1
|
de Paula TS, Leite DDMB, Lobo-Hajdu G, Vacelet J, Thompson F, Hajdu E. The complete mitochondrial DNA of the carnivorous sponge Lycopodina hypogea is putatively complemented by microDNAs. PeerJ 2024; 12:e18255. [PMID: 39559335 PMCID: PMC11572364 DOI: 10.7717/peerj.18255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/16/2024] [Indexed: 11/20/2024] Open
Abstract
Carnivorous sponges (Porifera, Demospongiae, Cladorhizidae), contrary to the usual filter-feeding mechanism of sponges, are specialized in catching larger prey through adhesive surfaces or hook-like spicules. The mitochondrial DNA of sponges overall present several divergences from other metazoans, and while presenting unique features among major transitions, such as in calcarean and glass sponges, poriferan mitogenomes are relatively stable within their groups. Here, we report and discuss the mitogenome of Lycopodina hypogea (Vacelet & Boury-Esnault, 1996), which greatly vary from its subordinal counterparts in both structure and gene order. This mitogenome is seemingly multipartite into three chromosomes, two of them as microDNAs. The main chromosome, chrM1, is unusually large, 31,099 bp in length, has a unique gene order within Poecilosclerida, and presents two rRNA, 13 protein and 19 tRNA coding genes. Intergenic regions comprise approximately 40% of chrM1, bearing several terminal direct and inverted repeats (TDRr and TIRs) but holding no vestiges of former mitochondrial sequences, pseudogenes, or transposable elements. The nd4l and trnI(gau) genes are likely located in microDNAs thus comprising putative mitochondrial chromosomes chrM2, 291 bp, and chrM3, 140 bp, respectively. It is unclear which processes are responsible for the remarkable features of the of L. hypogea mitogenome, including a generalized gene rearrangement, long IGRs, and putative extrachromosomal genes in microDNAs.
Collapse
Affiliation(s)
- Thiago Silva de Paula
- Departamento de Genética, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dora de Moura Barbosa Leite
- Programa de Pós-graduação em Ciências Biológicas (Genética), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Lobo-Hajdu
- Departamento de Genética, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jean Vacelet
- Institute Mediterranean Biodiversité Et D’ecologie, CNRS, Aix Marseille Université, Marseille, France
| | - Fabiano Thompson
- Departamento de Biologia Marinha, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Hajdu
- Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Lu Z, Lin Q, Zhang H. Characterization of the Complete Mitochondrial Genome of Agelas nakamurai from the South China Sea. Int J Mol Sci 2023; 25:357. [PMID: 38203529 PMCID: PMC10779334 DOI: 10.3390/ijms25010357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
The Agelas genus sponges are widely distributed and provide shelter for organisms that inhabit reefs. However, there is a lack of research on the genetic diversity of the Agelas sponges. Additionally, only one Agelas mitochondrial genome has been documented, leaving the characteristics of the Agelas genus's mitogenome in need of further clarification. To address this research gap, we utilized Illumina HiSeq4000 sequencing and de novo assembly to ascertain the complete mitochondrial genome of Agelas sp. specimens, sourced from the South China Sea. Our analysis of the cox1 barcoding similarity and phylogenetic relationship reveals that taxonomically, the Agelas sp. corresponds to Agelas nakamurai. The mitogenome of Agelas nakamurai is 20,885 bp in length, encoding 14 protein-coding genes, 24 transfer RNA genes, and 2 ribosomal RNA genes. Through a comparison of the mitochondrial genes, we discovered that both Agelas nakamurai and Agelas schmidti have an identical gene arrangement. Furthermore, we observed a deletion in the trnD gene and duplication and remodeling of the trnL gene in the Agelas nakamurai's mitogenome. Our evolutionary analysis also identified lineage-specific positive selection sites in the nad3 and nad5 genes of the Agelas sponges' mitogenome. These findings shed light on the gene rearrangement events and positive selection sites in the mitogenome of Agelas nakamurai, providing valuable molecular insights into the evolutionary processes of this genus.
Collapse
Affiliation(s)
- Zijian Lu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China;
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China;
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Huixian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China;
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| |
Collapse
|
3
|
Skorupski J. Characterisation of the Complete Mitochondrial Genome of Critically Endangered Mustela lutreola (Carnivora: Mustelidae) and Its Phylogenetic and Conservation Implications. Genes (Basel) 2022; 13:genes13010125. [PMID: 35052465 PMCID: PMC8774856 DOI: 10.3390/genes13010125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
In this paper, a complete mitochondrial genome of the critically endangered European mink Mustela lutreola L., 1761 is reported. The mitogenome was 16,504 bp in length and encoded the typical 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes, and harboured a putative control region. The A+T content of the entire genome was 60.06% (A > T > C > G), and the AT-skew and GC-skew were 0.093 and −0.308, respectively. The encoding-strand identity of genes and their order were consistent with a collinear gene order characteristic for vertebrate mitogenomes. The start codons of all protein-coding genes were the typical ATN. In eight cases, they were ended by complete stop codons, while five had incomplete termination codons (TA or T). All tRNAs had a typical cloverleaf secondary structure, except tRNASer(AGC) and tRNALys, which lacked the DHU stem and had reduced DHU loop, respectively. Both rRNAs were capable of folding into complex secondary structures, containing unmatched base pairs. Eighty-one single nucleotide variants (substitutions and indels) were identified. Comparative interspecies analyses confirmed the close phylogenetic relationship of the European mink to the so-called ferret group, clustering the European polecat, the steppe polecat and the black-footed ferret. The obtained results are expected to provide useful molecular data, informing and supporting effective conservation measures to save M. lutreola.
Collapse
Affiliation(s)
- Jakub Skorupski
- Institute of Marine and Environmental Sciences, University of Szczecin, Adama Mickiewicza 16 St., 70-383 Szczecin, Poland; ; Tel.: +48-91-444-16-85
- Polish Society for Conservation Genetics LUTREOLA, Maciejkowa 21 St., 71-784 Szczecin, Poland
- The European Mink Centre, 71-415 Szczecin, Poland
| |
Collapse
|
4
|
The Mitochondrial Genome of a Freshwater Pelagic Amphipod Macrohectopus branickii Is among the Longest in Metazoa. Genes (Basel) 2021; 12:genes12122030. [PMID: 34946978 PMCID: PMC8700879 DOI: 10.3390/genes12122030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
There are more than 350 species of amphipods (Crustacea) in Lake Baikal, which have emerged predominantly through the course of endemic radiation. This group represents a remarkable model for studying various aspects of evolution, one of which is the evolution of mitochondrial (mt) genome architectures. We sequenced and assembled the mt genome of a pelagic Baikalian amphipod species Macrohectopus branickii. The mt genome is revealed to have an extraordinary length (42,256 bp), deviating significantly from the genomes of other amphipod species and the majority of animals. The mt genome of M. branickii has a unique gene order within amphipods, duplications of the four tRNA genes and Cox2, and a long non-coding region, that makes up about two thirds of the genome’s size. The extension of the mt genome was most likely caused by multiple duplications and inversions of regions harboring ribosomal RNA genes. In this study, we analyzed the patterns of mt genome length changes in amphipods and other animal phyla. Through a statistical analysis, we demonstrated that the variability in the mt genome length may be a characteristic of certain phyla and is primarily conferred by expansions of non-coding regions.
Collapse
|
5
|
Miyazawa H, Osigus HJ, Rolfes S, Kamm K, Schierwater B, Nakano H. Mitochondrial Genome Evolution of Placozoans: Gene Rearrangements and Repeat Expansions. Genome Biol Evol 2020; 13:5919586. [PMID: 33031489 PMCID: PMC7813641 DOI: 10.1093/gbe/evaa213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Placozoans, nonbilaterian animals with the simplest known metazoan bauplan, are currently classified into 20 haplotypes belonging to three genera, Polyplacotoma, Trichoplax, and Hoilungia. The latter two comprise two and five clades, respectively. In Trichoplax and Hoilungia, previous studies on six haplotypes belonging to four different clades have shown that their mtDNAs are circular chromosomes of 32–43 kb in size, which encode 12 protein-coding genes, 24 tRNAs, and two rRNAs. These mitochondrial genomes (mitogenomes) also show unique features rarely seen in other metazoans, including open reading frames (ORFs) of unknown function, and group I and II introns. Here, we report seven new mitogenomes, covering the five previously described haplotypes H2, H17, H19, H9, and H11, as well as two new haplotypes, H23 (clade III) and H24 (clade VII). The overall gene content is shared between all placozoan mitochondrial genomes, but genome sizes, gene orders, and several exon–intron boundaries vary among clades. Phylogenomic analyses strongly support a tree topology different from previous 16S rRNA analyses, with clade VI as the sister group to all other Hoilungia clades. We found small inverted repeats in all 13 mitochondrial genomes of the Trichoplax and Hoilungia genera and evaluated their distribution patterns among haplotypes. Because Polyplacotoma mediterranea (H0), the sister to the remaining haplotypes, has a small mitochondrial genome with few small inverted repeats and ORFs, we hypothesized that the proliferation of inverted repeats and ORFs substantially contributed to the observed increase in the size and GC content of the Trichoplax and Hoilungia mitochondrial genomes.
Collapse
Affiliation(s)
- Hideyuki Miyazawa
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka, Japan.,Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Hans-Jürgen Osigus
- Division of Molecular Evolution, Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Germany
| | - Sarah Rolfes
- Division of Molecular Evolution, Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Germany
| | - Kai Kamm
- Division of Molecular Evolution, Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Germany
| | - Bernd Schierwater
- Division of Molecular Evolution, Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Germany
| | - Hiroaki Nakano
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| |
Collapse
|
6
|
Zhang X, Bauman N, Brown R, Richardson TH, Akella S, Hann E, Morey R, Smith DR. The mitochondrial and chloroplast genomes of the green alga Haematococcus are made up of nearly identical repetitive sequences. Curr Biol 2020; 29:R736-R737. [PMID: 31386847 DOI: 10.1016/j.cub.2019.06.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The chlamydomonadalean green alga Haematococcus lacustris (strain UTEX 2505) has the largest chloroplast genome on record: 1352 kb with ∼90% non-coding DNA [1,2]. But what of the mitochondrial genome? Here we present sequencing, assembly, and analysis of the mitogenome that shows that it, too, is extremely expanded. What's more, the same repetitive elements have spread throughout the mitochondrial and chloroplast (or plastid) DNA (mtDNA and ptDNA, respectively), resulting in the situation whereby these two distinct organelle genomes are made up of nearly identical sequences.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Biology, University of Western Ontario, London, ON, N6A-5B7, Canada
| | | | - Rob Brown
- Synthetic Genomics Inc., La Jolla, California, 92037, USA
| | | | | | - Elizabeth Hann
- Synthetic Genomics Inc., La Jolla, California, 92037, USA
| | - Robert Morey
- Synthetic Genomics Inc., La Jolla, California, 92037, USA
| | - David Roy Smith
- Department of Biology, University of Western Ontario, London, ON, N6A-5B7, Canada.
| |
Collapse
|
7
|
Mitogenomics reveals phylogenetic relationships of Arcoida (Mollusca, Bivalvia) and multiple independent expansions and contractions in mitochondrial genome size. Mol Phylogenet Evol 2020; 150:106857. [PMID: 32473333 DOI: 10.1016/j.ympev.2020.106857] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 04/09/2020] [Accepted: 05/21/2020] [Indexed: 11/24/2022]
Abstract
Arcoida, comprising about 570 species of blood cockles, is an ecologically and economically important lineage of bivalve molluscs. Current classification of arcoids is largely based on morphology, which shows widespread homoplasy. Despite two recent studies employing multi-locus analyses with broad sampling of Arcoida, evolutionary relationships among major lineages remain controversial. Interestingly, mitochondrial genomes of several ark shell species are 2-3 times larger than those found in most bilaterians, and are among the largest bilaterian mitochondrial genomes reported to date. These results highlight the need of detailed phylogenetic study to explore evolutionary relationships within Arcoida so that the evolution of mitochondrial genome size can be understood. To this end, we sequenced 17 mitochondrial genomes and compared them with publicly available data, including those from other lineages of Arcoida with emphasis on the subclade Arcoidea species. Our phylogenetic analyses indicate that Noetiidae, Cucullaeidae and Glycymerididae are nested within a polyphyletic Arcidae. Moreover, we find multiple independent expansions and potential contractions of mitochondrial genome size, suggesting that the large mitochondrial genome is not a shared ancestral feature in Arcoida. We also examined tandem repeats and inverted repeats in non-coding regions and investigated the presence of such repeats with relation to genome size variation. Our results suggest that tandem repeats might facilitate intraspecific mitochondrial genome size variation, and that inverted repeats, which could be derived from transposons, might be responsible for mitochondrial genome expansions and contractions. We show that mitochondrial genome size in Arcoida is more dynamic than previously understood and provide insights into evolution of mitochondrial genome size variation in metazoans.
Collapse
|
8
|
Bukshuk NA, Maikova OO. A new species of Baikal endemic sponges (Porifera, Demospongiae, Spongillida, Lubomirskiidae). Zookeys 2020; 906:113-130. [PMID: 32021558 PMCID: PMC6989567 DOI: 10.3897/zookeys.906.39534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/16/2019] [Indexed: 11/18/2022] Open
Abstract
This paper reports on a new species of the Baikal endemic sponge (fam. Lubomirskiidae) Swartschewskia khanaevi sp. nov. The description of this species is based on morphological and molecular data (ITS and mitochondrial IGRs). Morphologically, S. khanaevi sp. nov. differs from S. papyracea by loose tracts arranged in an irregular network as well as the presence on strongyles of compound spines looking like tubercles densely ornamented with simple spines. Moreover, specimens of S. khanaevi sp. nov. show a peculiar structure of the aquiferous system at the body surface that may be an adaptive trait for environmental conditions. Phylogenetic analysis has revealed that S. khanaevi sp. nov. forms a well-supported (0.99) monophyletic clade with S. papyracea and is allocated as its sister taxa.
Collapse
Affiliation(s)
- Natalia A. Bukshuk
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Str. 3, 664 033 Irkutsk, RussiaLimnological Institute, Siberian Branch of the Russian Academy of SciencesIrkutskRussia
| | - Olga O. Maikova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Str. 3, 664 033 Irkutsk, RussiaLimnological Institute, Siberian Branch of the Russian Academy of SciencesIrkutskRussia
| |
Collapse
|
9
|
Kenny NJ, Plese B, Riesgo A, Itskovich VB. Symbiosis, Selection, and Novelty: Freshwater Adaptation in the Unique Sponges of Lake Baikal. Mol Biol Evol 2019; 36:2462-2480. [PMID: 31236592 PMCID: PMC6805232 DOI: 10.1093/molbev/msz151] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/30/2019] [Accepted: 06/17/2019] [Indexed: 12/26/2022] Open
Abstract
Freshwater sponges (Spongillida) are a unique lineage of demosponges that secondarily colonized lakes and rivers and are now found ubiquitously in these ecosystems. They developed specific adaptations to freshwater systems, including the ability to survive extreme thermal ranges, long-lasting dessication, anoxia, and resistance to a variety of pollutants. Although spongillids have colonized all freshwater systems, the family Lubomirskiidae is endemic to Lake Baikal and plays a range of key roles in this ecosystem. Our work compares the genomic content and microbiome of individuals of three species of the Lubomirskiidae, providing hypotheses for how molecular evolution has allowed them to adapt to their unique environments. We have sequenced deep (>92% of the metazoan "Benchmarking Universal Single-Copy Orthologs" [BUSCO] set) transcriptomes from three species of Lubomirskiidae and a draft genome resource for Lubomirskia baikalensis. We note Baikal sponges contain unicellular algal and bacterial symbionts, as well as the dinoflagellate Gyrodinium. We investigated molecular evolution, gene duplication, and novelty in freshwater sponges compared with marine lineages. Sixty one orthogroups have consilient evidence of positive selection. Transporters (e.g., zinc transporter-2), transcription factors (aristaless-related homeobox), and structural proteins (e.g. actin-3), alongside other genes, are under strong evolutionary pressure in freshwater, with duplication driving novelty across the Spongillida, but especially in the Lubomirskiidae. This addition to knowledge of freshwater sponge genetics provides a range of tools for understanding the molecular biology and, in the future, the ecology (e.g., colonization and migration patterns) of these key species.
Collapse
Affiliation(s)
- Nathan J Kenny
- Life Sciences Department, The Natural History Museum, London, United Kingdom
| | - Bruna Plese
- Life Sciences Department, The Natural History Museum, London, United Kingdom
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ana Riesgo
- Life Sciences Department, The Natural History Museum, London, United Kingdom
| | - Valeria B Itskovich
- Limnological Institute, Siberian Branch of the Russian Academy of Science, Irkutsk, Russia
| |
Collapse
|
10
|
Deng Y, Hsiang T, Li S, Lin L, Wang Q, Chen Q, Xie B, Ming R. Comparison of the Mitochondrial Genome Sequences of Six Annulohypoxylon stygium Isolates Suggests Short Fragment Insertions as a Potential Factor Leading to Larger Genomic Size. Front Microbiol 2018; 9:2079. [PMID: 30250455 PMCID: PMC6140425 DOI: 10.3389/fmicb.2018.02079] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/14/2018] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is a core non-nuclear genetic material found in all eukaryotic organisms, the size of which varies extensively in the eumycota, even within species. In this study, mitochondrial genomes of six isolates of Annulohypoxylon stygium (Lév.) were assembled from raw reads from PacBio and Illumina sequencing. The diversity of genomic structures, conserved genes, intergenic regions and introns were analyzed and compared. Genome sizes ranged from 132 to 147 kb and contained the same sets of conserved protein-coding, tRNA and rRNA genes and shared the same gene arrangements and orientation. In addition, most intergenic regions were homogeneous and had similar sizes except for the region between cytochrome b (cob) and cytochrome c oxidase I (cox1) genes which ranged from 2,998 to 8,039 bp among the six isolates. Sixty-five intron insertion sites and 99 different introns were detected in these genomes. Each genome contained 45 or more introns, which varied in distribution and content. Introns from homologous insertion sites also showed high diversity in size, type and content. Comparison of introns at the same loci showed some complex introns, such as twintrons and ORF-less introns. There were 44 short fragment insertions detected within introns, intergenic regions, or as introns, some of them located at conserved domain regions of homing endonuclease genes. Insertions of short fragments such as small inverted repeats might affect or hinder the movement of introns, and these allowed for intron accumulation in the mitochondrial genomes analyzed, and enlarged their size. This study showed that the evolution of fungal mitochondrial introns is complex, and the results suggest short fragment insertions as a potential factor leading to larger mitochondrial genomes in A. stygium.
Collapse
Affiliation(s)
- Youjin Deng
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Tom Hsiang
- Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Shuxian Li
- USDA-Agricultural Research Service, Crop Genetics Research Unit, Stoneville, MS, United States
| | - Longji Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingfu Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qinghe Chen
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Baogui Xie
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
11
|
Schuster A, Vargas S, Knapp IS, Pomponi SA, Toonen RJ, Erpenbeck D, Wörheide G. Divergence times in demosponges (Porifera): first insights from new mitogenomes and the inclusion of fossils in a birth-death clock model. BMC Evol Biol 2018; 18:114. [PMID: 30021516 PMCID: PMC6052604 DOI: 10.1186/s12862-018-1230-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 07/03/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Approximately 80% of all described extant sponge species belong to the class Demospongiae. Yet, despite their diversity and importance, accurate divergence times are still unknown for most demosponge clades. The estimation of demosponge divergence time is key to answering fundamental questions on the origin of Demospongiae, their diversification and historical biogeography. Molecular sequence data alone is not informative on an absolute time scale, and therefore needs to be "calibrated" with additional data such as fossils. Here, we calibrate the molecular data with the fossilized birth-death model, which compared to strict node dating, allows for the inclusion of young and old fossils in the analysis of divergence time. We use desma-bearing sponges, a diverse group of demosponges that form rigid skeletons and have a rich and continuous fossil record dating back to the Cambrian (~500 Ma), to date the demosponge radiation and constrain the timing of key evolutionary events, like the transition from marine to freshwater habitats. To infer a dated phylogeny of Demospongiae we assembled the mitochondrial genomes of six desma-bearing demosponges from reduced-representation genomic libraries. The total dataset included 33 complete demosponge mitochondrial genomes and 30 fossils. RESULTS Our study supports a Neoproterozoic origin of Demospongiae. Novel age estimates for the split of freshwater and marine sponges dating back to the Carboniferous and the previously assumed recent (~18 Ma) diversification of freshwater sponges is supported. Moreover, we provide detailed age estimates for a possible diversification of Tetractinellidae (~315 Ma), the Astrophorina (~240 Ma), the Spirophorina (~120 Ma) and the family Corallistidae (~188 Ma) all of which are considered as key groups for dating the Demospongiae due to their extraordinary rich and continuous fossil history. CONCLUSION This study provides novel insights into the evolution of Demospongiae. Observed discrepancies of our dated phylogeny with their putative first fossil appearance dates are discussed for selected sponge groups. For instance, a Carboniferous origin of the order Tetractinellida seems to be too late, compared to their first appearance in the fossil record in the Middle Cambrian. This would imply that Paleozoic spicule forms are not homologous to post-Paleozoic forms.
Collapse
Affiliation(s)
- Astrid Schuster
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10, 80333 Munich, Germany
| | - Sergio Vargas
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10, 80333 Munich, Germany
| | - Ingrid S. Knapp
- Hawai‘i Institute of Marine Biology, 46-007 Lilipuna Road, Kāne‘ohe, Hawai‘i 96744 USA
| | - Shirley A. Pomponi
- Harbor Branch Oceanographic Institute-Florida Atlantic University, 5600 U.S. 1 North, Ft Pierce, FL 34946 USA
| | - Robert J. Toonen
- Hawai‘i Institute of Marine Biology, 46-007 Lilipuna Road, Kāne‘ohe, Hawai‘i 96744 USA
| | - Dirk Erpenbeck
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10, 80333 Munich, Germany
- GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10, 80333 Munich, Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10, 80333 Munich, Germany
- GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10, 80333 Munich, Germany
- SNSB - Bavarian State Collections of Palaeontology and Geology, Richard-Wagner Str. 10, 80333 Munich, Germany
| |
Collapse
|
12
|
Partial Mitochondrial Genome Sequences of Two Abyssal Sponges (Porifera: Hexactinellida), Bathydorus laniger and Docosaccus maculatus. GENOME ANNOUNCEMENTS 2018; 6:6/16/e00234-18. [PMID: 29674536 PMCID: PMC5908954 DOI: 10.1128/genomea.00234-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We announce the nearly complete mitochondrial genome sequences of two hexactinellid sponges, Bathydorus laniger and Docosaccus maculatus. A contiguous region of over 15,000 bp was sequenced from each genome. An uncommon structural element was identified as a series of repetitive elements with sequences matching cob in the genome of D. maculatus.
Collapse
|
13
|
Maikova OO, Bukshuk NA, Itskovich VB, Khanaev IV, Nebesnykh IA, Onishchuk NA, Sherbakov DY. Transformation of Baikal sponges (family Lubomirskiidae) after penetration into the Angara River. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417120092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Marlétaz F, Le Parco Y, Liu S, Peijnenburg KTCA. Extreme Mitogenomic Variation in Natural Populations of Chaetognaths. Genome Biol Evol 2017; 9:1374-1384. [PMID: 28854623 PMCID: PMC5470650 DOI: 10.1093/gbe/evx090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2017] [Indexed: 12/15/2022] Open
Abstract
The extent of within-species genetic variation across the diversity of animal life is an underexplored problem in ecology and evolution. Although neutral genetic variation should scale positively with population size, mitochondrial diversity levels are believed to show little variation across animal species. Here, we report an unprecedented case of extreme mitochondrial diversity within natural populations of two morphospecies of chaetognaths (arrow worms). We determine that this diversity is composed of deep sympatric mitochondrial lineages, which are in some cases as divergent as human and platypus. Additionally, based on 54 complete mitogenomes, we observed mitochondrial gene order differences between several of these lineages. We examined nuclear divergence patterns (18S, 28S, and an intron) to determine the possible origin of these lineages, but did not find congruent patterns between mitochondrial and nuclear markers. We also show that extreme mitochondrial divergence in chaetognaths is not driven by positive selection. Hence, we propose that the extreme levels of mitochondrial variation could be the result of either a complex scenario of reproductive isolation, or a combination of large population size and accelerated mitochondrial mutation rate. These findings emphasize the importance of characterizing genome-wide levels of nuclear variation in these species and promote chaetognaths as a remarkable model to study mitochondrial evolution.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Department of Zoology, University of Oxford, United Kingdom
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Onna, Japan
| | - Yannick Le Parco
- Institut Méditerranéen d’Océanologie (CNRS UMR 7294), Aix-Marseille Université, Campus de Luminy, Marseille, France
| | - Shenglin Liu
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, The Netherlands
| | - Katja TCA Peijnenburg
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, The Netherlands
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
| |
Collapse
|
15
|
Historical biogeography and mitogenomics of two endemic Mediterranean gorgonians (Holaxonia, Plexauridae). ORG DIVERS EVOL 2017. [DOI: 10.1007/s13127-017-0322-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Maikova O, Sherbakov D, Belikov S. The complete mitochondrial genome of Baikalospongia intermedia (Lubomirskiidae): description and phylogenetic analysis. MITOCHONDRIAL DNA PART B-RESOURCES 2016; 1:569-570. [PMID: 33490409 PMCID: PMC7801006 DOI: 10.1080/23802359.2016.1172273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The complete mitochondrial genome of the Lake Baikal sponge Baikalospongia intermedia was sequenced. The circular mitochondrial genome is 28,327 bp in length and includes 14 protein-coding genes, 2 ribosomal RNA genes and 25 transfer RNA genes. Bayesian comparative analysis of molecular evolution rates was found no acceleration of the mtDNA evolution of B. intermedia. This species clustered with other species of the genus Baikalospongia on the Bayesian tree.
Collapse
Affiliation(s)
- Olga Maikova
- Limnological Institute SB RAS, Irkutsk, 664033, Russian Federation
| | - Dmitry Sherbakov
- Limnological Institute SB RAS, Irkutsk, 664033, Russian Federation
| | - Sergei Belikov
- Limnological Institute SB RAS, Irkutsk, 664033, Russian Federation
| |
Collapse
|
17
|
Francis WR, Eitel M, Vargas S, Krebs S, Blum H, Wörheide G. Mitochondrial genomes of the freshwater sponges Spongilla lacustris and Ephydatia cf. muelleri. Mitochondrial DNA B Resour 2016; 1:250-251. [PMID: 33473465 PMCID: PMC7800867 DOI: 10.1080/23802359.2016.1157771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We report the mitochondrial genomes of two freshwater sponges, Spongilla lacustris and Ephydatia cf. muelleri. The genomes contain 14 protein-coding genes and are similar in structure to other published mitochondrial genomes from freshwater sponges. The E. cf. muelleri described here is remarkably similar in coding regions to the published genome, but differs in number and length of hairpin-forming repeats between genes.
Collapse
Affiliation(s)
- Warren Russell Francis
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Eitel
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sergio Vargas
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Bavarian State Collections for Paleontology and Geology, Munich, Germany
| |
Collapse
|
18
|
Abstract
Transposable elements (TEs) are an important factor shaping eukaryotic genomes. Although a significant body of research has been conducted on the abundance of TEs in nuclear genomes, TEs in mitochondrial genomes remain elusive. In this study, we successfully assembled 28 complete yeast mitochondrial genomes and took advantage of the power of population genomics to determine mobile DNAs and their propensity. We have observed compelling evidence of GC clusters propagating within the mitochondrial genome and being horizontally transferred between species. These mitochondrial TEs experience rapid diversification by nucleotide substitution and, more importantly, undergo dynamic merger and shuffling to form new TEs. Given the hyper mobile and transformable nature of mitochondrial TEs, our findings open the door to a deeper understanding of eukaryotic mitochondrial genome evolution and the origin of nonautonomous TEs.
Collapse
|
19
|
Aguileta G, de Vienne DM, Ross ON, Hood ME, Giraud T, Petit E, Gabaldón T. High variability of mitochondrial gene order among fungi. Genome Biol Evol 2015; 6:451-65. [PMID: 24504088 PMCID: PMC3942027 DOI: 10.1093/gbe/evu028] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
From their origin as an early alpha proteobacterial endosymbiont to their current state as cellular organelles, large-scale genomic reorganization has taken place in the mitochondria of all main eukaryotic lineages. So far, most studies have focused on plant and animal mitochondrial (mt) genomes (mtDNA), but fungi provide new opportunities to study highly differentiated mtDNAs. Here, we analyzed 38 complete fungal mt genomes to investigate the evolution of mtDNA gene order among fungi. In particular, we looked for evidence of nonhomologous intrachromosomal recombination and investigated the dynamics of gene rearrangements. We investigated the effect that introns, intronic open reading frames (ORFs), and repeats may have on gene order. Additionally, we asked whether the distribution of transfer RNAs (tRNAs) evolves independently to that of mt protein-coding genes. We found that fungal mt genomes display remarkable variation between and within the major fungal phyla in terms of gene order, genome size, composition of intergenic regions, and presence of repeats, introns, and associated ORFs. Our results support previous evidence for the presence of mt recombination in all fungal phyla, a process conspicuously lacking in most Metazoa. Overall, the patterns of rearrangements may be explained by the combined influences of recombination (i.e., most likely nonhomologous and intrachromosomal), accumulated repeats, especially at intergenic regions, and to a lesser extent, mobile element dynamics.
Collapse
Affiliation(s)
- Gabriela Aguileta
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Maikova O, Khanaev I, Belikov S, Sherbakov D. Two hypotheses of the evolution of endemic sponges in Lake Baikal (Lubomirskiidae). J ZOOL SYST EVOL RES 2014. [DOI: 10.1111/jzs.12086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Olga Maikova
- Limnological Institute; Siberian Branch; Russian Academy of Sciences; Irkutsk Russia
| | - Igor Khanaev
- Limnological Institute; Siberian Branch; Russian Academy of Sciences; Irkutsk Russia
| | - Sergei Belikov
- Limnological Institute; Siberian Branch; Russian Academy of Sciences; Irkutsk Russia
| | - Dmitry Sherbakov
- Limnological Institute; Siberian Branch; Russian Academy of Sciences; Irkutsk Russia
- Biological Faculty of Irkutsk State University; Irkutsk Russia
| |
Collapse
|
21
|
Osigus HJ, Eitel M, Bernt M, Donath A, Schierwater B. Mitogenomics at the base of Metazoa. Mol Phylogenet Evol 2013; 69:339-51. [PMID: 23891951 DOI: 10.1016/j.ympev.2013.07.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/29/2013] [Accepted: 07/09/2013] [Indexed: 11/25/2022]
Abstract
Unraveling the base of metazoan evolution is of crucial importance for rooting the metazoan Tree of Life. This subject has attracted substantial attention for more than a century and recently fueled a burst of modern phylogenetic studies. Conflicting scenarios from different studies and incongruent results from nuclear versus mitochondrial markers challenge current molecular phylogenetic approaches. Here we analyze the presently most comprehensive data sets of mitochondrial genomes from non-bilaterian animals to illuminate the phylogenetic relationships among early branching metazoan phyla. The results of our analyses illustrate the value of mitogenomics and support previously known topologies between animal phyla but also identify several problematic taxa, which are sensitive to long branch artifacts or missing data.
Collapse
Affiliation(s)
- Hans-Jürgen Osigus
- Stiftung Tierärztliche Hochschule Hannover, ITZ, Ecology and Evolution, Buenteweg 17d, D-30559 Hannover, Germany.
| | | | | | | | | |
Collapse
|
22
|
Kayal E, Roure B, Philippe H, Collins AG, Lavrov DV. Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evol Biol 2013; 13:5. [PMID: 23302374 PMCID: PMC3598815 DOI: 10.1186/1471-2148-13-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 12/21/2012] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Cnidaria (corals, sea anemones, hydroids, jellyfish) is a phylum of relatively simple aquatic animals characterized by the presence of the cnidocyst: a cell containing a giant capsular organelle with an eversible tubule (cnida). Species within Cnidaria have life cycles that involve one or both of the two distinct body forms, a typically benthic polyp, which may or may not be colonial, and a typically pelagic mostly solitary medusa. The currently accepted taxonomic scheme subdivides Cnidaria into two main assemblages: Anthozoa (Hexacorallia + Octocorallia) - cnidarians with a reproductive polyp and the absence of a medusa stage - and Medusozoa (Cubozoa, Hydrozoa, Scyphozoa, Staurozoa) - cnidarians that usually possess a reproductive medusa stage. Hypothesized relationships among these taxa greatly impact interpretations of cnidarian character evolution. RESULTS We expanded the sampling of cnidarian mitochondrial genomes, particularly from Medusozoa, to reevaluate phylogenetic relationships within Cnidaria. Our phylogenetic analyses based on a mitochogenomic dataset support many prior hypotheses, including monophyly of Hexacorallia, Octocorallia, Medusozoa, Cubozoa, Staurozoa, Hydrozoa, Carybdeida, Chirodropida, and Hydroidolina, but reject the monophyly of Anthozoa, indicating that the Octocorallia + Medusozoa relationship is not the result of sampling bias, as proposed earlier. Further, our analyses contradict Scyphozoa [Discomedusae + Coronatae], Acraspeda [Cubozoa + Scyphozoa], as well as the hypothesis that Staurozoa is the sister group to all the other medusozoans. CONCLUSIONS Cnidarian mitochondrial genomic data contain phylogenetic signal informative for understanding the evolutionary history of this phylum. Mitogenome-based phylogenies, which reject the monophyly of Anthozoa, provide further evidence for the polyp-first hypothesis. By rejecting the traditional Acraspeda and Scyphozoa hypotheses, these analyses suggest that the shared morphological characters in these groups are plesiomorphies, originated in the branch leading to Medusozoa. The expansion of mitogenomic data along with improvements in phylogenetic inference methods and use of additional nuclear markers will further enhance our understanding of the phylogenetic relationships and character evolution within Cnidaria.
Collapse
Affiliation(s)
- Ehsan Kayal
- Dept. Ecology, Evolution, and Organismal Biology, Iowa State University, 50011, Ames, Iowa, USA
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 20013-7012, Washington, DC, USA
| | - Béatrice Roure
- Dept. Biochimie, Fac. Médecine, Université de Montral, Pavillon Roger-Gaudry, C.P. 6128, Succ. Centre-Ville, H3C 3J7, Montral, QC, Canada
| | - Hervé Philippe
- Dept. Biochimie, Fac. Médecine, Université de Montral, Pavillon Roger-Gaudry, C.P. 6128, Succ. Centre-Ville, H3C 3J7, Montral, QC, Canada
| | - Allen G Collins
- National Systematics Laboratory of NOAA’s Fisheries Service, National Museum of Natural History, MRC-153, Smithsonian Institution, PO Box 37012, 20013-7012, Washington, DC, USA
| | - Dennis V Lavrov
- Dept. Ecology, Evolution, and Organismal Biology, Iowa State University, 50011, Ames, Iowa, USA
| |
Collapse
|
23
|
Imešek M, Pleše B, Lukić-Bilela L, Lelo S, Ćetković H. Mitochondrial genomes of the genus Ephydatia Lamouroux, 1816: can palindromic elements be used in species-level studies? ORG DIVERS EVOL 2012. [DOI: 10.1007/s13127-012-0118-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Lavrov DV, Pett W, Voigt O, Wörheide G, Forget L, Lang BF, Kayal E. Mitochondrial DNA of Clathrina clathrus (Calcarea, Calcinea): six linear chromosomes, fragmented rRNAs, tRNA editing, and a novel genetic code. Mol Biol Evol 2012; 30:865-80. [PMID: 23223758 DOI: 10.1093/molbev/mss274] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sponges (phylum Porifera) are a large and ancient group of morphologically simple but ecologically important aquatic animals. Although their body plan and lifestyle are relatively uniform, sponges show extensive molecular and genetic diversity. In particular, mitochondrial genomes from three of the four previously studied classes of Porifera (Demospongiae, Hexactinellida, and Homoscleromorpha) have distinct gene contents, genome organizations, and evolutionary rates. Here, we report the mitochondrial genome of Clathrina clathrus (Calcinea, Clathrinidae), a representative of the fourth poriferan class, the Calcarea, which proves to be the most unusual. Clathrina clathrus mitochondrial DNA (mtDNA) consists of six linear chromosomes 7.6-9.4 kb in size and encodes at least 37 genes: 13 protein codings, 2 ribosomal RNAs (rRNAs), and 24 transfer RNAs (tRNAs). Protein genes include atp9, which has now been found in all major sponge lineages, but no atp8. Our analyses further reveal the presence of a novel genetic code that involves unique reassignments of the UAG codons from termination to tyrosine and of the CGN codons from arginine to glycine. Clathrina clathrus mitochondrial rRNAs are encoded in three (srRNA) and ≥6 (lrRNA) fragments distributed out of order and on several chromosomes. The encoded tRNAs contain multiple mismatches in the aminoacyl acceptor stems that are repaired posttranscriptionally by 3'-end RNA editing. Although our analysis does not resolve the phylogenetic position of calcareous sponges, likely due to their high rates of mitochondrial sequence evolution, it confirms mtDNA as a promising marker for population studies in this group. The combination of unusual mitochondrial features in C. clathrus redefines the extremes of mtDNA evolution in animals and further argues against the idea of a "typical animal mtDNA."
Collapse
Affiliation(s)
- Dennis V Lavrov
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Iowa, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Bernt M, Braband A, Schierwater B, Stadler PF. Genetic aspects of mitochondrial genome evolution. Mol Phylogenet Evol 2012; 69:328-38. [PMID: 23142697 DOI: 10.1016/j.ympev.2012.10.020] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 10/20/2012] [Accepted: 10/22/2012] [Indexed: 11/30/2022]
Abstract
Many years of extensive studies of metazoan mitochondrial genomes have established differences in gene arrangements and genetic codes as valuable phylogenetic markers. Understanding the underlying mechanisms of replication, transcription and the role of the control regions which cause e.g. different gene orders is important to assess the phylogenetic signal of such events. This review summarises and discusses, for the Metazoa, the general aspects of mitochondrial transcription and replication with respect to control regions as well as several proposed models of gene rearrangements. As whole genome sequencing projects accumulate, more and more observations about mitochondrial gene transfer to the nucleus are reported. Thus occurrence and phylogenetic aspects concerning nuclear mitochondrial-like sequences (NUMTS) is another aspect of this review.
Collapse
Affiliation(s)
- Matthias Bernt
- Parallel Computing and Complex Systems Group, Department of Computer Science, University of Leipzig, Augustusplatz 10, D-04109 Leipzig, Germany.
| | | | | | | |
Collapse
|
26
|
Nardi F, Carapelli A, Frati F. Repeated regions in mitochondrial genomes: Distribution, origin and evolutionary significance. Mitochondrion 2012; 12:483-91. [DOI: 10.1016/j.mito.2012.07.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 04/05/2012] [Accepted: 07/10/2012] [Indexed: 10/28/2022]
|
27
|
Small inverted repeats drive mitochondrial genome evolution in Lake Baikal sponges. Gene 2012; 505:91-9. [PMID: 22669046 DOI: 10.1016/j.gene.2012.05.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 12/31/2022]
Abstract
Demosponges, the largest and most diverse class in the phylum Porifera, possess mitochondrial DNA (mtDNA) markedly different from that in other animals. Although several studies investigated evolution of demosponge mtDNA among major lineages of the group, the changes within these groups remain largely unexplored. Recently we determined mitochondrial genomic sequence of the Lake Baikal sponge Lubomirskia baicalensis and described proliferation of small inverted repeats (hairpins) that occurred in it since the divergence between L. baicalensis and the most closely related cosmopolitan freshwater sponge Ephydatia muelleri. Here we report mitochondrial genomes of three additional species of Lake Baikal sponges: Swartschewskia papyracea, Rezinkovia echinata and Baikalospongia intermedia morpha profundalis (Demospongiae, Haplosclerida, Lubomirskiidae) and from a more distantly related freshwater sponge Corvomeyenia sp. (Demospongiae, Haplosclerida, Metaniidae). We use these additional sequences to explore mtDNA evolution in Baikalian sponges, paying particular attention to the variation in the rates of nucleotide substitutions and the distribution of hairpins, abundant in these genomes. We show that most of the changes in Lubomirskiidae mitochondrial genomes are due to insertion/deletion/duplication of these elements rather than single nucleotide substitutions. Thus inverted repeats can act as an important force in evolution of mitochondrial genome architecture and be a valuable marker for population- and species-level studies in this group. In addition, we infer (((Rezinkovia+Lubomirskia)+Swartschewskia)+Baikalospongia) phylogeny for the family Lubomirskiidae based on the analysis of mitochondrial coding sequences from freshwater sponges.
Collapse
|
28
|
Maikova OO, Stepnova GN, Belikov SI. Variations in noncoding sequences of the mitochondrial DNA in sponges from family Lubomirskiidae. DOKL BIOCHEM BIOPHYS 2012; 442:46-8. [DOI: 10.1134/s1607672912010140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Indexed: 11/23/2022]
|
29
|
Chernogor LI, Denikina NN, Belikov SI, Ereskovsky AV. Long-term cultivation of primmorphs from freshwater Baikal sponges Lubomirskia baikalensis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:782-792. [PMID: 21221695 DOI: 10.1007/s10126-010-9340-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 10/29/2010] [Indexed: 05/30/2023]
Abstract
The work was aimed at performing long-term cultivation of primmorphs in vitro from freshwater sponge Lubomirskia baikalensis (Pallas 1776), collected from Lake Baikal, obtaining its long-term primmorph culture in both natural (NBW) and artificial (ABW) Baikal water and at identifying the impact of different environmental factors on formation and growth of primmorphs. The first fine aggregates of L. baikalensis are formed in vitro 10-15 min after dissociation of sponge cells. Epithelization of aggregates begins 4 h later after the dissociation. Young primmorphs are formed 1 or 2 days later. The surface of primmorphs is covered with a layer of exopinacocytes. The primmorphs remain viable for more than 10 months at 3-6 °C. Over 50% of primmorphs in NBW and 25% in ABW are attached to the substrate and grow like adult sponges. Thus, the long-term primmorph cultivation in vitro allows the creation of a controlled live model system under experimental conditions. The results of this work will allow the creation of a cell culture collection of Baikal freshwater sponges for studying morphogenesis of primmorphs during cultivation at different stages and transdifferentiation of their cells, physiological functions of sponge cells, processes of spiculogenesis, identification of proteins involved in biomineralization process, decoding of their genes, as well as a spectrum of secondary metabolites.
Collapse
Affiliation(s)
- Lubov I Chernogor
- Laboratory of Analytical Bioorganic Chemistry, Limnological Institute of the Siberian Branch of Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk 664033, Russia.
| | | | | | | |
Collapse
|
30
|
Park E, Song JI, Won YJ. The complete mitochondrial genome of Calicogorgia granulosa (Anthozoa: Octocorallia): potential gene novelty in unidentified ORFs formed by repeat expansion and segmental duplication. Gene 2011; 486:81-7. [PMID: 21798322 DOI: 10.1016/j.gene.2011.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 06/29/2011] [Accepted: 07/07/2011] [Indexed: 01/24/2023]
Abstract
Mitochondrial genomes of many nonbilaterian animals show high diversity of genome size and gene content, revealing many intergenic regions (IGRs), diverse repeats and additional genes. Here we present a new complete mitogenome of the cnidarian sea fan species, Calicogorgia granulosa (Anthozoa: Octocorallia) and its novel genomic features. The 20,246 bp of the complete mitogenome, which is the largest among the nine octocorals sequenced to date, contains 13 protein coding genes, 2 rRNAs and a tRNA within its circular form of mitochondrial DNA. We found an identical segmental duplication (S1 and S2, 913 bp) composed of an ORF (672 bp) coding for a hypothetical protein within which Direct Variant Repeat (DVR) expansions reside in-frame to the coding sequence. Additionally, the duplicated segmental DNA showed no variation in nucleotide sequences both between S1 and S2 and across multiple individual samples. Upon these observations, we discuss plausible causes for the intramitochondrial segmental duplication and the absence of sequence variation, and a need for further investigation of the novel ORF as well. In conclusion the present mitogenome of C. granulosa adds more information to our understanding of the diversity and evolution of mitogenomes of nonbilaterian animals.
Collapse
Affiliation(s)
- Eunji Park
- Division of EcoScience, Ewha Womans University, Sodaemun-Gu, Seoul, Republic of Korea
| | | | | |
Collapse
|
31
|
Maikova OO, Itskovich VB, Semiturkina NA, Kaluzhnaya OV, Belikov SI. Phylogenetic position of sponges from Chagatai and Tore-Khol lakes. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410120100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|