1
|
Kondoh D, Tonomori W, Iwasaki R, Tomiyasu J, Kaneoya Y, Li H, Ikuta S, Kobayashi H, Mitani Y, Kobayashi M. The vomeronasal system of the Steller sea lion. J Anat 2025. [PMID: 40312139 DOI: 10.1111/joa.14274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 05/03/2025] Open
Abstract
The vomeronasal system receives pheromones and kairomones in mammals, and its receptor organ and primary integrative center comprise the vomeronasal organ (VNO) and accessory olfactory bulb (AOB), respectively. Because cetaceans, sirenians, and harbor seals no longer have a vomeronasal system, it might not be important to some marine mammals. On the other hand, an AOB has been confirmed in three species of the family Otariidae, although whether they also have a VNO has not been investigated. Therefore, we detailed the morphological and histological features of the VNO of the Steller sea lion (Eumetopias jubatus). The entire VNO extended vertically within the incisive foramen, and its lumen formed a short common duct with the incisive duct to open into the oral cavity. The incisive duct was narrow and passed through the lateral part of the VNO. The VNO was extensively covered with sensory epithelium and with non-sensory epithelium ventrolaterally. A dense arrangement of basal cells in the sensory epithelium implied that a rapid turnover of supporting cells repaired salt-induced damage. The VNO lacked large venous sinuses, suggesting that Steller sea lions pull substances into the VNO by a suction mechanism after closing a nostril. The glands beneath the sensory and non-sensory epithelia contained abundant mucoserous and mucous cells, respectively. Mucous glands in the incisive duct stained positive for Alcian blue (pH 1.0), indicating that these glands protect against seawater. These morphological and histological properties of the VNO of Steller sea lions significantly differ from those of other terrestrial carnivorous species. Immunohistochemical findings of the anti-G protein α-subunits i2 (Gαi2) and o (Gαo) in the AOB revealed that the vomeronasal system of Steller sea lions expresses vomeronasal type-1 receptors coupled with Gαi2 to detect volatile substances, but not type-2 receptors coupled with Gαo to receive water-soluble substances. These findings indicate the importance of the vomeronasal system in marine Steller sea lions, especially when on land.
Collapse
Affiliation(s)
- Daisuke Kondoh
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Wataru Tonomori
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Geology and Paleontology, National Museum of Nature and Science, Tsukuba, Japan
- Ashoro Museum of Paleontology, Ashoro, Japan
| | - Ryota Iwasaki
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Jumpei Tomiyasu
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Yuka Kaneoya
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Heping Li
- Wildlife Research Center, Kyoto University, Kyoto, Japan
| | - Shun Ikuta
- Incorporated Non-Profit Organization, Marine Wildlife Center of Japan, Abashiri, Japan
| | - Hayao Kobayashi
- Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Japan
| | - Yoko Mitani
- Wildlife Research Center, Kyoto University, Kyoto, Japan
| | - Mari Kobayashi
- Incorporated Non-Profit Organization, Marine Wildlife Center of Japan, Abashiri, Japan
- Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Japan
| |
Collapse
|
2
|
Joshi N, Vaidya B, Sharma SS. Transient receptor potential channels as an emerging target for the treatment of Alzheimer's disease: Unravelling the potential of pharmacological interventions. Basic Clin Pharmacol Toxicol 2024; 135:375-400. [PMID: 39209323 DOI: 10.1111/bcpt.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is a devastating disorder with a multifaceted aetiology characterized by dementia, which later progresses to cognitive impairment. Significant efforts have been made to develop pharmacological interventions that slow down the pathogenesis of AD. However, conventional drugs have failed to satisfactorily treat AD and are more focussed towards symptomatic management. Thus, there is a gap in the literature regarding novel targets and modulators targeting them for the effective treatment of AD. Recent studies have demonstrated that modulation of transient receptor potential (TRP) channels has the potential to halt AD pathogenesis at an early stage and rescue hippocampal neurons from death. Amongst several members, TRP channels like TRPA1, TRPC6, TRPM2 and TRPV2 have shown promising results in the attenuation of neurobehavioural cognitive deficits as well as signalling pathways governing such cognitive decline. Furthermore, as these channels govern the ionic balance in the cell, their beneficial effects have also been known to maintain the homeostasis of Ca2+, which is the major culprit eliciting the vicious cycle of excitotoxicity, mitochondrial dysfunction, ROS generation and neurodegeneration. Despite such tremendous potential of TRP channel modulators, their clinical investigation remains elusive. Therefore, in the present review, we have discussed such agents in the light of TRP channels as molecular targets for the amelioration of AD both at the preclinical and clinical levels.
Collapse
Affiliation(s)
- Nishit Joshi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, India
| | - Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, India
| |
Collapse
|
3
|
Kondoh D, Tonomori W, Iwasaki R, Tomiyasu J, Kaneoya Y, Kawai YK, Ikuta S, Kobayashi H, Kobayashi M. The vomeronasal organ and incisive duct of harbor seals are modified to secrete acidic mucus into the nasal cavity. Sci Rep 2024; 14:11779. [PMID: 38783070 PMCID: PMC11116377 DOI: 10.1038/s41598-024-62711-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Most terrestrial mammals have a vomeronasal system to detect specific chemicals. The peripheral organ of this system is a vomeronasal organ (VNO) opening to the incisive duct, and its primary integrative center is an accessory olfactory bulb (AOB). The VNO in seals is thought to be degenerated like whales and manatees, unlike otariids, because of the absence of the AOB. However, olfaction plays pivotal roles in seals, and thus we conducted a detailed morphological evaluation of the vomeronasal system of three harbor seals (Phoca vitulina). The VNO lumen was not found, and the incisive duct did not open into the oral cavity but was recognized as a fossa on the anteroventral side of the nasal cavity. This fossa is rich in mucous glands that secrete acidic mucopolysaccharides, which might originate from the vomeronasal glands. The olfactory bulb consisted only of a main olfactory bulb that received projections from the olfactory mucosa, but an AOB region was not evident. These findings clarified that harbor seals do not have a VNO to detect some chemicals, but the corresponding region is a specialized secretory organ.
Collapse
Affiliation(s)
- Daisuke Kondoh
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.
| | - Wataru Tonomori
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Geology and Paleontology, National Museum of Nature and Science, Tsukuba, Ibaraki, Japan
- Ashoro Museum of Paleontology, Ashoro, Hokkaido, Japan
| | - Ryota Iwasaki
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Jumpei Tomiyasu
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yuka Kaneoya
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yusuke K Kawai
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Shun Ikuta
- Incorporated Non-Profit Organization, Marine Wildlife Center of Japan, Abashiri, Hokkaido, Japan
| | - Hayao Kobayashi
- Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Hokkaido, Japan
| | - Mari Kobayashi
- Incorporated Non-Profit Organization, Marine Wildlife Center of Japan, Abashiri, Hokkaido, Japan
- Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Hokkaido, Japan
| |
Collapse
|
4
|
Yohe LR, Krell NT. An updated synthesis of and outstanding questions in the olfactory and vomeronasal systems in bats: Genetics asks questions only anatomy can answer. Anat Rec (Hoboken) 2023; 306:2765-2780. [PMID: 37523493 DOI: 10.1002/ar.25290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
The extensive diversity observed in bat nasal chemosensory systems has been well-documented at the histological level. Understanding how this diversity evolved and developing hypotheses as to why particular patterns exist require a phylogenetic perspective, which was first outlined in the work of anatomist Kunwar Bhatnagar. With the onset of genetics and genomics, it might be assumed that the puzzling patterns observed in the morphological data have been clarified. However, there is still a widespread mismatch of genetic and morphological correlations among bat chemosensory systems. Novel genomic evidence has set up new avenues to explore that demand more evidence from anatomical structures. Here, we outline the progress that has been made in both morphological and molecular studies on the olfactory and vomeronasal systems in bats since the work of Bhatnagar. Genomic data of olfactory and vomeronasal receptors demonstrate the strong need for further morphological sampling, with a particular focus on receiving brain regions, glands, and ducts.
Collapse
Affiliation(s)
- Laurel R Yohe
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
- North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Nicholas T Krell
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
5
|
Peng ZL, Wu W, Tang CY, Ren JL, Jiang D, Li JT. Transcriptome Analysis Reveals Olfactory System Expression Characteristics of Aquatic Snakes. Front Genet 2022; 13:825974. [PMID: 35154285 PMCID: PMC8829814 DOI: 10.3389/fgene.2022.825974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Animal olfactory systems evolved with changes in habitat to detect odor cues from the environment. The aquatic environment, as a unique habitat, poses a formidable challenge for olfactory perception in animals, since the higher density and viscosity of water. The olfactory system in snakes is highly specialized, thus providing the opportunity to explore the adaptive evolution of such systems to unique habitats. To date, however, few studies have explored the changes in gene expression features in the olfactory systems of aquatic snakes. In this study, we carried out RNA sequencing of 26 olfactory tissue samples (vomeronasal organ and olfactory bulb) from two aquatic and two non-aquatic snake species to explore gene expression changes under the aquatic environment. Weighted gene co-expression network analysis showed significant differences in gene expression profiles between aquatic and non-aquatic habitats. The main olfactory systems of the aquatic and non-aquatic snakes were regulated by different genes. Among these genes, RELN may contribute to exploring gene expression changes under the aquatic environment by regulating the formation of inhibitory neurons in the granular cell layer and increasing the separation of neuronal patterns to correctly identify complex chemical information. The high expression of TRPC2 and V2R family genes in the accessory olfactory systems of aquatic snakes should enhance their ability to bind water-soluble odor molecules, and thus obtain more information in hydrophytic habitats. This work provides an important foundation for exploring the olfactory adaptation of snakes in special habitats.
Collapse
Affiliation(s)
- Zhong-Liang Peng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen-Yang Tang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jin-Long Ren
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dechun Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin Nay Pyi Taw, Myanmar
- *Correspondence: Jia-Tang Li,
| |
Collapse
|
6
|
Clive J, Wisden W, Savolainen V. The De-Scent of Sexuality: Should We Smell a Rat? ARCHIVES OF SEXUAL BEHAVIOR 2021; 50:2283-2288. [PMID: 31808032 PMCID: PMC8416816 DOI: 10.1007/s10508-019-01591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 05/17/2023]
Affiliation(s)
- Jackson Clive
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, SL5 7PY, UK
| | - William Wisden
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, UK
| | - Vincent Savolainen
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, SL5 7PY, UK.
| |
Collapse
|
7
|
Pfau D, Jordan CL, Breedlove SM. The De-Scent of Sexuality: Did Loss of a Pheromone Signaling Protein Permit the Evolution of Same-Sex Sexual Behavior in Primates? ARCHIVES OF SEXUAL BEHAVIOR 2021; 50:2267-2276. [PMID: 31016493 DOI: 10.1007/s10508-018-1377-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 05/15/2023]
Abstract
Primate same-sex sexual behavior (SSSB) is rarely observed in strepsirrhine species, and only somewhat more common in platyrrhines, but is observed in nearly all catarrhine species, including humans, suggesting the common catarrhine ancestor as the origin of routine SSSB. In mice, disruption of the transient receptor potential cation channel 2 (TRPC2) gene, which is crucial for transducing chemosensory signals from pheromones in the vomeronasal organ, greatly increased the likelihood of SSSB. We note that catarrhine primates share a common deleterious mutation in this gene, indicating that the protein was dysfunctional in the common catarrhine ancestral primate approximately 25 mya (million years ago). We hypothesize that the loss of this protein for processing pheromonal signals in males and females made SSSB more likely in a primate ancestral species by effectively lifting a pheromonally mediated barrier to SSSB and that this was an important precursor to the evolution of such behavior in humans. Additional comparisons between SSSB and the functional status of the TRPC2 gene or related proteins across primate species could lend support to or falsify this hypothesis. Our current research indicates that loss of TRPC2 function in developing mice leads to the loss or attenuation of sexually dimorphisms in the adult brain, which may help us to understand the biological underpinnings of SSSB. Our hypothesis offers an ultimate evolutionary explanation for SSSB in humans.
Collapse
Affiliation(s)
- Daniel Pfau
- Neuroscience Program, Michigan State University, Giltner Hall, 293 Farm Lane, Room 108, East Lansing, MI, 48824-1101, USA.
| | - Cynthia L Jordan
- Neuroscience Program, Michigan State University, Giltner Hall, 293 Farm Lane, Room 108, East Lansing, MI, 48824-1101, USA
| | - S Marc Breedlove
- Neuroscience Program, Michigan State University, Giltner Hall, 293 Farm Lane, Room 108, East Lansing, MI, 48824-1101, USA
| |
Collapse
|
8
|
Treaster S, Daane JM, Harris MP. Refining Convergent Rate Analysis with Topology in Mammalian Longevity and Marine Transitions. Mol Biol Evol 2021; 38:5190-5203. [PMID: 34324001 PMCID: PMC8557430 DOI: 10.1093/molbev/msab226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The quest to map the genetic foundations of phenotypes has been empowered by the modern diversity, quality, and availability of genomic resources. Despite these expanding resources, the abundance of variation within lineages makes it challenging to associate genetic change to specific phenotypes, without an a priori means of isolating the changes from background genomic variation. Evolution provides this means through convergence-i.e., the shared variation that may result from replicate evolutionary experiments across independent trait occurrences. To leverage these opportunities, we developed TRACCER: Topologically Ranked Analysis of Convergence via Comparative Evolutionary Rates. Compared to current methods, this software empowers rate convergence analysis by factoring in topological relationships, because genetic variation between phylogenetically proximate trait changes is more likely to be facilitating the trait. Comparisons are performed not with singular branches, but with the complete paths to the most recent common ancestor for each pair of lineages. This ensures that comparisons represent a single context diverging over the same timeframe while obviating the problematic requirement of assigning ancestral states. We applied TRACCER to two case studies: mammalian transitions to marine environments, an unambiguous collection of traits which have independently evolved three times; and the evolution of mammalian longevity, a less delineated trait but with more instances to compare. By factoring in topology, TRACCER identifies highly significant, convergent genetic signals, with important incongruities and statistical resolution when compared to existing approaches. These improvements in sensitivity and specificity of convergence analysis generates refined targets for downstream validation and identification of genotype-phenotype relationships.
Collapse
Affiliation(s)
- Stephen Treaster
- Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA, 02124, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02124, USA
| | - Jacob M Daane
- Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA, 02124, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02124, USA.,Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA, 01908, USA
| | - Matthew P Harris
- Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA, 02124, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02124, USA
| |
Collapse
|
9
|
Zhang Z, Nikaido M. Inactivation of ancV1R as a Predictive Signature for the Loss of Vomeronasal System in Mammals. Genome Biol Evol 2021; 12:766-778. [PMID: 32315408 PMCID: PMC7290294 DOI: 10.1093/gbe/evaa082] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 12/22/2022] Open
Abstract
The vomeronasal organ (VNO) plays a key role in sensing pheromonal cues, which elicits social and reproductive behaviors. Although the VNO is highly conserved across mammals, it has been lost in some species that have evolved alternate sensing systems during diversification. In this study, we investigate a newly identified VNO-specific gene, ancV1R, in the extant 261 species of mammals to examine the correlation between genotype (ancV1R) and phenotype (VNO). As a result, we found signatures for the relaxation of purifying selection (inactivating mutations and the elevation of dN/dS) on ancV1Rs in VNO-lacking mammals, such as catarrhine primates, cetaceans, the manatees, and several bat lineages, showing the distinct correlation between genotype and phenotype. Interestingly, we further revealed signatures for the relaxation of purifying selection on ancV1R in true seals, otters, the fossa, the owl monkey, and alcelaphine antelopes in which the existence of a functional VNO is still under debate. Our additional analyses on TRPC2, another predictive marker gene for the functional VNO, showed a relaxation of purifying selection, supporting the possibility of VNO loss in these species. The results of our present study invite more in-depth neuroanatomical investigation in mammals for which VNO function remains equivocal.
Collapse
Affiliation(s)
- Zicong Zhang
- Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| |
Collapse
|
10
|
Shen C, Tang D, Zhang Y, Wu L, Luo Y, Tang B, Wang Z. Identification of putative ingestion-related olfactory receptor genes in the Chinese mitten crab (Eriocheir japonica sinensis). Genes Genomics 2021; 43:479-490. [PMID: 33689153 DOI: 10.1007/s13258-021-01065-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/15/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Olfaction plays a central role in mating, spawning, obtaining food and escaping predators, which is essential for survival and reproduction of animals. The nature of the olfactory perception in crabs, which is a major group of crustaceans, has remained elusive. OBJECTIVE This project aims to explore the molecular mechanism of olfaction in crabs and further improve our understanding of olfactory perception in crustaceans. METHODS The olfactory receptors and ingestion-related gene expression in Eriocheir japonica sinensis were studied by transcriptomic techniques. The de novo assembly, annotation and functional evaluation were performed with bioinformatics tools. RESULTS A series of chemosensory receptors associated with olfaction were identified including 33 EsIRs, 24 EsIGluRs, 58 EsVIGluRs, 1 EsOR and 1 EsGC-D. We found IRs were key odorant receptors demonstrating a specific species evolutionary trend in crustaceans. Furthermore, we identified ORs in E. j. sinensis and Litopenaeus vannamei. The incomplete EsOR and LvOR1 structures implied that ORs exist in crustaceans, and may have been degenerated or even lost in the olfactory evolutionary process. In addition, comparative transcriptome analysises demonstrated two possible olfactory transduction pathways of E. j. sinensis: the cGMP-mediated olfactory pathway related to vegetable odor molecules and the cAMP-mediated olfactory pathway related to meat odor molecules. The above results were consistent with its omnivorous ingestion of E. j. sinensis. CONCLUSIONS Our study revealed the unique olfactory molecular mechanism of omnivorous crabs and provided valuable information for further functional research on the chemoreception mechanisms in crustaceans.
Collapse
Affiliation(s)
- Chenchen Shen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224001, Jiangsu, China
| | - Dan Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224001, Jiangsu, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, Jiangsu, China
| | - Yiping Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224001, Jiangsu, China
| | - Lv Wu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224001, Jiangsu, China
| | - Yaqi Luo
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224001, Jiangsu, China
| | - Boping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224001, Jiangsu, China
| | - Zhengfei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224001, Jiangsu, China.
| |
Collapse
|
11
|
Yohe LR, Davies KTJ, Rossiter SJ, Dávalos LM. Expressed Vomeronasal Type-1 Receptors (V1rs) in Bats Uncover Conserved Sequences Underlying Social Chemical Signaling. Genome Biol Evol 2019; 11:2741-2749. [PMID: 31424505 PMCID: PMC6777432 DOI: 10.1093/gbe/evz179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2019] [Indexed: 01/08/2023] Open
Abstract
In mammals, social and reproductive behaviors are mediated by chemical cues encoded by hyperdiverse families of receptors expressed in the vomeronasal organ. Between species, the number of intact receptors can vary by orders of magnitude. However, the evolutionary processes behind variation in receptor number, and its link to fitness-related behaviors are not well understood. From vomeronasal transcriptomes, we discovered the first evidence of intact vomeronasal type-1 receptor (V1r) genes in bats, and we tested whether putatively functional bat receptors were orthologous to those of related taxa, or whether bats have evolved novel receptors. Instead of lineage-specific duplications, we found that bat V1rs show high levels of orthology to those of their relatives, and receptors are under comparative levels of purifying selection as non-bats. Despite widespread vomeronasal organ loss in bats, V1r copies have been retained for >65 million years. The highly conserved nature of bat V1rs challenges our current understanding of mammalian V1r function and suggests roles other than conspecific recognition or mating initiation in social behavior.
Collapse
Affiliation(s)
- Laurel R Yohe
- Department of Ecology and Evolution, Stony Brook University, NY
- Department of Geology & Geophysics, Yale University, New Haven, CT
| | - Kalina T J Davies
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, NY
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY
| |
Collapse
|
12
|
Hecker N, Lächele U, Stuckas H, Giere P, Hiller M. Convergent vomeronasal system reduction in mammals coincides with convergent losses of calcium signalling and odorant-degrading genes. Mol Ecol 2019; 28:3656-3668. [PMID: 31332871 DOI: 10.1111/mec.15180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/16/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
The vomeronasal system (VNS) serves crucial functions for detecting olfactory clues often related to social and sexual behaviour. Intriguingly, two of the main components of the VNS, the vomeronasal organ (VNO) and the accessory olfactory bulb, are regressed in aquatic mammals, several bats and primates, likely due to adaptations to different ecological niches. To detect genomic changes that are associated with the convergent reduction of the VNS, we performed the first systematic screen for convergently inactivated protein-coding genes associated with convergent VNS reduction, considering 106 mammalian genomes. Extending previous studies, our results support that Trpc2, a cation channel that is important for calcium signalling in the VNO, is a predictive molecular marker for the presence of a VNS. Our screen also detected the convergent inactivation of the calcium-binding protein S100z, the aldehyde oxidase Aox2 that is involved in odorant degradation, and the uncharacterized Mslnl gene that is expressed in the VNO and olfactory epithelium. Furthermore, we found that Trpc2 and S100z or Aox2 are also inactivated in otters and Phocid seals for which no morphological data about the VNS are available yet. This predicts a VNS reduction in these semi-aquatic mammals. By examining the genomes of 115 species in total, our study provides a detailed picture of how the convergent reduction of the VNS coincides with gene inactivation in placental mammals. These inactivated genes provide experimental targets for studying the evolution and biological significance of the olfactory system under different environmental conditions.
Collapse
Affiliation(s)
- Nikolai Hecker
- Center for Systems Biology Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Ulla Lächele
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Heiko Stuckas
- Population Genetics, Senckenberg Natural History Collections Dresden, Dresden, Germany.,Leibniz Institution for Biodiversity and Earth System Research, Dresden, Germany
| | - Peter Giere
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Michael Hiller
- Center for Systems Biology Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| |
Collapse
|
13
|
Yohe LR, Hoffmann S, Curtis A. Vomeronasal and Olfactory Structures in Bats Revealed by DiceCT Clarify Genetic Evidence of Function. Front Neuroanat 2018; 12:32. [PMID: 29867373 PMCID: PMC5953337 DOI: 10.3389/fnana.2018.00032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/11/2018] [Indexed: 11/13/2022] Open
Abstract
The degree to which molecular and morphological loss of function occurs synchronously during the vestigialization of traits is not well understood. The mammalian vomeronasal system, a sense critical for mediating many social and reproductive behaviors, is highly conserved across mammals. New World Leaf-nosed bats (Phyllostomidae) are under strong selection to maintain a functional vomeronasal system such that most phyllostomids possess a distinct vomeronasal organ and an intact TRPC2, a gene encoding a protein primarily involved in vomeronasal sensory neuron signal transduction. Recent genetic evidence, however, shows that TRPC2 is a pseudogene in some Caribbean nectarivorous phyllostomids. The loss-of-function mutations suggest the sensory neural tissue of the vomeronasal organ is absent in these species despite strong selection on this gene in its mainland relatives, but the anatomy was unknown in most Caribbean nectarivorous phyllostomids until this study. We used diffusible iodine-based contrast-enhanced computed tomography (diceCT) to test whether the vomeronasal and main olfactory anatomy of several phyllostomid species matched genetic evidence of function, providing insight into whether loss of a structure is linked to pseudogenization of a molecular component of the system. The vomeronasal organ is indeed rudimentary or absent in species with a disrupted TRPC2 gene. Caribbean nectar-feeders also exhibit derived olfactory turbinal morphology and a large olfactory recess that differs from closely related bats that have an intact vomeronasal organ, which may hint that the main olfactory system may compensate for loss. We emphasize non-invasive diceCT is capable of detecting the vomeronasal organ, providing a feasible approach for quantifying mammalian chemosensory anatomy across species.
Collapse
Affiliation(s)
- Laurel R Yohe
- Department of Ecology & Evolution, Stony Brook University, Stony Brook, NY, United States
| | - Simone Hoffmann
- Department of Anatomy, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Abigail Curtis
- Department of Biology, University of Washington, Seattle, WA, United States
| |
Collapse
|
14
|
Yohe LR, Dávalos LM. Strength of selection on the Trpc2 gene predicts accessory olfactory bulb form in bat vomeronasal evolution. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Laurel R Yohe
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
15
|
Yohe LR, Abubakar R, Giordano C, Dumont E, Sears KE, Rossiter SJ, Dávalos LM. Trpc2 pseudogenization dynamics in bats reveal ancestral vomeronasal signaling, then pervasive loss. Evolution 2017; 71:923-935. [PMID: 28128447 DOI: 10.1111/evo.13187] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/30/2016] [Indexed: 01/08/2023]
Abstract
Comparative methods are often used to infer loss or gain of complex phenotypes, but few studies take advantage of genes tightly linked with complex traits to test for shifts in the strength of selection. In mammals, vomerolfaction detects chemical cues mediating many social and reproductive behaviors and is highly conserved, but all bats exhibit degraded vomeronasal structures with the exception of two families (Phyllostomidae and Miniopteridae). These families either regained vomerolfaction after ancestral loss, or there were many independent losses after diversification from an ancestor with functional vomerolfaction. In this study, we use the Transient receptor potential cation channel 2 (Trpc2) as a molecular marker for testing the evolutionary mechanisms of loss and gain of the mammalian vomeronasal system. We sequenced Trpc2 exon 2 in over 100 bat species across 17 of 20 chiropteran families. Most families showed independent pseudogenizing mutations in Trpc2, but the reading frame was highly conserved in phyllostomids and miniopterids. Phylogeny-based simulations suggest loss of function occurred after bat families diverged, and purifying selection in two families has persisted since bats shared a common ancestor. As most bats still display pheromone-mediated behavior, they might detect pheromones through the main olfactory system without using the Trpc2 signaling mechanism.
Collapse
Affiliation(s)
- Laurel R Yohe
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794
| | - Ramatu Abubakar
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794
| | - Christina Giordano
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794
| | - Elizabeth Dumont
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, 01003
| | - Karen E Sears
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, 61801.,School of Integrative Biology, Institute for Genome Biology, University of Illinois, Urbana, Illinois, 61801
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794.,Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, New York, 11794
| |
Collapse
|
16
|
Springer MS, Gatesy J. Inactivation of the olfactory marker protein (OMP) gene in river dolphins and other odontocete cetaceans. Mol Phylogenet Evol 2017; 109:375-387. [PMID: 28193458 DOI: 10.1016/j.ympev.2017.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/25/2017] [Accepted: 01/29/2017] [Indexed: 11/18/2022]
Abstract
Various toothed whales (Odontoceti) are unique among mammals in lacking olfactory bulbs as adults and are thought to be anosmic (lacking the olfactory sense). At the molecular level, toothed whales have high percentages of pseudogenic olfactory receptor genes, but species that have been investigated to date retain an intact copy of the olfactory marker protein gene (OMP), which is highly expressed in olfactory receptor neurons and may regulate the temporal resolution of olfactory responses. One hypothesis for the retention of intact OMP in diverse odontocete lineages is that this gene is pleiotropic with additional functions that are unrelated to olfaction. Recent expression studies provide some support for this hypothesis. Here, we report OMP sequences for representatives of all extant cetacean families and provide the first molecular evidence for inactivation of this gene in vertebrates. Specifically, OMP exhibits independent inactivating mutations in six different odontocete lineages: four river dolphin genera (Platanista, Lipotes, Pontoporia, Inia), sperm whale (Physeter), and harbor porpoise (Phocoena). These results suggest that the only essential role of OMP that is maintained by natural selection is in olfaction, although a non-olfactory role for OMP cannot be ruled out for lineages that retain an intact copy of this gene. Available genome sequences from cetaceans and close outgroups provide evidence of inactivating mutations in two additional genes (CNGA2, CNGA4), which imply further pseudogenization events in the olfactory cascade of odontocetes. Selection analyses demonstrate that evolutionary constraints on all three genes (OMP, CNGA2, CNGA4) have been greatly reduced in Odontoceti, but retain a signature of purifying selection on the stem Cetacea branch and in Mysticeti (baleen whales). This pattern is compatible with the 'echolocation-priority' hypothesis for the evolution of OMP, which posits that negative selection was maintained in the common ancestor of Cetacea and was not relaxed significantly until the evolution of echolocation in Odontoceti.
Collapse
Affiliation(s)
- Mark S Springer
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA.
| |
Collapse
|
17
|
Island HD, Wengeler J, Claussenius-Kalman H. The flehmen response and pseudosuckling in a captive, juvenile Southern sea otter (Enhydra lutris nereis). Zoo Biol 2017; 36:30-39. [PMID: 28111787 DOI: 10.1002/zoo.21346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/28/2016] [Accepted: 12/13/2016] [Indexed: 11/08/2022]
Abstract
A juvenile, female sea otter (Enhydra lutris nereis) was observed in 43 instances of the flehmen response over 19 days from May through July of 2015 at the Oregon Zoo. In all flehmen grimace observations, the juvenile sea otter engaged in nibbling, nosing, or licking the peri-mammary or anogenital areas of a non-lactating, geriatric female sea otter. The flehmen behavior observed was consisted with the sequences of behavior documented in other mammals, lifting the head, elevating the nose to the air, retracting the upper lip slightly, and manipulating her mystacial vibrissae back and forth while rapidly inspiring air through her mouth in quick succession, tongue extruded. The occurrence of this behavior was not specific to visitor density, visitor impact rating, day of the month, time of day, or exhibit zone. However, it did occur more frequently in one area of the enclosure. Among the three sea otters (two females, one male) currently housed at the Oregon Zoo, the juvenile female's flehmen response only occurred following interactions with the older female and was always preceded by the pseudosuckling or anogenital nosing, licking or nibbling behavior. Zoo Biol. 36:30-39, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Heide D Island
- Department of Psychology, Pacific University, Forest Grove, Oregon
| | - Julia Wengeler
- Department of Psychology, Pacific University, Forest Grove, Oregon
| | | |
Collapse
|
18
|
Goh CJ, Choi D, Park DB, Kim H, Hahn Y. MOXD2, a Gene Possibly Associated with Olfaction, Is Frequently Inactivated in Birds. PLoS One 2016; 11:e0152431. [PMID: 27074048 PMCID: PMC4830563 DOI: 10.1371/journal.pone.0152431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/14/2016] [Indexed: 11/29/2022] Open
Abstract
Vertebrate MOXD2 encodes a monooxygenase DBH-like 2 protein that could be involved in neurotransmitter metabolism, potentially during olfactory transduction. Loss of MOXD2 in apes and whales has been proposed to be associated with evolution of olfaction in these clades. We analyzed 57 bird genomes to identify MOXD2 sequences and found frequent loss of MOXD2 in 38 birds. Among the 57 birds, 19 species appeared to have an intact MOXD2 that encoded a full-length protein; 32 birds had a gene with open reading frame-disrupting point mutations and/or exon deletions; and the remaining 6 species did not show any MOXD2 sequence, suggesting a whole-gene deletion. Notably, among 10 passerine birds examined, 9 species shared a common genomic deletion that spanned several exons, implying the gene loss occurred in a common ancestor of these birds. However, 2 closely related penguin species, each of which had an inactive MOXD2, did not share any mutation, suggesting an independent loss after their divergence. Distribution of the 38 birds without an intact MOXD2 in the bird phylogenetic tree clearly indicates that MOXD2 loss is widespread and independent in bird lineages. We propose that widespread MOXD2 loss in some bird lineages may be implicated in the evolution of olfactory perception in these birds.
Collapse
Affiliation(s)
- Chul Jun Goh
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, Republic of Korea
| | - Dongjin Choi
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, Republic of Korea
| | - Dong-Bin Park
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, Republic of Korea
| | - Hyein Kim
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, Republic of Korea
| | - Yoonsoo Hahn
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
19
|
Abstract
Humans have acquired many distinct evolutionary traits after the human-chimpanzee divergence. These phenotypes have resulted from genetic changes that occurred in the human genome and were retained by natural selection. Comparative primate genome analyses reveal that loss-of-function mutations are common in the human genome. Some of these gene inactivation events were revealed to be associated with the emergence of advantageous phenotypes and were therefore positively selected and fixed in modern humans (the "less-ismore" hypothesis). Representative cases of human gene inactivation and their functional implications are presented in this review. Functional studies of additional inactive genes will provide insight into the molecular mechanisms underlying acquisition of various human-specific traits.
Collapse
Affiliation(s)
| | | | | | - Yoonsoo Hahn
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Korea
| |
Collapse
|
20
|
Berta A, Ekdale EG, Zellmer NT, Deméré TA, Kienle SS, Smallcomb M. Eye, nose, hair, and throat: external anatomy of the head of a neonate gray whale (Cetacea, Mysticeti, Eschrichtiidae). Anat Rec (Hoboken) 2015; 298:648-59. [PMID: 25737431 DOI: 10.1002/ar.23112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/28/2014] [Accepted: 09/02/2014] [Indexed: 11/11/2022]
Abstract
Information is scarce on gray whale (Eschrichtius robustus) anatomy and that of mysticetes in general. Dissection of the head of a neonatal gray whale revealed novel anatomical details of the eye, blowhole, incisive papilla with associated nasopalatine ducts, sensory hairs, and throat grooves. Compared to a similar sized right whale calf, the gray whale eyeball is nearly twice as long. The nasal cartilages of the gray whale, located between the blowholes, differ from the bowhead in having accessory cartilages. A small, fleshy incisive papilla bordered by two blind nasopalatine pits near the palate's rostral tip, previously undescribed in gray whales, may be associated with the vomeronasal organ, although histological evidence is needed for definitive identification. Less well known among mysticetes are the numerous elongated, stiff sensory hairs (vibrissae) observed on the gray whale rostrum from the ventral tip to the blowhole and on the mandible. These hairs are concentrated on the chin, and those on the lower jaw are arranged in a V-shaped pattern. We confirm the presence of two primary, anteriorly converging throat grooves, confined to the throat region similar to those of ziphiid and physeteroid odontocetes. A third, shorter groove occurs lateral to the left primary groove. The throat grooves in the gray whale have been implicated in gular expansion during suction feeding.
Collapse
Affiliation(s)
- Annalisa Berta
- Department of Biology, San Diego State University, San Diego, California
| | | | | | | | | | | |
Collapse
|
21
|
Kim DS, Wang Y, Oh HJ, Lee K, Hahn Y. Frequent loss and alteration of the MOXD2 gene in catarrhines and whales: a possible connection with the evolution of olfaction. PLoS One 2014; 9:e104085. [PMID: 25102179 PMCID: PMC4125168 DOI: 10.1371/journal.pone.0104085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 07/08/2014] [Indexed: 11/18/2022] Open
Abstract
The MOXD2 gene encodes a membrane-bound monooxygenase similar to dopamine-β-hydroxylase, and has been proposed to be associated with olfaction. In this study, we analyzed MOXD2 genes from 64 mammalian species, and identified loss-of-function mutations in apes (humans, Sumatran and Bornean orangutans, and five gibbon species from the four major gibbon genera), toothed whales (killer whales, bottlenose dolphins, finless porpoises, baijis, and sperm whales), and baleen whales (minke whales and fin whales). We also identified a shared 13-nt deletion in the last exon of Old World cercopithecine monkeys that results in conversion of a membrane-bound protein to a soluble form. We hypothesize that the frequent inactivation and alteration of MOXD2 genes in catarrhines and whales may be associated with the evolution of olfaction in these clades.
Collapse
Affiliation(s)
- Dong Seon Kim
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, Korea
| | - Yao Wang
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, Korea
| | - Hye Ji Oh
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, Korea
| | - Kangseok Lee
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, Korea
| | - Yoonsoo Hahn
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, Korea
- * E-mail:
| |
Collapse
|
22
|
McGowen MR, Gatesy J, Wildman DE. Molecular evolution tracks macroevolutionary transitions in Cetacea. Trends Ecol Evol 2014; 29:336-46. [DOI: 10.1016/j.tree.2014.04.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
|
23
|
Abstract
Trp2 was the second ortholog of the Drosophila trp gene to be identified. Whereas full-length TRPC2 transcripts have been cloned in a number of species including mice, rats, and New World monkeys, TRPC2 is a pseudogene in humans, apes, Old World monkeys, and in a number of other vertebrates. TRPC2 is highly expressed in the rodent VNO. It is also detectable at the protein level in murine erythroblasts, sperm, and brain and has been detected in other tissues by RT-PCR. Its activation by DAG and by erythropoietin has been described in greatest detail, and inhibition by Ca(2+)-calmodulin has been reported. The major demonstrated functions of TRPC2 are regulation of pheromone-evoked signaling in the rodent VNO, regulation of erythropoietin-stimulated calcium influx in murine erythroid cells, and ZP3-evoked calcium influx into sperm. Depletion of TRPC2 in knockout mice resulted in changes in behavior including altered sex discrimination and lack of male-male aggression. The red cells of TRPC2 knockout mice showed increased mean corpuscular volume, mean corpuscular hemoglobin, and hematocrit and reduced mean corpuscular hemoglobin concentration. TRPC2-depleted red cells were resistant to oxidative stress-induced hemolysis.
Collapse
|
24
|
Ibarra-Soria X, Levitin MO, Logan DW. The genomic basis of vomeronasal-mediated behaviour. Mamm Genome 2013; 25:75-86. [PMID: 23884334 PMCID: PMC3916702 DOI: 10.1007/s00335-013-9463-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/19/2013] [Indexed: 11/04/2022]
Abstract
The vomeronasal organ (VNO) is a chemosensory subsystem found in the nose of most mammals. It is principally tasked with detecting pheromones and other chemical signals that initiate innate behavioural responses. The VNO expresses subfamilies of vomeronasal receptors (VRs) in a cell-specific manner: each sensory neuron expresses just one or two receptors and silences all the other receptor genes. VR genes vary greatly in number within mammalian genomes, from no functional genes in some primates to many hundreds in rodents. They bind semiochemicals, some of which are also encoded in gene families that are coexpanded in species with correspondingly large VR repertoires. Protein and peptide cues that activate the VNO tend to be expressed in exocrine tissues in sexually dimorphic, and sometimes individually variable, patterns. Few chemical ligand–VR–behaviour relationships have been fully elucidated to date, largely due to technical difficulties in working with large, homologous gene families with high sequence identity. However, analysis of mouse lines with mutations in genes involved in ligand–VR signal transduction has revealed that the VNO mediates a range of social behaviours, including male–male and maternal aggression, sexual attraction, lordosis, and selective pregnancy termination, as well as interspecific responses such as avoidance and defensive behaviours. The unusual logic of VR expression now offers an opportunity to map the specific neural circuits that drive these behaviours.
Collapse
Affiliation(s)
- Ximena Ibarra-Soria
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | | | | |
Collapse
|
25
|
Sun YB, Zhou WP, Liu HQ, Irwin DM, Shen YY, Zhang YP. Genome-wide scans for candidate genes involved in the aquatic adaptation of dolphins. Genome Biol Evol 2013; 5:130-9. [PMID: 23246795 PMCID: PMC3595024 DOI: 10.1093/gbe/evs123] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Since their divergence from the terrestrial artiodactyls, cetaceans have fully adapted to an aquatic lifestyle, which represents one of the most dramatic transformations in mammalian evolutionary history. Numerous morphological and physiological characters of cetaceans have been acquired in response to this drastic habitat transition, such as thickened blubber, echolocation, and ability to hold their breath for a long period of time. However, knowledge about the molecular basis underlying these adaptations is still limited. The sequence of the genome of Tursiops truncates provides an opportunity for a comparative genomic analyses to examine the molecular adaptation of this species. Here, we constructed 11,838 high-quality orthologous gene alignments culled from the dolphin and four other terrestrial mammalian genomes and screened for positive selection occurring in the dolphin lineage. In total, 368 (3.1%) of the genes were identified as having undergone positive selection by the branch-site model. Functional characterization of these genes showed that they are significantly enriched in the categories of lipid transport and localization, ATPase activity, sense perception of sound, and muscle contraction, areas that are potentially related to cetacean adaptations. In contrast, we did not find a similar pattern in the cow, a closely related species. We resequenced some of the positively selected sites (PSSs), within the positively selected genes, and showed that most of our identified PSSs (50/52) could be replicated. The results from this study should have important implications for our understanding of cetacean evolution and their adaptations to the aquatic environment.
Collapse
Affiliation(s)
- Yan-Bo Sun
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | | | | | | | | | |
Collapse
|
26
|
Natural selection and adaptive evolution of leptin. CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-012-5635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Meredith RW, Gatesy J, Emerling CA, York VM, Springer MS. Rod monochromacy and the coevolution of cetacean retinal opsins. PLoS Genet 2013; 9:e1003432. [PMID: 23637615 PMCID: PMC3630094 DOI: 10.1371/journal.pgen.1003432] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/15/2013] [Indexed: 01/02/2023] Open
Abstract
Cetaceans have a long history of commitment to a fully aquatic lifestyle that extends back to the Eocene. Extant species have evolved a spectacular array of adaptations in conjunction with their deployment into a diverse array of aquatic habitats. Sensory systems are among those that have experienced radical transformations in the evolutionary history of this clade. In the case of vision, previous studies have demonstrated important changes in the genes encoding rod opsin (RH1), short-wavelength sensitive opsin 1 (SWS1), and long-wavelength sensitive opsin (LWS) in selected cetaceans, but have not examined the full complement of opsin genes across the complete range of cetacean families. Here, we report protein-coding sequences for RH1 and both color opsin genes (SWS1, LWS) from representatives of all extant cetacean families. We examine competing hypotheses pertaining to the timing of blue shifts in RH1 relative to SWS1 inactivation in the early history of Cetacea, and we test the hypothesis that some cetaceans are rod monochomats. Molecular evolutionary analyses contradict the "coastal" hypothesis, wherein SWS1 was pseudogenized in the common ancestor of Cetacea, and instead suggest that RH1 was blue-shifted in the common ancestor of Cetacea before SWS1 was independently knocked out in baleen whales (Mysticeti) and in toothed whales (Odontoceti). Further, molecular evidence implies that LWS was inactivated convergently on at least five occasions in Cetacea: (1) Balaenidae (bowhead and right whales), (2) Balaenopteroidea (rorquals plus gray whale), (3) Mesoplodon bidens (Sowerby's beaked whale), (4) Physeter macrocephalus (giant sperm whale), and (5) Kogia breviceps (pygmy sperm whale). All of these cetaceans are known to dive to depths of at least 100 m where the underwater light field is dim and dominated by blue light. The knockout of both SWS1 and LWS in multiple cetacean lineages renders these taxa rod monochromats, a condition previously unknown among mammalian species.
Collapse
Affiliation(s)
- Robert W. Meredith
- Department of Biology, University of California Riverside, Riverside, California, United States of America
- Department of Biology and Molecular Biology, Montclair State University, Montclair, New Jersey, United States of America
| | - John Gatesy
- Department of Biology, University of California Riverside, Riverside, California, United States of America
| | - Christopher A. Emerling
- Department of Biology, University of California Riverside, Riverside, California, United States of America
| | - Vincent M. York
- Department of Biology, University of California Riverside, Riverside, California, United States of America
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Mark S. Springer
- Department of Biology, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
28
|
Chen Z, Wang Z, Xu S, Zhou K, Yang G. Characterization of hairless (Hr) and FGF5 genes provides insights into the molecular basis of hair loss in cetaceans. BMC Evol Biol 2013; 13:34. [PMID: 23394579 PMCID: PMC3608953 DOI: 10.1186/1471-2148-13-34] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 01/30/2013] [Indexed: 11/29/2022] Open
Abstract
Background Hair is one of the main distinguishing characteristics of mammals and it has many important biological functions. Cetaceans originated from terrestrial mammals and they have evolved a series of adaptations to aquatic environments, which are of evolutionary significance. However, the molecular mechanisms underlying their aquatic adaptations have not been well explored. This study provided insights into the evolution of hair loss during the transition from land to water by investigating and comparing two essential regulators of hair follicle development and hair follicle cycling, i.e., the Hairless (Hr) and FGF5 genes, in representative cetaceans and their terrestrial relatives. Results The full open reading frame sequences of the Hr and FGF5 genes were characterized in seven cetaceans. The sequence characteristics and evolutionary analyses suggested the functional loss of the Hr gene in cetaceans, which supports the loss of hair during their full adaptation to aquatic habitats. By contrast, positive selection for the FGF5 gene was found in cetaceans where a series of positively selected amino acid residues were identified. Conclusions This is the first study to investigate the molecular basis of the hair loss in cetaceans. Our investigation of Hr and FGF5, two indispensable regulators of the hair cycle, provide some new insights into the molecular basis of hair loss in cetaceans. The results suggest that positive selection for the FGF5 gene might have promoted the termination of hair growth and early entry into the catagen stage of hair follicle cycling. Consequently, the hair follicle cycle was disrupted and the hair was lost completely due to the loss of the Hr gene function in cetaceans. This suggests that cetaceans have evolved an effective and complex mechanism for hair loss.
Collapse
Affiliation(s)
- Zhuo Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | | | | | | | | |
Collapse
|
29
|
Marriott S, Cowan E, Cohen J, Hallock RM. Somatosensation, Echolocation, and Underwater Sniffing: Adaptations Allow Mammals Without Traditional Olfactory Capabilities to Forage for Food Underwater. Zoolog Sci 2013; 30:69-75. [DOI: 10.2108/zsj.30.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Gatesy J, Geisler JH, Chang J, Buell C, Berta A, Meredith RW, Springer MS, McGowen MR. A phylogenetic blueprint for a modern whale. Mol Phylogenet Evol 2012; 66:479-506. [PMID: 23103570 DOI: 10.1016/j.ympev.2012.10.012] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/10/2012] [Accepted: 10/12/2012] [Indexed: 11/16/2022]
Abstract
The emergence of Cetacea in the Paleogene represents one of the most profound macroevolutionary transitions within Mammalia. The move from a terrestrial habitat to a committed aquatic lifestyle engendered wholesale changes in anatomy, physiology, and behavior. The results of this remarkable transformation are extant whales that include the largest, biggest brained, fastest swimming, loudest, deepest diving mammals, some of which can detect prey with a sophisticated echolocation system (Odontoceti - toothed whales), and others that batch feed using racks of baleen (Mysticeti - baleen whales). A broad-scale reconstruction of the evolutionary remodeling that culminated in extant cetaceans has not yet been based on integration of genomic and paleontological information. Here, we first place Cetacea relative to extant mammalian diversity, and assess the distribution of support among molecular datasets for relationships within Artiodactyla (even-toed ungulates, including Cetacea). We then merge trees derived from three large concatenations of molecular and fossil data to yield a composite hypothesis that encompasses many critical events in the evolutionary history of Cetacea. By combining diverse evidence, we infer a phylogenetic blueprint that outlines the stepwise evolutionary development of modern whales. This hypothesis represents a starting point for more detailed, comprehensive phylogenetic reconstructions in the future, and also highlights the synergistic interaction between modern (genomic) and traditional (morphological+paleontological) approaches that ultimately must be exploited to provide a rich understanding of evolutionary history across the entire tree of Life.
Collapse
Affiliation(s)
- John Gatesy
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kishida T, Thewissen J. Evolutionary changes of the importance of olfaction in cetaceans based on the olfactory marker protein gene. Gene 2012; 492:349-53. [DOI: 10.1016/j.gene.2011.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/02/2011] [Accepted: 11/07/2011] [Indexed: 11/29/2022]
|
32
|
Evidence for positive selection on the leptin gene in Cetacea and Pinnipedia. PLoS One 2011; 6:e26579. [PMID: 22046310 PMCID: PMC3203152 DOI: 10.1371/journal.pone.0026579] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 09/29/2011] [Indexed: 01/21/2023] Open
Abstract
The leptin gene has received intensive attention and scientific investigation for its importance in energy homeostasis and reproductive regulation in mammals. Furthermore, study of the leptin gene is of crucial importance for public health, particularly for its role in obesity, as well as for other numerous physiological roles that it plays in mammals. In the present work, we report the identification of novel leptin genes in 4 species of Cetacea, and a comparison with 55 publicly available leptin sequences from mammalian genome assemblies and previous studies. Our study provides evidence for positive selection in the suborder Odontoceti (toothed whales) of the Cetacea and the family Phocidae (earless seals) of the Pinnipedia. We also detected positive selection in several leptin gene residues in these two lineages. To test whether leptin and its receptor evolved in a coordinated manner, we analyzed 24 leptin receptor gene (LPR) sequences from available mammalian genome assemblies and other published data. Unlike the case of leptin, our analyses did not find evidence of positive selection for LPR across the Cetacea and Pinnipedia lineages. In line with this, positively selected sites identified in the leptin genes of these two lineages were located outside of leptin receptor binding sites, which at least partially explains why co-evolution of leptin and its receptor was not observed in the present study. Our study provides interesting insights into current understanding of the evolution of mammalian leptin genes in response to selective pressures from life in an aquatic environment, and leads to a hypothesis that new tissue specificity or novel physiologic functions of leptin genes may have arisen in both odontocetes and phocids. Additional data from other species encompassing varying life histories and functional tests of the adaptive role of the amino acid changes identified in this study will help determine the factors that promote the adaptive evolution of the leptin genes in marine mammals.
Collapse
|
33
|
Frankenberg S, Schneider NY, Fletcher TP, Shaw G, Renfree MB. Identification of two distinct genes at the vertebrate TRPC2 locus and their characterisation in a marsupial and a monotreme. BMC Mol Biol 2011; 12:39. [PMID: 21854574 PMCID: PMC3170594 DOI: 10.1186/1471-2199-12-39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 08/19/2011] [Indexed: 11/18/2022] Open
Abstract
Background The vomeronasal organ (VNO) detects pheromones via two large families of vomeronasal receptors: vomeronasal receptor 1 (V1R) and vomeronasal receptor 2 (V2R). Both VRs have a common receptor activation cascade involving transient receptor potential channel, subfamily C, member 2 (TRPC2). Results We characterised the TRPC2 locus in a marsupial, the tammar wallaby (Macropus eugenii), and identified two independently regulated genes not previously recognised as distinct. 3'-located exons comprise bona fide TRPC2 whilst 5'-located exons, previously identified as part of TRPC2, comprise a distinct gene, which we term XNDR (XRCC1 N-terminal domain-related). The two genes show contrasting expression patterns in the tammar: TRPC2 is specifically expressed in adult and developing VNO, whereas XNDR is widely expressed in many tissues suggesting a non-VNO-specific role. Strong expression of TRPC2 was detected only after about day 30 post-partum, suggesting that the VNO may not be functional during early pouch life of the tammar. Similarly restricted expression of TRPC2 and widespread expression of XNDR was also detected in the platypus. Bioinformatic analysis of the genomes of a wide range of species suggests that the identity of XNDR and TRPC2 as distinct genes is conserved among vertebrates. Finally, we analysed the promoter of mammalian TRPC2 and identified a conserved binding site for NHLH1, a transcription factor previously implicated in VNO receptor neuron development. Conclusions Two functionally distinct vertebrate genes-XNDR and TRPC2 - occupy a genomic locus that was previously defined as a single gene in the mouse. The former is widely expressed with a putative role in DNA repair, while the latter shows VNO-specific expression under the probable regulation of NHLH1.
Collapse
Affiliation(s)
- Stephen Frankenberg
- Department of Zoology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | | | | | | | | |
Collapse
|
34
|
Salazar I, Sánchez-Quinteiro P. A detailed morphological study of the vomeronasal organ and the accessory olfactory bulb of cats. Microsc Res Tech 2011; 74:1109-20. [DOI: 10.1002/jemt.21002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/31/2011] [Indexed: 11/07/2022]
|
35
|
Zhao H, Xu D, Zhang S, Zhang J. Widespread losses of vomeronasal signal transduction in bats. Mol Biol Evol 2010; 28:7-12. [PMID: 20693241 DOI: 10.1093/molbev/msq207] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The vertebrate vomeronasal system (VNS) detects intraspecific pheromones and environmental odorants. We sequenced segments of the gene encoding Trpc2, an ion channel crucial for vomeronasal signal transduction, in 11 species that represent all main basal lineages of Yinpterochiroptera, one of the two suborders of the order Chiroptera (bats). Our sequences show that Trpc2 is a pseudogene in each of the 11 bats, suggesting that all yinpterochiropterans lack vomeronasal sensitivity. The Trpc2 sequences from four species of Yangochiroptera, the other suborder of bats, suggest vomeronasal insensitivity in some but not all yangochiropterans. These results, together with the available morphological data from the bat VNS, strongly suggest multiple and widespread losses of vomeronasal signal transduction and sensitivity in bats. Future scrutiny of the specific functions of the VNS in the few bats that still retain the VNS may help explain why it is dispensable in most bats.
Collapse
|