time-dependent rates of molecular evolution. Mol Ecol 2011; 20:3087-101. [PMID: 21740474 DOI: 10.1111/j.1365-294x.2011.05178.x] [Citation(s) in RCA: 364] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For over half a century, it has been known that the rate of morphological evolution appears to vary with the time frame of measurement. Rates of microevolutionary change, measured between successive generations, were found to be far higher than rates of macroevolutionary change inferred from the fossil record. More recently, it has been suggested that rates of molecular evolution are also time dependent, with the estimated rate depending on the timescale of measurement. This followed surprising observations that estimates of mutation rates, obtained in studies of pedigrees and laboratory mutation-accumulation lines, exceeded long-term substitution rates by an order of magnitude or more. Although a range of studies have provided evidence for such a pattern, the hypothesis remains relatively contentious. Furthermore, there is ongoing discussion about the factors that can cause molecular rate estimates to be dependent on time. Here we present an overview of our current understanding of time-dependent rates. We provide a summary of the evidence for time-dependent rates in animals, bacteria and viruses. We review the various biological and methodological factors that can cause rates to be time dependent, including the effects of natural selection, calibration errors, model misspecification and other artefacts. We also describe the challenges in calibrating estimates of molecular rates, particularly on the intermediate timescales that are critical for an accurate characterization of time-dependent rates. This has important consequences for the use of molecular-clock methods to estimate timescales of recent evolutionary events.
Collapse
Affiliation(s)
- Simon Y W Ho
- Centre for Macroevolution and Macroecology, Evolution Ecology & Genetics, Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | | | | | | | | | | | | |
Collapse
|
17
|
Pereira L, Soares P, Radivojac P, Li B, Samuels D. Comparing phylogeny and the predicted pathogenicity of protein variations reveals equal purifying selection across the global human mtDNA diversity. Am J Hum Genet 2011; 88:433-9. [PMID: 21457906 DOI: 10.1016/j.ajhg.2011.03.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/01/2011] [Accepted: 03/08/2011] [Indexed: 02/06/2023] Open
Abstract
We used detailed phylogenetic trees for human mtDNA, combined with pathogenicity predictions for each amino acid change, to evaluate selection on mtDNA-encoded protein variants. Protein variants with high pathogenicity scores were significantly rarer in the older branches of the tree. Variants that have formed and survived multiple times in the human phylogenetics tree had significantly lower pathogenicity scores than those that only appear once in the tree. We compared the distribution of pathogenicity scores observed on the human phylogenetic tree to the distribution of all possible protein variations to define a measure of the effect of selection on these protein variations. The measured effect of selection increased exponentially with increasing pathogenicity score. We found no measurable difference in this measure of purifying selection in mtDNA across the global population, represented by the macrohaplogroups L, M, and N. We provide a list of all possible single amino acid variations for the human mtDNA-encoded proteins with their predicted pathogenicity scores and our measured selection effect as a tool for assessing novel protein variations that are often reported in patients with mitochondrial disease of unknown origin or for assessing somatic mutations acquired through aging or detected in tumors.
Collapse
|
18
|
HO SIMONYW, SHAPIRO BETH. Skyline‐plot methods for estimating demographic history from nucleotide sequences. Mol Ecol Resour 2011; 11:423-34. [PMID: 21481200 DOI: 10.1111/j.1755-0998.2011.02988.x] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- SIMON Y. W. HO
- Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, ACT 0200, Australia
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | - BETH SHAPIRO
- Department of Biology, The Pennsylvania State University, University Park, PA 16802–5301, USA
| |
Collapse
|
19
|
Subramanian S. High proportions of deleterious polymorphisms in constrained human genes. Mol Biol Evol 2010; 28:49-52. [PMID: 20974690 DOI: 10.1093/molbev/msq287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous studies on human mitochondrial genomes showed that the ratio of intra-specific diversities at nonsynonymous-to-synonymous positions was two to ten times higher than the ratio of interspecific divergences at these positions, suggesting an excess of slightly deleterious nonsynonymous polymorphisms. However, such an overabundance of nonsynonymous single nucleotide polymorphisms (SNPs) was not found in human nuclear genomes. Here, genome-wide estimates using >14,000 human-chimp nuclear genes and 1 million SNPs from four human genomes showed a significant proportion of deleterious nonsynonymous SNPs (∼ 15%). Importantly, this study reveals a negative correlation between the magnitude of selection pressure and the proportion of deleterious SNPs on human genes. The proportion of deleterious amino acid replacement polymorphisms is 3.5 times higher in genes under high purifying selection compared with that in less constrained genes (28% vs. 8%). These results are explained by differences in the extent of contribution of mildly deleterious mutations to diversity and substitution.
Collapse
|
20
|
Explaining the imperfection of the molecular clock of hominid mitochondria. PLoS One 2009; 4:e8260. [PMID: 20041137 PMCID: PMC2794369 DOI: 10.1371/journal.pone.0008260] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 11/16/2009] [Indexed: 11/19/2022] Open
Abstract
The molecular clock of mitochondrial DNA has been extensively used to date various genetic events. However, its substitution rate among humans appears to be higher than rates inferred from human-chimpanzee comparisons, limiting the potential of interspecies clock calibrations for intraspecific dating. It is not well understood how and why the substitution rate accelerates. We have analyzed a phylogenetic tree of 3057 publicly available human mitochondrial DNA coding region sequences for changes in the ratios of mutations belonging to different functional classes. The proportion of non-synonymous and RNA genes substitutions has reduced over hundreds of thousands of years. The highest mutation ratios corresponding to fast acceleration in the apparent substitution rate of the coding sequence have occurred after the end of the Last Ice Age. We recalibrate the molecular clock of human mtDNA as 7990 years per synonymous mutation over the mitochondrial genome. However, the distribution of substitutions at synonymous sites in human data significantly departs from a model assuming a single rate parameter and implies at least 3 different subclasses of sites. Neutral model with 3 synonymous substitution rates can explain most, if not all, of the apparent molecular clock difference between the intra- and interspecies levels. Our findings imply the sluggishness of purifying selection in removing the slightly deleterious mutations from the human as well as the Neandertal and chimpanzee populations. However, for humans, the weakness of purifying selection has been further exacerbated by the population expansions associated with the out-of Africa migration and the end of the Last Ice Age.
Collapse
|
21
|
Endicott P, Ho SY, Metspalu M, Stringer C. Evaluating the mitochondrial timescale of human evolution. Trends Ecol Evol 2009; 24:515-21. [DOI: 10.1016/j.tree.2009.04.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 03/27/2009] [Accepted: 04/01/2009] [Indexed: 01/28/2023]
|