1
|
DeTar RA, Chustecki JM, Martinez-Hottovy A, Ceriotti LF, Broz AK, Lou X, Sanchez-Puerta MV, Elowsky C, Christensen AC, Sloan DB. Photosynthetic demands on translational machinery drive retention of redundant tRNA metabolism in plant organelles. Proc Natl Acad Sci U S A 2024; 121:e2421485121. [PMID: 39693336 DOI: 10.1073/pnas.2421485121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
Eukaryotic nuclear genomes often encode distinct sets of translation machinery for function in the cytosol vs. organelles (mitochondria and plastids). This raises questions about why multiple translation systems are maintained even though they are capable of comparable functions and whether they evolve differently depending on the compartment where they operate. These questions are particularly interesting in plants because translation machinery, including aminoacyl-transfer RNA (tRNA) synthetases (aaRS), is often dual-targeted to the plastids and mitochondria. These organelles have different functions, with much higher rates of translation in plastids to supply the abundant, rapid-turnover proteins required for photosynthesis. Previous studies have indicated that plant organellar aaRS evolve more slowly compared to mitochondrial aaRS in eukaryotes that lack plastids. Thus, we investigated the evolution of nuclear-encoded organellar and cytosolic aaRS and tRNA maturation enzymes across a broad sampling of angiosperms, including nonphotosynthetic (heterotrophic) plant species with reduced plastid gene expression, to test the hypothesis that translational demands associated with photosynthesis constrain the evolution of enzymes involved in organellar tRNA metabolism. Remarkably, heterotrophic plants exhibited wholesale loss of many organelle-targeted aaRS and other enzymes, even though translation still occurs in their mitochondria and plastids. These losses were often accompanied by apparent retargeting of cytosolic enzymes and tRNAs to the organelles, sometimes preserving aaRS-tRNA charging relationships but other times creating surprising mismatches between cytosolic aaRS and mitochondrial tRNA substrates. Our findings indicate that the presence of a photosynthetic plastid drives the retention of specialized systems for organellar tRNA metabolism.
Collapse
Affiliation(s)
- Rachael A DeTar
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Joanna M Chustecki
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Ana Martinez-Hottovy
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Luis Federico Ceriotti
- Instituto de Biología Agrícola de Mendoza, Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Agrarias, Chacras de Coria, Mendoza M5528AHB, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Ciudad de Mendoza, Mendoza M5502JMA, Argentina
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Xiaorui Lou
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - M Virginia Sanchez-Puerta
- Instituto de Biología Agrícola de Mendoza, Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Agrarias, Chacras de Coria, Mendoza M5528AHB, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Ciudad de Mendoza, Mendoza M5502JMA, Argentina
| | - Christian Elowsky
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Alan C Christensen
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
2
|
Ozerova I, Fallmann J, Mörl M, Bernt M, Prohaska SJ, Stadler PF. Aberrant Mitochondrial tRNA Genes Appear Frequently in Animal Evolution. Genome Biol Evol 2024; 16:evae232. [PMID: 39437314 PMCID: PMC11571959 DOI: 10.1093/gbe/evae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
Mitochondrial tRNAs have acquired a diverse portfolio of aberrant structures throughout metazoan evolution. With the availability of more than 12,500 mitogenome sequences, it is essential to compile a comprehensive overview of the pattern changes with regard to mitochondrial tRNA repertoire and structural variations. This, of course, requires reanalysis of the sequence data of more than 250,000 mitochondrial tRNAs with a uniform workflow. Here, we report our results on the complete reannotation of all mitogenomes available in the RefSeq database by September 2022 using mitos2. Based on the individual cases of mitochondrial tRNA variants reported throughout the literature, our data pinpoint the respective hotspots of change, i.e. Acanthocephala (Lophotrochozoa), Nematoda, Acariformes, and Araneae (Arthropoda). Less dramatic deviations of mitochondrial tRNAs from the norm are observed throughout many other clades. Loss of arms in animal mitochondrial tRNA clearly is a phenomenon that occurred independently many times, not limited to a small number of specific clades. The summary data here provide a starting point for systematic investigations into the detailed evolutionary processes of structural reduction and loss of mitochondrial tRNAs as well as a resource for further improvements of annotation workflows for mitochondrial tRNA annotation.
Collapse
Affiliation(s)
- Iuliia Ozerova
- Bioinformatics Group, Department of Computer Science & Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, Leipzig D-04107, Germany
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science & Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, Leipzig D-04107, Germany
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, Leipzig D-04103, Germany
| | - Matthias Bernt
- Department of Computational Biology and Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrße 15, Leipzig D-04318, Germany
| | - Sonja J Prohaska
- Computational EvoDevo Group, Department of Computer Science & Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, Leipzig D-04107, Germany
- Complexity Science Hub Vienna, Josefstädter Str. 39, Vienna 1080, Austria
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science & Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, Leipzig D-04107, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, Leipzig D-04103, Germany
- Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, Vienna A-1090, Austria
- Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, USA
| |
Collapse
|
3
|
Lu Z, Lin Q, Zhang H. Characterization of the Complete Mitochondrial Genome of Agelas nakamurai from the South China Sea. Int J Mol Sci 2023; 25:357. [PMID: 38203529 PMCID: PMC10779334 DOI: 10.3390/ijms25010357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
The Agelas genus sponges are widely distributed and provide shelter for organisms that inhabit reefs. However, there is a lack of research on the genetic diversity of the Agelas sponges. Additionally, only one Agelas mitochondrial genome has been documented, leaving the characteristics of the Agelas genus's mitogenome in need of further clarification. To address this research gap, we utilized Illumina HiSeq4000 sequencing and de novo assembly to ascertain the complete mitochondrial genome of Agelas sp. specimens, sourced from the South China Sea. Our analysis of the cox1 barcoding similarity and phylogenetic relationship reveals that taxonomically, the Agelas sp. corresponds to Agelas nakamurai. The mitogenome of Agelas nakamurai is 20,885 bp in length, encoding 14 protein-coding genes, 24 transfer RNA genes, and 2 ribosomal RNA genes. Through a comparison of the mitochondrial genes, we discovered that both Agelas nakamurai and Agelas schmidti have an identical gene arrangement. Furthermore, we observed a deletion in the trnD gene and duplication and remodeling of the trnL gene in the Agelas nakamurai's mitogenome. Our evolutionary analysis also identified lineage-specific positive selection sites in the nad3 and nad5 genes of the Agelas sponges' mitogenome. These findings shed light on the gene rearrangement events and positive selection sites in the mitogenome of Agelas nakamurai, providing valuable molecular insights into the evolutionary processes of this genus.
Collapse
Affiliation(s)
- Zijian Lu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China;
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China;
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Huixian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China;
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| |
Collapse
|
4
|
Sabharwal A, Campbell JM, Schwab TL, WareJoncas Z, Wishman MD, Ata H, Liu W, Ichino N, Hunter DE, Bergren JD, Urban MD, Urban RM, Holmberg SR, Kar B, Cook A, Ding Y, Xu X, Clark KJ, Ekker SC. A Primer Genetic Toolkit for Exploring Mitochondrial Biology and Disease Using Zebrafish. Genes (Basel) 2022; 13:1317. [PMID: 35893052 PMCID: PMC9331066 DOI: 10.3390/genes13081317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are a dynamic eukaryotic innovation that play diverse roles in biology and disease. The mitochondrial genome is remarkably conserved in all vertebrates, encoding the same 37-gene set and overall genomic structure, ranging from 16,596 base pairs (bp) in the teleost zebrafish (Danio rerio) to 16,569 bp in humans. Mitochondrial disorders are amongst the most prevalent inherited diseases, affecting roughly 1 in every 5000 individuals. Currently, few effective treatments exist for those with mitochondrial ailments, representing a major unmet patient need. Mitochondrial dysfunction is also a common component of a wide variety of other human illnesses, ranging from neurodegenerative disorders such as Huntington's disease and Parkinson's disease to autoimmune illnesses such as multiple sclerosis and rheumatoid arthritis. The electron transport chain (ETC) component of mitochondria is critical for mitochondrial biology and defects can lead to many mitochondrial disease symptoms. Here, we present a publicly available collection of genetic mutants created in highly conserved, nuclear-encoded mitochondrial genes in Danio rerio. The zebrafish system represents a potentially powerful new opportunity for the study of mitochondrial biology and disease due to the large number of orthologous genes shared with humans and the many advanced features of this model system, from genetics to imaging. This collection includes 15 mutant lines in 13 different genes created through locus-specific gene editing to induce frameshift or splice acceptor mutations, leading to predicted protein truncation during translation. Additionally, included are 11 lines created by the random insertion of the gene-breaking transposon (GBT) protein trap cassette. All these targeted mutant alleles truncate conserved domains of genes critical to the proper function of the ETC or genes that have been implicated in human mitochondrial disease. This collection is designed to accelerate the use of zebrafish to study many different aspects of mitochondrial function to widen our understanding of their role in biology and human disease.
Collapse
Affiliation(s)
- Ankit Sabharwal
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Jarryd M. Campbell
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Tanya L. Schwab
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Zachary WareJoncas
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Mark D. Wishman
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Hirotaka Ata
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Wiebin Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
- Division of Cardiovascular Diseases, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Noriko Ichino
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Danielle E. Hunter
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Jake D. Bergren
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Mark D. Urban
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Rhianna M. Urban
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Shannon R. Holmberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Bibekananda Kar
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Alex Cook
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
- Division of Cardiovascular Diseases, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
- Division of Cardiovascular Diseases, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Karl J. Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| |
Collapse
|
5
|
van Esveld SL, Rodenburg RJ, Al‐Murshedi F, Al‐Ajmi E, Al‐Zuhaibi S, Huynen MA, Spelbrink JN. Mitochondrial RNA processing defect caused by a SUPV3L1 mutation in two siblings with a novel neurodegenerative syndrome. J Inherit Metab Dis 2022; 45:292-307. [PMID: 35023579 PMCID: PMC9303385 DOI: 10.1002/jimd.12476] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 11/06/2022]
Abstract
SUPV3L1 encodes a helicase that is mainly localized in the mitochondria. It has been shown in vitro to possess both double-stranded RNA and DNA unwinding activity that is ATP-dependent. Here we report the first two patients for this gene who presented with a homozygous preliminary stop codon resulting in a C-terminal truncation of the SUPV3L1 protein. They presented with a characteristic phenotype of neurodegenerative nature with progressive spastic paraparesis, growth restriction, hypopigmentation, and predisposition to autoimmune disease. Ophthalmological examination showed severe photophobia with corneal erosions, optic atrophy, and pigmentary retinopathy, while neuroimaging showed atrophy of the optic chiasm and the pons with calcification of putamina, with intermittent and mild elevation of lactate. We show that the amino acids that are eliminated by the preliminary stop codon are highly conserved and are predicted to form an amphipathic helix. To investigate if the mutation causes mitochondrial dysfunction, we examined fibroblasts of the proband. We observed very low expression of the truncated protein, a reduction in the mature ND6 mRNA species as well as the accumulation of double-stranded RNA. Lentiviral complementation with the full-length SUPV3L1 cDNA partly restored the observed RNA phenotypes, supporting that the SUPV3L1 mutation in these patients is pathogenic and the cause of the disease.
Collapse
Affiliation(s)
- Selma L. van Esveld
- Radboud Center for Mitochondrial Medicine & Center for Molecular and Biomolecular InformaticsRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Richard J. Rodenburg
- Radboud Center for Mitochondrial Medicine, Department of Paediatrics, RadboudumcNijmegenThe Netherlands
| | - Fathiya Al‐Murshedi
- Genetic and Developmental Medicine ClinicSultan Qaboos University HospitalMuscatOman
| | - Eiman Al‐Ajmi
- Department of Radiology and Molecular ImagingSultan Qaboos University HospitalMuscatOman
| | - Sana Al‐Zuhaibi
- Department of OphthalmologySultan Qaboos University HospitalMuscatOman
| | - Martijn A. Huynen
- Radboud Center for Mitochondrial Medicine & Center for Molecular and Biomolecular InformaticsRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Johannes N. Spelbrink
- Radboud Center for Mitochondrial Medicine, Department of Paediatrics, RadboudumcNijmegenThe Netherlands
| |
Collapse
|
6
|
Warren JM, Salinas-Giegé T, Triant DA, Taylor DR, Drouard L, Sloan DB. Rapid shifts in mitochondrial tRNA import in a plant lineage with extensive mitochondrial tRNA gene loss. Mol Biol Evol 2021; 38:5735-5751. [PMID: 34436590 PMCID: PMC8662596 DOI: 10.1093/molbev/msab255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In most eukaryotes, transfer RNAs (tRNAs) are one of the very few classes of genes remaining in the mitochondrial genome, but some mitochondria have lost these vestiges of their prokaryotic ancestry. Sequencing of mitogenomes from the flowering plant genus Silene previously revealed a large range in tRNA gene content, suggesting rapid and ongoing gene loss/replacement. Here, we use this system to test longstanding hypotheses about how mitochondrial tRNA genes are replaced by importing nuclear-encoded tRNAs. We traced the evolutionary history of these gene loss events by sequencing mitochondrial genomes from key outgroups (Agrostemma githago and Silene [=Lychnis] chalcedonica). We then performed the first global sequencing of purified plant mitochondrial tRNA populations to characterize the expression of mitochondrial-encoded tRNAs and the identity of imported nuclear-encoded tRNAs. We also confirmed the utility of high-throughput sequencing methods for the detection of tRNA import by sequencing mitochondrial tRNA populations in a species (Solanum tuberosum) with known tRNA trafficking patterns. Mitochondrial tRNA sequencing in Silene revealed substantial shifts in the abundance of some nuclear-encoded tRNAs in conjunction with their recent history of mt-tRNA gene loss and surprising cases where tRNAs with anticodons still encoded in the mitochondrial genome also appeared to be imported. These data suggest that nuclear-encoded counterparts are likely replacing mitochondrial tRNAs even in systems with recent mitochondrial tRNA gene loss, and the redundant import of a nuclear-encoded tRNA may provide a mechanism for functional replacement between translation systems separated by billions of years of evolutionary divergence.
Collapse
Affiliation(s)
- Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | - Thalia Salinas-Giegé
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg, F-67084, France
| | - Deborah A Triant
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Douglas R Taylor
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA
| | - Laurence Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg, F-67084, France
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| |
Collapse
|
7
|
|
8
|
Warren JM, Sloan DB. Interchangeable parts: The evolutionarily dynamic tRNA population in plant mitochondria. Mitochondrion 2020; 52:144-156. [PMID: 32184120 DOI: 10.1016/j.mito.2020.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 01/31/2023]
Abstract
Transfer RNAs (tRNAs) remain one of the very few classes of genes still encoded in the mitochondrial genome. These key components of the protein translation system must interact with a large enzymatic network of nuclear-encoded gene products to maintain mitochondrial function. Plants have an evolutionarily dynamic mitochondrial tRNA population, including ongoing tRNA gene loss and replacement by both horizontal gene transfer from diverse sources and import of nuclear-expressed tRNAs from the cytosol. Thus, plant mitochondria represent an excellent model for understanding how anciently divergent genes can act as "interchangeable parts" during the evolution of complex molecular systems. In particular, understanding the integration of the mitochondrial translation system with elements of the corresponding machinery used in cytosolic protein synthesis is a key area for eukaryotic cellular evolution. Here, we review the increasingly detailed phylogenetic data about the evolutionary history of mitochondrial tRNA gene loss, transfer, and functional replacement that has created extreme variation in mitochondrial tRNA populations across plant species. We describe emerging tRNA-seq methods with promise for refining our understanding of the expression and subcellular localization of tRNAs. Finally, we summarize current evidence and identify open questions related to coevolutionary changes in nuclear-encoded enzymes that have accompanied turnover in mitochondrial tRNA populations.
Collapse
Affiliation(s)
- Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
9
|
van Esveld SL, Huynen MA. Does mitochondrial DNA evolution in metazoa drive the origin of new mitochondrial proteins? IUBMB Life 2018; 70:1240-1250. [PMID: 30281911 DOI: 10.1002/iub.1940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/14/2018] [Accepted: 08/21/2018] [Indexed: 01/10/2023]
Abstract
Most eukaryotic cells contain mitochondria with a genome that evolved from their α-proteobacterial ancestor. In the course of eukaryotic evolution, the mitochondrial genome underwent a dramatic reduction in size, caused by the loss and translocation of genes. This required adjustments in mitochondrial gene expression mechanisms and resulted in a complex collaborative system of mitochondrially encoded transfer RNAs and ribosomal RNAs with nuclear encoded proteins to express the mitochondrial encoded oxidative phosphorylation (OXPHOS) proteins. In this review, we examine mitochondrial gene expression from an evolutionary point of view: to what extent can we correlate changes in the mitochondrial genome in the evolutionary lineage leading to human with the origin of new nuclear encoded proteins. We dated the evolutionary origin of mitochondrial proteins that interact with mitochondrial DNA or its RNA and/or protein products in a systematic manner and compared them with documented changes in the mitochondrial DNA. We find anecdotal but accumulating evidence that metazoan RNA-interacting proteins arose in conjunction with changes of the mitochondrial DNA. We find no substantial evidence for such compensatory evolution in new OXPHOS proteins, which appear to be constrained by the ability to form supercomplexes. © 2018 IUBMB Life, 70(12):1240-1250, 2018.
Collapse
Affiliation(s)
- S L van Esveld
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands.,Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - M A Huynen
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Arafat H, Alamaru A, Gissi C, Huchon D. Extensive mitochondrial gene rearrangements in Ctenophora: insights from benthic Platyctenida. BMC Evol Biol 2018; 18:65. [PMID: 29703131 PMCID: PMC5924465 DOI: 10.1186/s12862-018-1186-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 04/19/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Complete mitochondrial (mt) genomes have been sequenced for thousands of animals and represent a molecule of choice for many evolutionary studies. Nevertheless, some animal groups have remained under-sampled. Ctenophora (comb jellies) is one such example, with only two complete mt sequences determined hitherto for this phylum, which encompasses ca. 150-200 described species. This lack of data derives from the extremely fast mt evolutionary rate in this lineage, complicating primer design and DNA amplification. Indeed, in the two ctenophore mt genomes sequenced to date, i.e. those of Mnemiopsis leidyi (order Lobata) and Pleurobrachia bachei (order Cydippida), both rRNA and protein coding genes exhibit an extraordinary size reduction and have highly derived sequences. Additionally, all tRNAs, and the atp6 and atp8 genes are absent. In order to determine whether these characteristics are shared by other ctenophores, we obtained the complete mt genomes of three benthic ctenophores belonging to the so far unsampled order of Platyctenida: Coeloplana loyai, Coeloplana yulianicorum and Vallicula multiformis. RESULTS The mt genomes of benthic ctenophores reveal the same peculiarities found in Mnemiopsis and Pleurobrachia, demonstrating that the fast evolutionary rate is a general trait of the ctenophore mt genomes. Our results also indicate that this high evolutionary rate not only affects the nucleotide substitution but also gene rearrangements. Indeed, gene order was highly rearranged among representatives of the different taxonomic orders in which it was close to random, but also quite variable within Platyctenida, in which the genera Coeloplana and Vallicula share only four conserved synteny blocks. However, the two congeneric Coeloplana species display exactly the same gene order. Because of the extreme evolutionary rate, our phylogenetic analyses were unable to resolve the phylogenetic position of ctenophores within metazoans or the relationships among the different Ctenophora orders. Comparative sequence-analyses allowed us to correct the annotation of the Pleurobrachia mt genome, confirming the absence of tRNAs, the presence of both rRNA genes, and the existence of a reassignment of codon TGA from tryptophan to serine for this species. CONCLUSIONS Since Platyctenida is an early diverging lineage among Ctenophora, our findings suggest that the mt traits described above are ancestral characteristics of this phylum.
Collapse
Affiliation(s)
- Hanan Arafat
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel
| | - Ada Alamaru
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel
| | - Carmela Gissi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy.,IBIOM, Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, CNR (Italy), Bari, Italy
| | - Dorothée Huchon
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel. .,The Steinhardt Museum of Natural History and National Research Center, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
11
|
Abstract
BACKGROUND Mitogenome diversity is staggering among early branching animals with respect to size, gene density, content and order, and number of tRNA genes, especially in cnidarians. This last point is of special interest as tRNA cleavage drives the maturation of mitochondrial mRNAs and is a primary mechanism for mt-RNA processing in animals. Mitochondrial RNA processing in non-bilaterian metazoans, some of which possess a single tRNA gene in their mitogenomes, is essentially unstudied despite its importance in understanding the evolution of mitochondrial transcription in animals. RESULTS We characterized the mature mitochondrial mRNA transcripts in a species of the octocoral genus Sinularia (Alcyoniidae: Octocorallia), and defined precise boundaries of transcription units using different molecular methods. Most mt-mRNAs were polycistronic units containing two or three genes and 5' and/or 3' untranslated regions of varied length. The octocoral specific, mtDNA-encoded mismatch repair gene, the mtMutS, was found to undergo alternative polyadenylation, and exhibited differential expression of alternate transcripts suggesting a unique regulatory mechanism for this gene. In addition, a long noncoding RNA complementary to the ATP6 gene (lncATP6) potentially involved in antisense regulation was detected. CONCLUSIONS Mt-mRNA processing in octocorals possessing a single mt-tRNA is complex. Considering the variety of mitogenome arrangements known in cnidarians, and in general among non-bilaterian metazoans, our findings provide a first glimpse into the complex mtDNA transcription, mt-mRNA processing, and regulation among early branching animals and represent a first step towards understanding its functional and evolutionary implications.
Collapse
|
12
|
Lavrov DV, Pett W. Animal Mitochondrial DNA as We Do Not Know It: mt-Genome Organization and Evolution in Nonbilaterian Lineages. Genome Biol Evol 2016; 8:2896-2913. [PMID: 27557826 PMCID: PMC5633667 DOI: 10.1093/gbe/evw195] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2016] [Indexed: 12/11/2022] Open
Abstract
Animal mitochondrial DNA (mtDNA) is commonly described as a small, circular molecule that is conserved in size, gene content, and organization. Data collected in the last decade have challenged this view by revealing considerable diversity in animal mitochondrial genome organization. Much of this diversity has been found in nonbilaterian animals (phyla Cnidaria, Ctenophora, Placozoa, and Porifera), which, from a phylogenetic perspective, form the main branches of the animal tree along with Bilateria. Within these groups, mt-genomes are characterized by varying numbers of both linear and circular chromosomes, extra genes (e.g. atp9, polB, tatC), large variation in the number of encoded mitochondrial transfer RNAs (tRNAs) (0-25), at least seven different genetic codes, presence/absence of introns, tRNA and mRNA editing, fragmented ribosomal RNA genes, translational frameshifting, highly variable substitution rates, and a large range of genome sizes. This newly discovered diversity allows a better understanding of the evolutionary plasticity and conservation of animal mtDNA and provides insights into the molecular and evolutionary mechanisms shaping mitochondrial genomes.
Collapse
Affiliation(s)
- Dennis V Lavrov
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| | - Walker Pett
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
13
|
Kayal E, Bentlage B, Collins AG. Insights into the transcriptional and translational mechanisms of linear organellar chromosomes in the box jellyfish Alatina alata (Cnidaria: Medusozoa: Cubozoa). RNA Biol 2016; 13:799-809. [PMID: 27267414 DOI: 10.1080/15476286.2016.1194161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In most animals, the mitochondrial genome is characterized by its small size, organization into a single circular molecule, and a relative conservation of the number of encoded genes. In box jellyfish (Cubozoa, Cnidaria), the mitochondrial genome is organized into 8 linear mito-chromosomes harboring between one and 4 genes each, including 2 extra protein-coding genes: mt-polB and orf314. Such an organization challenges the traditional view of mitochondrial DNA (mtDNA) expression in animals. In this study, we investigate the pattern of mitochondrial gene expression in the box jellyfish Alatina alata, as well as several key nuclear-encoded molecular pathways involved in the processing of mitochondrial gene transcription. RESULTS Read coverage of DNA-seq data is relatively uniform for all 8 mito-chromosomes, suggesting that each mito-chromosome is present in equimolar proportion in the mitochondrion. Comparison of DNA and RNA-seq based assemblies indicates that mito-chromosomes are transcribed into individual transcripts in which the beginning and ending are highly conserved. Expression levels for mt-polB and orf314 are similar to those of other mitochondrial-encoded genes, which provides further evidence for them having functional roles in the mitochondrion. Survey of the transcriptome suggests recognition of the mitochondrial tRNA-Met by the cytoplasmic aminoacyl-tRNA synthetase counterpart and C-to-U editing of the cytoplasmic tRNA-Trp after import into the mitochondrion. Moreover, several mitochondrial ribosomal proteins appear to be lost. CONCLUSIONS This study represents the first survey of mitochondrial gene expression of the linear multi-chromosomal mtDNA in box jellyfish (Cubozoa). Future exploration of small RNAs and the proteome of the mitochondrion will test the hypotheses presented herein.
Collapse
Affiliation(s)
- Ehsan Kayal
- a Department of Invertebrate Zoology , National Museum of Natural History, Smithsonian Institution , Washington DC , USA
| | - Bastian Bentlage
- a Department of Invertebrate Zoology , National Museum of Natural History, Smithsonian Institution , Washington DC , USA
| | - Allen G Collins
- a Department of Invertebrate Zoology , National Museum of Natural History, Smithsonian Institution , Washington DC , USA.,b National Systematics Laboratory of NOAA's Fisheries Service, National Museum of Natural History , Washington , DC , USA
| |
Collapse
|
14
|
Igloi GL, Leisinger AK. Identity elements for the aminoacylation of metazoan mitochondrial tRNA(Arg) have been widely conserved throughout evolution and ensure the fidelity of the AGR codon reassignment. RNA Biol 2015; 11:1313-23. [PMID: 25603118 PMCID: PMC4615739 DOI: 10.1080/15476286.2014.996094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Eumetazoan mitochondrial tRNAs possess structures (identity elements) that require the specific recognition by their cognate nuclear-encoded aminoacyl-tRNA synthetases. The AGA (arginine) codon of the standard genetic code has been reassigned to serine/glycine/termination in eumetazoan organelles and is translated in some organisms by a mitochondrially encoded tRNA(Ser)UCU. One mechanism to prevent mistranslation of the AGA codon as arginine would require a set of tRNA identity elements distinct from those possessed by the cytoplasmic tRNAArg in which the major identity elements permit the arginylation of all 5 encoded isoacceptors. We have performed comparative in vitro aminoacylation using an insect mitochondrial arginyl-tRNA synthetase and tRNAArgUCG structural variants. The established identity elements are sufficient to maintain the fidelity of tRNASerUCU reassignment. tRNAs having a UCU anticodon cannot be arginylated but can be converted to arginine acceptance by identity element transplantation. We have examined the evolutionary distribution and functionality of these tRNA elements within metazoan taxa. We conclude that the identity elements that have evolved for the recognition of mitochondrial tRNAArgUCG by the nuclear encoded mitochondrial arginyl-tRNA synthetases of eumetazoans have been extensively, but not universally conserved, throughout this clade. They ensure that the AGR codon reassignment in eumetazoan mitochondria is not compromised by misaminoacylation. In contrast, in other metazoans, such as Porifera, whose mitochondrial translation is dictated by the universal genetic code, recognition of the 2 encoded tRNAArgUCG/UCU isoacceptors is achieved through structural features that resemble those employed by the yeast cytoplasmic system.
Collapse
Affiliation(s)
- Gabor L Igloi
- a Institute of Biology III ; University of Freiburg ; Freiburg , Germany
| | | |
Collapse
|
15
|
Pett W, Lavrov DV. Cytonuclear Interactions in the Evolution of Animal Mitochondrial tRNA Metabolism. Genome Biol Evol 2015; 7:2089-101. [PMID: 26116918 PMCID: PMC4558845 DOI: 10.1093/gbe/evv124] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The evolution of mitochondrial information processing pathways, including replication, transcription and translation, is characterized by the gradual replacement of mitochondrial-encoded proteins with nuclear-encoded counterparts of diverse evolutionary origins. Although the ancestral enzymes involved in mitochondrial transcription and replication have been replaced early in eukaryotic evolution, mitochondrial translation is still carried out by an apparatus largely inherited from the α-proteobacterial ancestor. However, variation in the complement of mitochondrial-encoded molecules involved in translation, including transfer RNAs (tRNAs), provides evidence for the ongoing evolution of mitochondrial protein synthesis. Here, we investigate the evolution of the mitochondrial translational machinery using recent genomic and transcriptomic data from animals that have experienced the loss of mt-tRNAs, including phyla Cnidaria and Ctenophora, as well as some representatives of all four classes of Porifera. We focus on four sets of mitochondrial enzymes that directly interact with tRNAs: Aminoacyl-tRNA synthetases, glutamyl-tRNA amidotransferase, tRNAIle lysidine synthetase, and RNase P. Our results support the observation that the fate of nuclear-encoded mitochondrial proteins is influenced by the evolution of molecules encoded in mitochondrial DNA, but in a more complex manner than appreciated previously. The data also suggest that relaxed selection on mitochondrial translation rather than coevolution between mitochondrial and nuclear subunits is responsible for elevated rates of evolution in mitochondrial translational proteins.
Collapse
Affiliation(s)
- Walker Pett
- Department of Ecology, Evolution and Organismal Biology, Iowa State University Present address: Laboratoire de Biométrie et Biologie Évolutive CNRS UMR 5558, Université Lyon 1, Villeurbanne, France
| | - Dennis V Lavrov
- Department of Ecology, Evolution and Organismal Biology, Iowa State University
| |
Collapse
|
16
|
Salinas-Giegé T, Giegé R, Giegé P. tRNA biology in mitochondria. Int J Mol Sci 2015; 16:4518-59. [PMID: 25734984 PMCID: PMC4394434 DOI: 10.3390/ijms16034518] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/23/2015] [Accepted: 01/29/2015] [Indexed: 01/23/2023] Open
Abstract
Mitochondria are the powerhouses of eukaryotic cells. They are considered as semi-autonomous because they have retained genomes inherited from their prokaryotic ancestor and host fully functional gene expression machineries. These organelles have attracted considerable attention because they combine bacterial-like traits with novel features that evolved in the host cell. Among them, mitochondria use many specific pathways to obtain complete and functional sets of tRNAs as required for translation. In some instances, tRNA genes have been partially or entirely transferred to the nucleus and mitochondria require precise import systems to attain their pool of tRNAs. Still, tRNA genes have also often been maintained in mitochondria. Their genetic arrangement is more diverse than previously envisaged. The expression and maturation of mitochondrial tRNAs often use specific enzymes that evolved during eukaryote history. For instance many mitochondria use a eukaryote-specific RNase P enzyme devoid of RNA. The structure itself of mitochondrial encoded tRNAs is also very diverse, as e.g., in Metazoan, where tRNAs often show non canonical or truncated structures. As a result, the translational machinery in mitochondria evolved adapted strategies to accommodate the peculiarities of these tRNAs, in particular simplified identity rules for their aminoacylation. Here, we review the specific features of tRNA biology in mitochondria from model species representing the major eukaryotic groups, with an emphasis on recent research on tRNA import, maturation and aminoacylation.
Collapse
Affiliation(s)
- Thalia Salinas-Giegé
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France.
| | - Richard Giegé
- Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France.
| | - Philippe Giegé
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France.
| |
Collapse
|
17
|
Idiosyncrasies in decoding mitochondrial genomes. Biochimie 2014; 100:95-106. [PMID: 24440477 DOI: 10.1016/j.biochi.2014.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 01/06/2014] [Indexed: 11/24/2022]
Abstract
Mitochondria originate from the α-proteobacterial domain of life. Since this unique event occurred, mitochondrial genomes of protozoans, fungi, plants and metazoans have highly derived and diverged away from the common ancestral DNA. These resulting genomes highly differ from one another, but all present-day mitochondrial DNAs have a very reduced coding capacity. Strikingly however, ATP production coupled to electron transport and translation of mitochondrial proteins are the two common functions retained in all mitochondrial DNAs. Paradoxically, most components essential for these two functions are now expressed from nuclear genes. Understanding how mitochondrial translation evolved in various eukaryotic models is essential to acquire new knowledge of mitochondrial genome expression. In this review, we provide a thorough analysis of the idiosyncrasies of mitochondrial translation as they occur between organisms. We address this by looking at mitochondrial codon usage and tRNA content. Then, we look at the aminoacyl-tRNA-forming enzymes in terms of peculiarities, dual origin, and alternate function(s). Finally we give examples of the atypical structural properties of mitochondrial tRNAs found in some organisms and the resulting adaptive tRNA-protein partnership.
Collapse
|
18
|
Brugler MR, Opresko DM, France SC. The evolutionary history of the order Antipatharia (Cnidaria: Anthozoa: Hexacorallia) as inferred from mitochondrial and nuclear DNA: implications for black coral taxonomy and systematics. Zool J Linn Soc 2013. [DOI: 10.1111/zoj.12060] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mercer R. Brugler
- Department of Biology; University of Louisiana at Lafayette; PO Box 42451 Lafayette LA USA
| | - Dennis M. Opresko
- Smithsonian Institution; National Museum of Natural History; Washington, DC USA
| | - Scott C. France
- Department of Biology; University of Louisiana at Lafayette; PO Box 42451 Lafayette LA USA
| |
Collapse
|
19
|
Beagley CT, Wolstenholme DR. Characterization and localization of mitochondrial DNA-encoded tRNAs and nuclear DNA-encoded tRNAs in the sea anemone Metridium senile. Curr Genet 2013; 59:139-52. [PMID: 23801360 DOI: 10.1007/s00294-013-0395-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/12/2013] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
Abstract
The mitochondrial (mt) genome of the sea anemone Metridium senile contains genes for only two transfer RNAs (tRNAs), tRNAf-Met and tRNATrp. Experiments were conducted to seek evidence for the occurrence of functional tRNAs corresponding to these genes and for the participation of nuclear DNA-encoded tRNAs in mt-protein synthesis. RNA sequences corresponding to the two mt-tRNA genes were located in mitochondria and it was shown that 3'-CC (and possibly A, but no other nucleotide) is added post-transcriptionally to the 3' end of at least 50 % of mt-tRNAf-Met molecules and to a small fraction of the mt-tRNATrp molecules. Using specific oligonucleotide primers based on expected nuclear DNA-encoded tRNAs in a series of RACE experiments, we located the nuclear genes for tRNAGln, tRNAIle, tRNAi-Met, tRNAVal and tRNAThr. Data from Northern blot analyses indicated that mtDNA-encoded tRNAf-Met is limited to mitochondria but that nuclear DNA-encoded tRNAVal and tRNAi-Met are present in the cytoplasm and in mitochondria. These data provide direct evidence that in M. senile, mature, functional tRNAs are transcribed from the mtDNA-encoded tRNAf-Met and tRNATrp genes, and are consistent with the interpretation that both nuclear DNA-encoded tRNAVal and tRNAi-Met are utilized in mitochondrial and cytosolic protein synthesis.
Collapse
Affiliation(s)
- C Timothy Beagley
- Department of Biology, University of Utah, Salt Lake City, UT 84121, USA.
| | | |
Collapse
|
20
|
Bernt M, Braband A, Schierwater B, Stadler PF. Genetic aspects of mitochondrial genome evolution. Mol Phylogenet Evol 2012; 69:328-38. [PMID: 23142697 DOI: 10.1016/j.ympev.2012.10.020] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 10/20/2012] [Accepted: 10/22/2012] [Indexed: 11/30/2022]
Abstract
Many years of extensive studies of metazoan mitochondrial genomes have established differences in gene arrangements and genetic codes as valuable phylogenetic markers. Understanding the underlying mechanisms of replication, transcription and the role of the control regions which cause e.g. different gene orders is important to assess the phylogenetic signal of such events. This review summarises and discusses, for the Metazoa, the general aspects of mitochondrial transcription and replication with respect to control regions as well as several proposed models of gene rearrangements. As whole genome sequencing projects accumulate, more and more observations about mitochondrial gene transfer to the nucleus are reported. Thus occurrence and phylogenetic aspects concerning nuclear mitochondrial-like sequences (NUMTS) is another aspect of this review.
Collapse
Affiliation(s)
- Matthias Bernt
- Parallel Computing and Complex Systems Group, Department of Computer Science, University of Leipzig, Augustusplatz 10, D-04109 Leipzig, Germany.
| | | | | | | |
Collapse
|
21
|
Abstract
The mitochondrial genome of metazoan animal typically encodes 22 tRNAs. Nematode mt-tRNAs normally lack the T-stem and instead feature a replacement loop. In the class Enoplea, putative mt-tRNAs that are even further reduced have been predicted to lack both the T- and the D-arm. Here we investigate these tRNA candidates in detail. Three lines of computational evidence support that they are indeed minimal functional mt-tRNAs: (1) the high level of conservation of both sequence and secondary structure, (2) the perfect preservation of the anticodons, and (3) the persistence of these sequence elements throughout several genome rearrangements that place them between different flanking genes.
Collapse
Affiliation(s)
- Frank Jühling
- Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Germany
| | | | | | | |
Collapse
|
22
|
Jühling F, Pütz J, Bernt M, Donath A, Middendorf M, Florentz C, Stadler PF. Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Res 2011; 40:2833-45. [PMID: 22139921 PMCID: PMC3326299 DOI: 10.1093/nar/gkr1131] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transfer RNAs (tRNAs) are present in all types of cells as well as in organelles. tRNAs of animal mitochondria show a low level of primary sequence conservation and exhibit 'bizarre' secondary structures, lacking complete domains of the common cloverleaf. Such sequences are hard to detect and hence frequently missed in computational analyses and mitochondrial genome annotation. Here, we introduce an automatic annotation procedure for mitochondrial tRNA genes in Metazoa based on sequence and structural information in manually curated covariance models. The method, applied to re-annotate 1876 available metazoan mitochondrial RefSeq genomes, allows to distinguish between remaining functional genes and degrading 'pseudogenes', even at early stages of divergence. The subsequent analysis of a comprehensive set of mitochondrial tRNA genes gives new insights into the evolution of structures of mitochondrial tRNA sequences as well as into the mechanisms of genome rearrangements. We find frequent losses of tRNA genes concentrated in basal Metazoa, frequent independent losses of individual parts of tRNA genes, particularly in Arthropoda, and wide-spread conserved overlaps of tRNAs in opposite reading direction. Direct evidence for several recent Tandem Duplication-Random Loss events is gained, demonstrating that this mechanism has an impact on the appearance of new mitochondrial gene orders.
Collapse
Affiliation(s)
- Frank Jühling
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The mitochondrial genomes of most eukaryotes lack a variable number of tRNA genes. This lack is compensated for by import of a small fraction of the corresponding cytosolic tRNAs. There are two broad mechanisms for the import of tRNAs into mitochondria. In the first one, the tRNA is coimported together with a mitochondrial precursor protein along the protein import pathway. It applies to the yeast tRNA(Lys) and has been elucidated in great detail. In the second more vaguely defined mechanism, which is mainly found in plants and protozoa, tRNAs are directly imported independent of cytosolic factors. However, results in plants indicate that direct import of tRNAs may nevertheless require some components of the protein import machinery. All imported tRNAs in all systems are of the eukaryotic type but need to be functionally integrated into the mitochondrial translation system of bacterial descent. For some tRNAs, this is not trivial and requires unique evolutionary adaptations.
Collapse
Affiliation(s)
- André Schneider
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland.
| |
Collapse
|
24
|
Pett W, Ryan JF, Pang K, Mullikin JC, Martindale MQ, Baxevanis AD, Lavrov DV. Extreme mitochondrial evolution in the ctenophore Mnemiopsis leidyi: Insight from mtDNA and the nuclear genome. MITOCHONDRIAL DNA 2011; 22:130-42. [PMID: 21985407 PMCID: PMC3313829 DOI: 10.3109/19401736.2011.624611] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent advances in sequencing technology have led to a rapid accumulation of mitochondrial DNA (mtDNA) sequences, which now represent the wide spectrum of animal diversity. However, one animal phylum--Ctenophora--has, to date, remained completely unsampled. Ctenophores, a small group of marine animals, are of interest due to their unusual biology, controversial phylogenetic position, and devastating impact as invasive species. Using data from the Mnemiopsis leidyi genome sequencing project, we Polymerase Chain Reaction (PCR) amplified and analyzed its complete mitochondrial (mt-) genome. At just over 10 kb, the mt-genome of M. leidyi is the smallest animal mtDNA ever reported and is among the most derived. It has lost at least 25 genes, including atp6 and all tRNA genes. We show that atp6 has been relocated to the nuclear genome and has acquired introns and a mitochondrial targeting presequence, while tRNA genes have been genuinely lost, along with nuclear-encoded mt-aminoacyl tRNA synthetases. The mt-genome of M. leidyi also displays extremely high rates of sequence evolution, which likely led to the degeneration of both protein and rRNA genes. In particular, encoded rRNA molecules possess little similarity with their homologs in other organisms and have highly reduced secondary structures. At the same time, nuclear encoded mt-ribosomal proteins have undergone expansions, likely to compensate for the reductions in mt-rRNA. The unusual features identified in M. leidyi mtDNA make this organism an interesting system for the study of various aspects of mitochondrial biology, particularly protein and tRNA import and mt-ribosome structures, and add to its value as an emerging model species. Furthermore, the fast-evolving M. leidyi mtDNA should be a convenient molecular marker for species- and population-level studies.
Collapse
Affiliation(s)
- Walker Pett
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50010, USA
| | - Joseph F. Ryan
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Pang
- Kewalo Marine Laboratory, Pacific Bioscience Research Center, University of Hawaii, Honolulu, HI 96813, USA
| | - James C. Mullikin
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Q. Martindale
- Kewalo Marine Laboratory, Pacific Bioscience Research Center, University of Hawaii, Honolulu, HI 96813, USA
| | - Andreas D. Baxevanis
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dennis V. Lavrov
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
25
|
Hecht J, Grewe F, Knoop V. Extreme RNA editing in coding islands and abundant microsatellites in repeat sequences of Selaginella moellendorffii mitochondria: the root of frequent plant mtDNA recombination in early tracheophytes. Genome Biol Evol 2011; 3:344-58. [PMID: 21436122 PMCID: PMC5654404 DOI: 10.1093/gbe/evr027] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Using an independent fosmid cloning approach and comprehensive transcriptome analysis to complement data from the Selaginella moellendorffii genome project, we determined the complete mitochondrial genome structure of this spikemoss. Numerous recombination events mediated mainly via long sequence repeats extending up to 7kbp result in a complex mtDNA network structure. Peculiar features associated with the repeat sequences are more than 80 different microsatellite sites (predominantly trinucleotide motifs). The S. moellendorffii mtDNA encodes a plant-typical core set of a twin-arginine translocase (tatC), 17 respiratory chain subunits, and 2 rRNAs but lacks atp4 and any tRNA genes. As a further novelty among plant chondromes, the nad4L gene is encoded within an intron of the nad1 gene. A total of 37 introns occupying the 20 mitochondrial genes (four of which are disrupted into trans-splicing arrangements including two novel instances of trans-splicing introns) make the S. moellendorffii chondrome the intron-richest and gene-poorest plant mtDNA known. Our parallel transcriptome analyses demonstrates functional splicing of all 37 introns and reveals a new record amount of plant organelle RNA editing with a total of 2,139 sites in mRNAs and 13 sites in the two rRNAs, all of which are exclusively of the C-to-U type.
Collapse
Affiliation(s)
- Julia Hecht
- Abteilung Molekulare Evolution, Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Felix Grewe
- Abteilung Molekulare Evolution, Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Volker Knoop
- Abteilung Molekulare Evolution, Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
- Corresponding author: E-mail:
| |
Collapse
|