1
|
Babosha V, Klimenko N, Revel-Muroz A, Tikhonova E, Georgiev P, Maksimenko O. N-terminus of Drosophila melanogaster MSL1 is critical for dosage compensation. eLife 2024; 13:RP93241. [PMID: 39699942 DOI: 10.7554/elife.93241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
The male-specific lethal complex (MSL), which consists of five proteins and two non-coding roX RNAs, is involved in the transcriptional enhancement of X-linked genes to compensate for the sex chromosome monosomy in Drosophila XY males compared with XX females. The MSL1 and MSL2 proteins form the heterotetrameric core of the MSL complex and are critical for the specific recruitment of the complex to the high-affinity 'entry' sites (HAS) on the X chromosome. In this study, we demonstrated that the N-terminal region of MSL1 is critical for stability and functions of MSL1. Amino acid deletions and substitutions in the N-terminal region of MSL1 strongly affect both the interaction with roX2 RNA and the MSL complex binding to HAS on the X chromosome. In particular, substitution of the conserved N-terminal amino-acids 3-7 in MSL1 (MSL1GS) affects male viability similar to the inactivation of genes encoding roX RNAs. In addition, MSL1GS binds to promoters such as MSL1WT but does not co-bind with MSL2 and MSL3 to X chromosomal HAS. However, overexpression of MSL2 partially restores the dosage compensation. Thus, the interaction of MSL1 with roX RNA is critical for the efficient assembly of the MSL complex on HAS of the male X chromosome.
Collapse
Affiliation(s)
- Valentin Babosha
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anastasia Revel-Muroz
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Evgeniya Tikhonova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
2
|
Delclos PJ, Adhikari K, Mai AB, Hassan O, Oderhowho AA, Sriskantharajah V, Trinh T, Meisel R. Trans regulation of an odorant binding protein by a proto-Y chromosome affects male courtship in house fly. eLife 2024; 13:e90349. [PMID: 39422654 PMCID: PMC11488852 DOI: 10.7554/elife.90349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
The male-limited inheritance of Y chromosomes favors alleles that increase male fitness, often at the expense of female fitness. Determining the mechanisms underlying these sexually antagonistic effects is challenging because it can require studying Y-linked alleles while they still segregate as polymorphisms. We used a Y chromosome polymorphism in the house fly, Musca domestica, to address this challenge. Two male determining Y chromosomes (YM and IIIM) segregate as stable polymorphisms in natural populations, and they differentially affect multiple traits, including male courtship performance. We identified differentially expressed genes encoding odorant binding proteins (in the Obp56h family) as candidate agents for the courtship differences. Through network analysis and allele-specific expression measurements, we identified multiple genes on the house fly IIIM chromosome that could serve as trans regulators of Obp56h gene expression. One of those genes is homologous to Drosophila melanogaster CG2120, which encodes a transcription factor that binds near Obp56h. Upregulation of CG2120 in D. melanogaster nervous tissues reduces copulation latency, consistent with this transcription factor acting as a negative regulator of Obp56h expression. The transcription factor gene, which we name speed date, demonstrates a molecular mechanism by which a Y-linked gene can evolve male-beneficial effects.
Collapse
Affiliation(s)
- Pablo J Delclos
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Kiran Adhikari
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Alexander B Mai
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Oluwatomi Hassan
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | | | | | - Tammie Trinh
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Richard Meisel
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| |
Collapse
|
3
|
Li X, Mank JE, Ban L. The grasshopper genome reveals long-term gene content conservation of the X Chromosome and temporal variation in X Chromosome evolution. Genome Res 2024; 34:997-1007. [PMID: 39103228 PMCID: PMC11368200 DOI: 10.1101/gr.278794.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/02/2024] [Indexed: 08/07/2024]
Abstract
We present the first chromosome-level genome assembly of the grasshopper, Locusta migratoria, one of the largest insect genomes. We use coverage differences between females (XX) and males (X0) to identify the X Chromosome gene content, and find that the X Chromosome shows both complete dosage compensation in somatic tissues and an underrepresentation of testis-expressed genes. X-linked gene content from L. migratoria is highly conserved across seven insect orders, namely Orthoptera, Odonata, Phasmatodea, Hemiptera, Neuroptera, Coleoptera, and Diptera, and the 800 Mb grasshopper X Chromosome is homologous to the fly ancestral X Chromosome despite 400 million years of divergence, suggesting either repeated origin of sex chromosomes with highly similar gene content, or long-term conservation of the X Chromosome. We use this broad conservation of the X Chromosome to test for temporal dynamics to Fast-X evolution, and find evidence of a recent burst evolution for new X-linked genes in contrast to slow evolution of X-conserved genes.
Collapse
Affiliation(s)
- Xinghua Li
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Liping Ban
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
4
|
Han MJ, Luo C, Hu H, Lin M, Lu K, Shen J, Ren J, Ye Y, Westhof E, Tong X, Dai F. Multiple independent origins of the female W chromosome in moths and butterflies. SCIENCE ADVANCES 2024; 10:eadm9851. [PMID: 38896616 PMCID: PMC11186504 DOI: 10.1126/sciadv.adm9851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Lepidoptera, the most diverse group of insects, exhibit female heterogamy (Z0 or ZW), which is different from most other insects (male heterogamy, XY). Previous studies suggest a single origin of the Z chromosome. However, the origin of the lepidopteran W chromosome remains poorly understood. Here, we assemble the genome from females down to the chromosome level of a model insect (Bombyx mori) and identify a W chromosome of approximately 10.1 megabase using a newly developed tool. In addition, we identify 3593 genes that were not previously annotated in the genomes of B. mori. Comparisons of 21 lepidopteran species (including 17 ZW and four Z0 systems) and three trichopteran species (Z0 system) reveal that the formation of Ditrysia W involves multiple mechanisms, including previously proposed canonical and noncanonical models, as well as a newly proposed mechanism called single-Z turnover. We conclude that there are multiple independent origins of the W chromosome in the Ditrysia (most moths and all butterflies) of Lepidoptera.
Collapse
Affiliation(s)
- Min-Jin Han
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Chaorui Luo
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Hai Hu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Meixing Lin
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Kunpeng Lu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Jianghong Shen
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Jianyu Ren
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Yanzhuo Ye
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Eric Westhof
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire, UPR9002 CNRS, Université de Strasbourg, Strasbourg 67084, France
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Lasne C, Elkrewi M, Toups MA, Layana L, Macon A, Vicoso B. The Scorpionfly (Panorpa cognata) Genome Highlights Conserved and Derived Features of the Peculiar Dipteran X Chromosome. Mol Biol Evol 2023; 40:msad245. [PMID: 37988296 PMCID: PMC10715201 DOI: 10.1093/molbev/msad245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/05/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Many insects carry an ancient X chromosome-the Drosophila Muller element F-that likely predates their origin. Interestingly, the X has undergone turnover in multiple fly species (Diptera) after being conserved for more than 450 My. The long evolutionary distance between Diptera and other sequenced insect clades makes it difficult to infer what could have contributed to this sudden increase in rate of turnover. Here, we produce the first genome and transcriptome of a long overlooked sister-order to Diptera: Mecoptera. We compare the scorpionfly Panorpa cognata X-chromosome gene content, expression, and structure to that of several dipteran species as well as more distantly related insect orders (Orthoptera and Blattodea). We find high conservation of gene content between the mecopteran X and the dipteran Muller F element, as well as several shared biological features, such as the presence of dosage compensation and a low amount of genetic diversity, consistent with a low recombination rate. However, the 2 homologous X chromosomes differ strikingly in their size and number of genes they carry. Our results therefore support a common ancestry of the mecopteran and ancestral dipteran X chromosomes, and suggest that Muller element F shrank in size and gene content after the split of Diptera and Mecoptera, which may have contributed to its turnover in dipteran insects.
Collapse
Affiliation(s)
- Clementine Lasne
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Marwan Elkrewi
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Melissa A Toups
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
| | - Lorena Layana
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Ariana Macon
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
6
|
Sigeman H, Sinclair B, Hansson B. Findzx: an automated pipeline for detecting and visualising sex chromosomes using whole-genome sequencing data. BMC Genomics 2022; 23:328. [PMID: 35477344 PMCID: PMC9044604 DOI: 10.1186/s12864-022-08432-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sex chromosomes have evolved numerous times, as revealed by recent genomic studies. However, large gaps in our knowledge of sex chromosome diversity across the tree of life remain. Filling these gaps, through the study of novel species, is crucial for improved understanding of why and how sex chromosomes evolve. Characterization of sex chromosomes in already well-studied organisms is also important to avoid misinterpretations of population genomic patterns caused by undetected sex chromosome variation. RESULTS Here we present findZX, an automated Snakemake-based computational pipeline for detecting and visualizing sex chromosomes through differences in genome coverage and heterozygosity between any number of males and females. A main feature of the pipeline is the option to perform a genome coordinate liftover to a reference genome of another species. This allows users to inspect sex-linked regions over larger contiguous chromosome regions, while also providing important between-species synteny information. To demonstrate its effectiveness, we applied findZX to publicly available genomic data from species belonging to widely different taxonomic groups (mammals, birds, reptiles, and fish), with sex chromosome systems of different ages, sizes, and levels of differentiation. We also demonstrate that the liftover method is robust over large phylogenetic distances (> 80 million years of evolution). CONCLUSIONS With findZX we provide an easy-to-use and highly effective tool for identification of sex chromosomes. The pipeline is compatible with both Linux and MacOS systems, and scalable to suit different computational platforms.
Collapse
Affiliation(s)
- Hanna Sigeman
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden.
| | - Bella Sinclair
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
| | - Bengt Hansson
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
| |
Collapse
|
7
|
Ranz JM, González PM, Su RN, Bedford SJ, Abreu-Goodger C, Markow T. Multiscale analysis of the randomization limits of the chromosomal gene organization between Lepidoptera and Diptera. Proc Biol Sci 2022; 289:20212183. [PMID: 35042416 PMCID: PMC8767184 DOI: 10.1098/rspb.2021.2183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/13/2021] [Indexed: 11/12/2022] Open
Abstract
How chromosome gene organization and gene content evolve among distantly related and structurally malleable genomes remains unresolved. This is particularly the case when considering different insect orders. We have compared the highly contiguous genome assemblies of the lepidopteran Danaus plexippus and the dipteran Drosophila melanogaster, which shared a common ancestor around 290 Ma. The gene content of 23 out of 30 D. plexippus chromosomes was significantly associated with one or two of the six chromosomal elements of the Drosophila genome, denoting common ancestry. Despite the phylogenetic distance, 9.6% of the 1-to-1 orthologues still reside within the same ancestral genome neighbourhood. Furthermore, the comparison D. plexippus-Bombyx mori indicated that the rates of chromosome repatterning are lower in Lepidoptera than in Diptera, although still within the same order of magnitude. Concordantly, 14 developmental gene clusters showed a higher tendency to retain full or partial clustering in D. plexippus, further supporting that the physical association between the SuperHox and NK clusters existed in the ancestral bilaterian. Our results illuminate the scope and limits of the evolution of the gene organization and content of the ancestral chromosomes to the Lepidoptera and Diptera while helping reconstruct portions of the genome in their most recent common ancestor.
Collapse
Affiliation(s)
- José M. Ranz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine CA 92647, USA
| | - Pablo M. González
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato GTO 36824, México
| | - Ryan N. Su
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine CA 92647, USA
| | - Sarah J. Bedford
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine CA 92647, USA
| | - Cei Abreu-Goodger
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato GTO 36824, México
| | - Therese Markow
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato GTO 36824, México
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Genome assembly, sex-biased gene expression and dosage compensation in the damselfly Ischnura elegans. Genomics 2021; 113:1828-1837. [PMID: 33831439 DOI: 10.1016/j.ygeno.2021.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/27/2021] [Accepted: 04/04/2021] [Indexed: 12/14/2022]
Abstract
The evolution of sex chromosomes, and patterns of sex-biased gene expression and dosage compensation, are poorly known among early winged insects such as odonates. We assembled and annotated the genome of Ischnura elegans (blue-tailed damselfly), which, like other odonates, has a male-hemigametic sex-determining system (X0 males, XX females). By identifying X-linked genes in I. elegans and their orthologs in other insect genomes, we found homologies between the X chromosome in odonates and chromosomes of other orders, including the X chromosome in Coleoptera. Next, we showed balanced expression of X-linked genes between sexes in adult I. elegans, i.e. evidence of dosage compensation. Finally, among the genes in the sex-determining pathway only fruitless was found to be X-linked, while only doublesex showed sex-biased expression. This study reveals partly conserved sex chromosome synteny and independent evolution of dosage compensation among insect orders separated by several hundred million years of evolutionary history.
Collapse
|
9
|
Chen XI, Mei Y, Chen M, Jing D, He Y, Liu F, He K, Li F. InSexBase: an annotated genomic resource of sex chromosomes and sex-biased genes in insects. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6122465. [PMID: 33507270 PMCID: PMC7904046 DOI: 10.1093/database/baab001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/09/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022]
Abstract
Sex determination and the regulation of sexual dimorphism are among the most fascinating topics in modern biology. As the most species-rich group of sexually reproducing organisms on Earth, insects have multiple sex determination systems. Though sex chromosomes and sex-biased genes are well-studied in dozens of insects, their gene sequences are scattered in various databases. Moreover, a shortage of annotation hinders the deep mining of these data. Here, we collected the chromosome-level sex chromosome data of 49 insect species, including 34 X chromosomes, 15 Z chromosomes, 5 W chromosomes and 2 Y chromosomes. We also obtained Y-linked contigs of four insects species—Anopheles gambiae, Drosophila innubila, Drosophila yakuba and Tribolium castaneum. The unannotated chromosome-level sex chromosomes were annotated using a standard pipeline, yielding a total of 123 030 protein-coding genes, 2 159 427 repeat sequences, 894 miRNAs, 1574 rRNAs, 5105 tRNAs, 395 snoRNAs (small nucleolar RNA), 54 snRNAs (small nuclear RNA) and 5959 other ncRNAs (non-coding RNA). In addition, 36 781 sex-biased genes were identified by analyzing 62 RNA-seq (RNA sequencing) datasets. Together with 5707 sex-biased genes from the Drosophila genus collected from the Sex-Associated Gene Database, we obtained a total of 42 488 sex-biased genes from 13 insect species. All these data were deposited into InSexBase, a new user-friendly database of insect sex chromosomes and sex-biased genes. Database URL:http://www.insect-genome.com/Sexdb/.
Collapse
Affiliation(s)
- X I Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Yang Mei
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Mengyao Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Dong Jing
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Yumin He
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Feiling Liu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Kang He
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Fei Li
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| |
Collapse
|
10
|
The evolution of sex chromosome dosage compensation in animals. J Genet Genomics 2020; 47:681-693. [PMID: 33579636 DOI: 10.1016/j.jgg.2020.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 02/02/2023]
Abstract
The evolution of heteromorphic sex chromosomes shall lead to gene expression dosage problems, as in at least one of the sexes, the sex-linked gene dose has been reduced by half. It has been proposed that the transcriptional output of the whole X or Z chromosome should be doubled for complete dosage compensation in heterogametic sex. However, owing to the variability of the existing methods to determine the transcriptional differences between sex chromosomes and autosomes (S:A ratios) in different studies, we collected more than 500 public RNA-Seq data set from multiple tissues and species in major clades and proposed a unified computational framework for unbiased and comparable measurement of the S:A ratios of multiple species. We also tested the evolution of dosage compensation more directly by assessing changes in the expression levels of the current sex-linked genes relative to those of the ancestral sex-linked genes. We found that in mammals and birds, the S:A ratio is approximately 0.5, whereas in insects, fishes, and flatworms, the S:A ratio is approximately 1.0. Further analysis showed that the fraction of dosage-sensitive housekeeping genes on the X/Z chromosome is significantly correlated with the S:A ratio. In addition, the degree of degeneration of the Y chromosome may be responsible for the change in the S:A ratio in mammals without a dosage compensation mechanism. Our observations offer unequivocal support for the sex chromosome insensitivity hypothesis in animals and suggest that dosage sensitivity states of sex chromosomes are a major factor underlying different evolutionary strategies of dosage compensation.
Collapse
|
11
|
Sylvester T, Hjelmen CE, Hanrahan SJ, Lenhart PA, Johnston JS, Blackmon H. Lineage-specific patterns of chromosome evolution are the rule not the exception in Polyneoptera insects. Proc Biol Sci 2020; 287:20201388. [PMID: 32993470 PMCID: PMC7542826 DOI: 10.1098/rspb.2020.1388] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/03/2020] [Indexed: 11/13/2022] Open
Abstract
The structure of a genome can be described at its simplest by the number of chromosomes and the sex chromosome system it contains. Despite over a century of study, the evolution of genome structure on this scale remains recalcitrant to broad generalizations that can be applied across clades. To address this issue, we have assembled a dataset of 823 karyotypes from the insect group Polyneoptera. This group contains orders with a range of variations in chromosome number, and offer the opportunity to explore the possible causes of these differences. We have analysed these data using both phylogenetic and taxonomic approaches. Our analysis allows us to assess the importance of rates of evolution, phylogenetic history, sex chromosome systems, parthenogenesis and genome size on variation in chromosome number within clades. We find that fusions play a key role in the origin of new sex chromosomes, and that orders exhibit striking differences in rates of fusions, fissions and polyploidy. Our results suggest that the difficulty in finding consistent rules that govern evolution at this scale may be due to the presence of many interacting forces that can lead to variation among groups.
Collapse
Affiliation(s)
- Terrence Sylvester
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Carl E. Hjelmen
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Shawn J. Hanrahan
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Paul A. Lenhart
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - J. Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Heath Blackmon
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
12
|
Waterhouse RM, Aganezov S, Anselmetti Y, Lee J, Ruzzante L, Reijnders MJMF, Feron R, Bérard S, George P, Hahn MW, Howell PI, Kamali M, Koren S, Lawson D, Maslen G, Peery A, Phillippy AM, Sharakhova MV, Tannier E, Unger MF, Zhang SV, Alekseyev MA, Besansky NJ, Chauve C, Emrich SJ, Sharakhov IV. Evolutionary superscaffolding and chromosome anchoring to improve Anopheles genome assemblies. BMC Biol 2020; 18:1. [PMID: 31898513 PMCID: PMC6939337 DOI: 10.1186/s12915-019-0728-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/26/2019] [Indexed: 11/18/2022] Open
Abstract
Background New sequencing technologies have lowered financial barriers to whole genome sequencing, but resulting assemblies are often fragmented and far from ‘finished’. Updating multi-scaffold drafts to chromosome-level status can be achieved through experimental mapping or re-sequencing efforts. Avoiding the costs associated with such approaches, comparative genomic analysis of gene order conservation (synteny) to predict scaffold neighbours (adjacencies) offers a potentially useful complementary method for improving draft assemblies. Results We evaluated and employed 3 gene synteny-based methods applied to 21 Anopheles mosquito assemblies to produce consensus sets of scaffold adjacencies. For subsets of the assemblies, we integrated these with additional supporting data to confirm and complement the synteny-based adjacencies: 6 with physical mapping data that anchor scaffolds to chromosome locations, 13 with paired-end RNA sequencing (RNAseq) data, and 3 with new assemblies based on re-scaffolding or long-read data. Our combined analyses produced 20 new superscaffolded assemblies with improved contiguities: 7 for which assignments of non-anchored scaffolds to chromosome arms span more than 75% of the assemblies, and a further 7 with chromosome anchoring including an 88% anchored Anopheles arabiensis assembly and, respectively, 73% and 84% anchored assemblies with comprehensively updated cytogenetic photomaps for Anopheles funestus and Anopheles stephensi. Conclusions Experimental data from probe mapping, RNAseq, or long-read technologies, where available, all contribute to successful upgrading of draft assemblies. Our evaluations show that gene synteny-based computational methods represent a valuable alternative or complementary approach. Our improved Anopheles reference assemblies highlight the utility of applying comparative genomics approaches to improve community genomic resources.
Collapse
Affiliation(s)
- Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| | - Sergey Aganezov
- Department of Computer Science, Princeton University, Princeton, NJ, 08450, USA.,Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | | | - Jiyoung Lee
- The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Livio Ruzzante
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Maarten J M F Reijnders
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Sèverine Bérard
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Phillip George
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Matthew W Hahn
- Departments of Biology and Computer Science, Indiana University, Bloomington, IN, 47405, USA
| | - Paul I Howell
- Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Maryam Kamali
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.,Department of Medical Entomology and Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel Lawson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Gareth Maslen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Ashley Peery
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria V Sharakhova
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.,Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia, 634050
| | - Eric Tannier
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, Unité Mixte de Recherche 5558 Centre National de la Recherche Scientifique, 69622, Villeurbanne, France.,Institut national de recherche en informatique et en automatique, Montbonnot, 38334, Grenoble, Rhône-Alpes, France
| | - Maria F Unger
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Galvin Life Sciences Building, Notre Dame, IN, 46556, USA
| | - Simo V Zhang
- Departments of Biology and Computer Science, Indiana University, Bloomington, IN, 47405, USA
| | - Max A Alekseyev
- Department of Mathematics and Computational Biology Institute, George Washington University, Ashburn, VA, 20147, USA
| | - Nora J Besansky
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Galvin Life Sciences Building, Notre Dame, IN, 46556, USA
| | - Cedric Chauve
- Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Scott J Emrich
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Igor V Sharakhov
- The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA. .,Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA. .,Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia, 634050.
| |
Collapse
|
13
|
Gu L, Walters JR. Evolution of Sex Chromosome Dosage Compensation in Animals: A Beautiful Theory, Undermined by Facts and Bedeviled by Details. Genome Biol Evol 2018; 9:2461-2476. [PMID: 28961969 PMCID: PMC5737844 DOI: 10.1093/gbe/evx154] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/17/2022] Open
Abstract
Many animals with genetic sex determination harbor heteromorphic sex chromosomes, where the heterogametic sex has half the gene dose of the homogametic sex. This imbalance, if reflected in the abundance of transcripts or proteins, has the potential to deleteriously disrupt interactions between X-linked and autosomal loci in the heterogametic sex. Classical theory predicts that molecular mechanisms will evolve to provide dosage compensation that recovers expression levels comparable to ancestral expression prior to sex chromosome divergence. Such dosage compensating mechanisms may also, secondarily, result in balanced sex-linked gene expression between males and females. However, numerous recent studies addressing sex chromosome dosage compensation (SCDC) in a diversity of animals have yielded a surprising array of patterns concerning dosage compensation in the heterogametic sex, as well as dosage balance between sexes. These results substantially contradict longstanding theory, catalyzing both novel perspectives and new approaches in dosage compensation research. In this review, we summarize the theory, analytical approaches, and recent results concerning evolutionary patterns of SCDC in animals. We also discuss methodological challenges and discrepancies encountered in this research, which often underlie conflicting results. Finally, we discuss what outstanding questions and opportunities exist for future research on SCDC.
Collapse
Affiliation(s)
- Liuqi Gu
- Department of Ecology & Evolution, University of Kansas
| | | |
Collapse
|
14
|
Sharma A, Heinze SD, Wu Y, Kohlbrenner T, Morilla I, Brunner C, Wimmer EA, van de Zande L, Robinson MD, Beukeboom LW, Bopp D. Male sex in houseflies is determined by Mdmd, a paralog of the generic splice factor gene CWC22. Science 2018; 356:642-645. [PMID: 28495751 DOI: 10.1126/science.aam5498] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/12/2017] [Indexed: 01/23/2023]
Abstract
Across species, animals have diverse sex determination pathways, each consisting of a hierarchical cascade of genes and its associated regulatory mechanism. Houseflies have a distinctive polymorphic sex determination system in which a dominant male determiner, the M-factor, can reside on any of the chromosomes. We identified a gene, Musca domesticamale determiner (Mdmd), as the M-factor. Mdmd originated from a duplication of the spliceosomal factor gene CWC22 (nucampholin). Targeted Mdmd disruption results in complete sex reversal to fertile females because of a shift from male to female expression of the downstream genes transformer and doublesex The presence of Mdmd on different chromosomes indicates that Mdmd translocated to different genomic sites. Thus, an instructive signal in sex determination can arise by duplication and neofunctionalization of an essential splicing regulator.
Collapse
Affiliation(s)
- Akash Sharma
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Post Office Box 11103, 9700 CC, Groningen, Netherlands.,Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Svenia D Heinze
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Yanli Wu
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Post Office Box 11103, 9700 CC, Groningen, Netherlands.,Department of Developmental Biology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Göttingen Center of Molecular Biosciences, University of Goettingen, Göttingen, Germany
| | - Tea Kohlbrenner
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Ian Morilla
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Claudia Brunner
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Ernst A Wimmer
- Department of Developmental Biology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Göttingen Center of Molecular Biosciences, University of Goettingen, Göttingen, Germany
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Post Office Box 11103, 9700 CC, Groningen, Netherlands
| | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland.,SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Post Office Box 11103, 9700 CC, Groningen, Netherlands
| | - Daniel Bopp
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland.
| |
Collapse
|
15
|
Fraïsse C, Picard MAL, Vicoso B. The deep conservation of the Lepidoptera Z chromosome suggests a non-canonical origin of the W. Nat Commun 2017; 8:1486. [PMID: 29133797 PMCID: PMC5684275 DOI: 10.1038/s41467-017-01663-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022] Open
Abstract
Moths and butterflies (Lepidoptera) usually have a pair of differentiated WZ sex chromosomes. However, in most lineages outside of the division Ditrysia, as well as in the sister order Trichoptera, females lack a W chromosome. The W is therefore thought to have been acquired secondarily. Here we compare the genomes of three Lepidoptera species (one Dytrisia and two non-Dytrisia) to test three models accounting for the origin of the W: (1) a Z-autosome fusion; (2) a sex chromosome turnover; and (3) a non-canonical mechanism (e.g., through the recruitment of a B chromosome). We show that the gene content of the Z is highly conserved across Lepidoptera (rejecting a sex chromosome turnover) and that very few genes moved onto the Z in the common ancestor of the Ditrysia (arguing against a Z-autosome fusion). Our comparative genomics analysis therefore supports the secondary acquisition of the Lepidoptera W by a non-canonical mechanism, and it confirms the extreme stability of well-differentiated sex chromosomes.
Collapse
Affiliation(s)
- Christelle Fraïsse
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria
| | - Marion A L Picard
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria.
| |
Collapse
|
16
|
Pita S, Panzera F, Sánchez A, Palomeque T, Lorite P. Chromosome Painting in Triatomine Insects Reveals Shared Sequences Between X Chromosomes and Autosomes. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:44-49. [PMID: 28082631 DOI: 10.1093/jme/tjw146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
In order to provide a broad picture on the origin and evolution of holocentric X chromosomes in heteropteran species, we prepared a sex chromosome painting probe by microdissection of the X1 and X2 chromosomes from a kissing bug Mepraia spinolai (Hemiptera: Reduviidae: Triatominae). Fluorescence in situ hybridization on four species of the Triatomini having different amounts of autosomal heterochromatin and sex chromosome systems show that the Xs probe hybridizes on the euchromatin, located both on autosomes and X chromosomes. The heterochromatic Y chromosome and autosomal heterochromatic regions always appear free of hybridization signals. The hybridization results of the Xs probe on Rhodnius prolixus (Rhodniini) is completely different to that observed in Triatomini species. The hybridization signals are small and scattered on all euchromatin, without specific regions including the X chromosome. These results are in accordance with previous data obtained by genomic in situ hybridization and fluorescent banding, suggesting a clear differentiation in the repeat sequence composition of both sex chromosomes between Triatomini and Rhodniini tribes. These results also support that each sex chromosome in Triatomini has evolved independently from different autosomal pairs of a common ancestor, as described in other insect orders.
Collapse
Affiliation(s)
- Sebastián Pita
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay (; )
| | - Francisco Panzera
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay (; )
| | - Antonio Sánchez
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Av. Lagunillas s/n., 23071 Jaén, Spain (; ; )
| | - Teresa Palomeque
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Av. Lagunillas s/n., 23071 Jaén, Spain (; ; )
| | - Pedro Lorite
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Av. Lagunillas s/n., 23071 Jaén, Spain (; ; )
| |
Collapse
|
17
|
Delph LF, Demuth JP. Haldane’s Rule: Genetic Bases and Their Empirical Support. J Hered 2016; 107:383-91. [DOI: 10.1093/jhered/esw026] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/27/2016] [Indexed: 11/14/2022] Open
|
18
|
Pal A, Vicoso B. The X Chromosome of Hemipteran Insects: Conservation, Dosage Compensation and Sex-Biased Expression. Genome Biol Evol 2015; 7:3259-68. [PMID: 26556591 PMCID: PMC4700948 DOI: 10.1093/gbe/evv215] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Insects of the order Hemiptera (true bugs) use a wide range of mechanisms of sex determination, including genetic sex determination, paternal genome elimination, and haplodiploidy. Genetic sex determination, the prevalent mode, is generally controlled by a pair of XY sex chromosomes or by an XX/X0 system, but different configurations that include additional sex chromosomes are also present. Although this diversity of sex determining systems has been extensively studied at the cytogenetic level, only the X chromosome of the model pea aphid Acyrthosiphon pisum has been analyzed at the genomic level, and little is known about X chromosome biology in the rest of the order. In this study, we take advantage of published DNA- and RNA-seq data from three additional Hemiptera species to perform a comparative analysis of the gene content and expression of the X chromosome throughout this clade. We find that, despite showing evidence of dosage compensation, the X chromosomes of these species show female-biased expression, and a deficit of male-biased genes, in direct contrast to the pea aphid X. We further detect an excess of shared gene content between these very distant species, suggesting that despite the diversity of sex determining systems, the same chromosomal element is used as the X throughout a large portion of the order.
Collapse
Affiliation(s)
- Arka Pal
- Institute of Science and Technology Austria, Klosterneuburg, Austria Center for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
19
|
Brelsford A, Dufresnes C, Perrin N. High-density sex-specific linkage maps of a European tree frog (Hyla arborea) identify the sex chromosome without information on offspring sex. Heredity (Edinb) 2015; 116:177-81. [PMID: 26374238 DOI: 10.1038/hdy.2015.83] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/12/2015] [Accepted: 07/29/2015] [Indexed: 01/16/2023] Open
Abstract
Identifying homology between sex chromosomes of different species is essential to understanding the evolution of sex determination. Here, we show that the identity of a homomorphic sex chromosome pair can be established using a linkage map, without information on offspring sex. By comparing sex-specific maps of the European tree frog Hyla arborea, we find that the sex chromosome (linkage group 1) shows a threefold difference in marker number between the male and female maps. In contrast, the number of markers on each autosome is similar between the two maps. We also find strongly conserved synteny between H. arborea and Xenopus tropicalis across 200 million years of evolution, suggesting that the rate of chromosomal rearrangement in anurans is low. Finally, we show that recombination in males is greatly reduced at the centers of large chromosomes, consistent with previous cytogenetic findings. Our research shows the importance of high-density linkage maps for studies of recombination, chromosomal rearrangement and the genetic architecture of ecologically or economically important traits.
Collapse
Affiliation(s)
- A Brelsford
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - C Dufresnes
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - N Perrin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Charlesworth D. The status of supergenes in the 21st century: recombination suppression in Batesian mimicry and sex chromosomes and other complex adaptations. Evol Appl 2015; 9:74-90. [PMID: 27087840 PMCID: PMC4780387 DOI: 10.1111/eva.12291] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023] Open
Abstract
I review theoretical models for the evolution of supergenes in the cases of Batesian mimicry in butterflies, distylous plants and sex chromosomes. For each of these systems, I outline the genetic evidence that led to the proposal that they involve multiple genes that interact during ‘complex adaptations’, and at which the mutations involved are not unconditionally advantageous, but show advantages that trade‐off against some disadvantages. I describe recent molecular genetic studies of these systems and questions they raise about the evolution of suppressed recombination. Nonrecombining regions of sex chromosomes have long been known, but it is not yet fully understood why recombination suppression repeatedly evolved in systems in distantly related taxa, but does not always evolve. Recent studies of distylous plants are tending to support the existence of recombination‐suppressed genome regions, which may include modest numbers of genes and resemble recently evolved sex‐linked regions. For Batesian mimicry, however, molecular genetic work in two butterfly species suggests a new supergene scenario, with a single gene mutating to produce initial adaptive phenotypes, perhaps followed by modifiers specifically refining and perfecting the new phenotype.
Collapse
|
21
|
Jiang X, Biedler JK, Qi Y, Hall AB, Tu Z. Complete Dosage Compensation in Anopheles stephensi and the Evolution of Sex-Biased Genes in Mosquitoes. Genome Biol Evol 2015; 7:1914-24. [PMID: 26078263 PMCID: PMC4524482 DOI: 10.1093/gbe/evv115] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Complete dosage compensation refers to hyperexpression of the entire X or Z chromosome in organisms with heterogametic sex chromosomes (XY male or ZW female) in order to compensate for having only one copy of the X or Z chromosome. Recent analyses suggest that complete dosage compensation, as in Drosophila melanogaster, may not be the norm. There has been no systematic study focusing on dosage compensation in mosquitoes. However, analysis of dosage compensation in Anopheles mosquitoes provides opportunities for evolutionary insights, as the X chromosome of Anopheles and that of its Dipteran relative, D. melanogaster formed independently from the same ancestral chromosome. Furthermore, Culicinae mosquitoes, including the Aedes genus, have homomorphic sex-determining chromosomes, negating the need for dosage compensation. Thus, Culicinae genes provide a rare phylogenetic context to investigate dosage compensation in Anopheles mosquitoes. Here, we performed RNA-seq analysis of male and female samples of the Asian malaria mosquito Anopheles stephensi and the yellow fever mosquito Aedes aegypti. Autosomal and X-linked genes in An. stephensi showed very similar levels of expression in both males and females, indicating complete dosage compensation. The uniformity of average expression levels of autosomal and X-linked genes remained when An. stephensi gene expression was normalized by that of their Ae. aegypti orthologs, strengthening the finding of complete dosage compensation in Anopheles. In addition, we comparatively analyzed the differentially expressed genes between adult males and adult females in both species, investigated sex-biased gene chromosomal distribution patterns in An. stephensi and provided three examples where gene duplications may have enabled the acquisition of sex-specific expression during mosquito evolution.
Collapse
Affiliation(s)
- Xiaofang Jiang
- Program of Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia Department of Biochemistry, Virginia Tech, Blacksburg, Virginia
| | - James K Biedler
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia
| | - Yumin Qi
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia
| | - Andrew Brantley Hall
- Program of Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia Department of Biochemistry, Virginia Tech, Blacksburg, Virginia
| | - Zhijian Tu
- Program of Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia Department of Biochemistry, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
22
|
Vicoso B, Bachtrog D. Numerous transitions of sex chromosomes in Diptera. PLoS Biol 2015; 13:e1002078. [PMID: 25879221 PMCID: PMC4400102 DOI: 10.1371/journal.pbio.1002078] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 01/13/2015] [Indexed: 11/24/2022] Open
Abstract
Many species groups, including mammals and many insects, determine sex using heteromorphic sex chromosomes. Diptera flies, which include the model Drosophila melanogaster, generally have XY sex chromosomes and a conserved karyotype consisting of six chromosomal arms (five large rods and a small dot), but superficially similar karyotypes may conceal the true extent of sex chromosome variation. Here, we use whole-genome analysis in 37 fly species belonging to 22 different families of Diptera and uncover tremendous hidden diversity in sex chromosome karyotypes among flies. We identify over a dozen different sex chromosome configurations, and the small dot chromosome is repeatedly used as the sex chromosome, which presumably reflects the ancestral karyotype of higher Diptera. However, we identify species with undifferentiated sex chromosomes, others in which a different chromosome replaced the dot as a sex chromosome or in which up to three chromosomal elements became incorporated into the sex chromosomes, and others yet with female heterogamety (ZW sex chromosomes). Transcriptome analysis shows that dosage compensation has evolved multiple times in flies, consistently through up-regulation of the single X in males. However, X chromosomes generally show a deficiency of genes with male-biased expression, possibly reflecting sex-specific selective pressures. These species thus provide a rich resource to study sex chromosome biology in a comparative manner and show that similar selective forces have shaped the unique evolution of sex chromosomes in diverse fly taxa. Analysis of the genomes of 37 fly species from 22 families of Diptera shows that superficially similar karyotypes conceal the true extent of sex chromosome variation and that sex chromosome transitions are, in fact, frequent in flies. A mind-blowing diversity of sex-determining mechanisms exists among eukaryotes, but highly differentiated sex chromosomes—a degenerate, gene-poor Y chromosome, and an often dosage-compensated X—appear to represent an evolutionary dead-end. In our manuscript, we systematically study the genomic composition of sex chromosomes across dipteran insects (flies and mosquitoes), which are generally considered to show stable XY sex chromosomes. Our whole-genome analysis of 37 fly species from 22 families of Diptera uncovers tremendous hidden variation in sex chromosomes. Some species have newly gained or secondarily lost their sex chromosomes; in others, a different chromosome has replaced the original sex chromosome or multiple chromosomal elements have become incorporated into the sex chromosomes; still other species have female heterogametic sex chromosomes. We perform a comparative transcriptome analysis to show that dosage compensation has evolved multiple times, consistently through up-regulation of the single X chromosome in males. These species provide a rich resource to study sex chromosome biology in a comparative manner and show that similar selective forces have shaped the unique evolution of sex chromosomes in diverse fly taxa.
Collapse
Affiliation(s)
- Beatriz Vicoso
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Oppenheim SJ, Baker RH, Simon S, DeSalle R. We can't all be supermodels: the value of comparative transcriptomics to the study of non-model insects. INSECT MOLECULAR BIOLOGY 2015; 24:139-54. [PMID: 25524309 PMCID: PMC4383654 DOI: 10.1111/imb.12154] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Insects are the most diverse group of organisms on the planet. Variation in gene expression lies at the heart of this biodiversity and recent advances in sequencing technology have spawned a revolution in researchers' ability to survey tissue-specific transcriptional complexity across a wide range of insect taxa. Increasingly, studies are using a comparative approach (across species, sexes and life stages) that examines the transcriptional basis of phenotypic diversity within an evolutionary context. In the present review, we summarize much of this research, focusing in particular on three critical aspects of insect biology: morphological development and plasticity; physiological response to the environment; and sexual dimorphism. A common feature that is emerging from these investigations concerns the dynamic nature of transcriptome evolution as indicated by rapid changes in the overall pattern of gene expression, the differential expression of numerous genes with unknown function, and the incorporation of novel, lineage-specific genes into the transcriptional profile.
Collapse
Affiliation(s)
- Sara J Oppenheim
- Department of Entomology, Division of Invertebrates, Sackler Institute for Comparative Genomics, American Museum of Natural HistoryNew York, NY, USA
| | - Richard H Baker
- Department of Entomology, Division of Invertebrates, Sackler Institute for Comparative Genomics, American Museum of Natural HistoryNew York, NY, USA
| | - Sabrina Simon
- Biosystematics Group, Wageningen UniversityWageningen, The Netherlands
| | - Rob DeSalle
- Department of Entomology, Division of Invertebrates, Sackler Institute for Comparative Genomics, American Museum of Natural HistoryNew York, NY, USA
- Correspondence: Dr. Robert DeSalle, Sackler Institute for Comparative Genomics, American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024, USA. Tel.: 212-769-5670; e-mail:
| |
Collapse
|
24
|
Transition in sexual system and sex chromosome evolution in the tadpole shrimp Triops cancriformis. Heredity (Edinb) 2015; 115:37-46. [PMID: 25757406 PMCID: PMC4815504 DOI: 10.1038/hdy.2015.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 12/19/2022] Open
Abstract
Transitions in sexual system and reproductive mode may affect the course of sex chromosome evolution, for instance by altering the strength of sexually antagonistic selection. However, there have been few studies of sex chromosomes in systems where such transitions have been documented. The European tadpole shrimp, Triops cancriformis, has undergone a transition from dioecy to androdioecy (a sexual system where hermaphrodites and males coexist), offering an excellent opportunity to test the impact of this transition on the evolution of sex chromosomes. To identify sex-linked markers, to understand mechanisms of sex determination and to investigate differences between sexual systems, we carried out a genome-wide association study using restriction site-associated DNA sequencing (RAD-seq) of 47 males, females and hermaphrodites from one dioecious and one androdioecious population. We analysed 22.9 Gb of paired-end sequences and identified and scored >3000 high coverage novel genomic RAD markers. Presence–absence of markers, single-nucleotide polymorphism association and read depth identified 52 candidate sex-linked markers. We show that sex is genetically determined in T. cancriformis, with a ZW system conserved across dioecious and androdioecious populations and that hermaphrodites have likely evolved from females. We also show that the structure of the sex chromosomes differs strikingly, with a larger sex-linked region in the dioecious population compared with the androdioecious population.
Collapse
|
25
|
Blackmon H, Demuth JP. Genomic origins of insect sex chromosomes. CURRENT OPINION IN INSECT SCIENCE 2015; 7:45-50. [PMID: 32846676 DOI: 10.1016/j.cois.2014.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 06/11/2023]
Abstract
Recent efforts to catalog the diversity of sex chromosome systems coupled with genome sequencing projects are adding a new level of resolution to our understanding of insect sex chromosome origins. Y-chromosome degeneration makes sequencing difficult and may erase homology so rapidly that their origins will often remain enigmatic. X-chromosome origins are better understood, but thus far prove to be remarkably labile, often lacking homology even among close relatives. Furthermore, evidence now suggests that differentiated X or Y-chromosomes may both revert to autosomal inheritance. Data for ZW systems is scarcer, but W and Y-chromosomes seem to share many characteristics. Limited evidence suggests that Z-chromosome homology is more conserved than X counterparts, but broader sampling of both sex chromosome systems is needed.
Collapse
Affiliation(s)
- Heath Blackmon
- Department of Biology, University of Texas at Arlington, Box 19498, Arlington, TX 76019, USA
| | - Jeffery P Demuth
- Department of Biology, University of Texas at Arlington, Box 19498, Arlington, TX 76019, USA.
| |
Collapse
|
26
|
Sackton TB, Corbett-Detig RB, Nagaraju J, Vaishna L, Arunkumar KP, Hartl DL. Positive selection drives faster-Z evolution in silkmoths. Evolution 2014; 68:2331-42. [PMID: 24826901 DOI: 10.1111/evo.12449] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 05/06/2014] [Indexed: 12/20/2022]
Abstract
Genes linked to X or Z chromosomes, which are hemizygous in the heterogametic sex, are predicted to evolve at different rates than those on autosomes. This "faster-X effect" can arise either as a consequence of hemizygosity, which leads to more efficient selection for recessive beneficial mutations in the heterogametic sex, or as a consequence of reduced effective population size of the hemizygous chromosome, which leads to increased fixation of weakly deleterious mutations due to genetic drift. Empirical results to date suggest that, while the overall pattern across taxa is complicated, systems with male heterogamy show a faster-X effect attributable to more efficient selection, whereas the faster-Z effect in female-heterogametic taxa is attributable to increased drift. To test the generality of the faster-Z pattern seen in birds and snakes, we sequenced the genome of the lepidopteran silkmoth Bombyx huttoni. We show that silkmoths experience faster-Z evolution, but unlike in birds and snakes, the faster-Z effect appears to be attributable to more efficient positive selection. These results suggest that female heterogamy alone is unlikely to explain the reduced efficacy of selection on vertebrate Z chromosomes. It is likely that many factors, including differences in overall effective population size, influence Z chromosome evolution.
Collapse
Affiliation(s)
- Timothy B Sackton
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138.
| | | | | | | | | | | |
Collapse
|
27
|
Pita S, Panzera F, Ferrandis I, Galvão C, Gómez-Palacio A, Panzera Y. Chromosomal divergence and evolutionary inferences in Rhodniini based on the chromosomal location of ribosomal genes. Mem Inst Oswaldo Cruz 2014; 108:S0074-02762013000300376. [PMID: 23778665 DOI: 10.1590/s0074-02762013000300017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/07/2013] [Indexed: 11/22/2022] Open
Abstract
In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae). The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome) or both sex chromosomes (X and Y chromosomes). This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes) and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.
Collapse
Affiliation(s)
- Sebastián Pita
- Universidad de la República, Facultad de Ciencias, Sección Genética Evolutiva, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
28
|
Shukla JN, Palli SR. Production of all female progeny: evidence for the presence of the male sex determination factor on the Y chromosome. ACTA ACUST UNITED AC 2014; 217:1653-5. [PMID: 24577442 DOI: 10.1242/jeb.100438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The red flour beetle, Tribolium castaneum, follows an XX (female) and XY (male) sex determination system. Maternal supply of the protein Transformer (Tra) is required for XX insects to follow the female pathway. The nature and source of the signal that regulates male sex determination in XY beetles are not known. Parental RNAi-aided knockdown in expression of tra masculinizes genetic females (XX) that are fertile. The virgin females mated with these masculinized genetic females produced all female progeny. We present the genetic evidence to show that the factor responsible for male sex determination is present on the Y chromosome. These data also suggest that the Y chromosome in T. castaneum is not required for male fertility.
Collapse
Affiliation(s)
- Jayendra Nath Shukla
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
29
|
Bewick AJ, Chain FJJ, Zimmerman LB, Sesay A, Gilchrist MJ, Owens NDL, Seifertova E, Krylov V, Macha J, Tlapakova T, Kubickova S, Cernohorska H, Zarsky V, Evans BJ. A large pseudoautosomal region on the sex chromosomes of the frog Silurana tropicalis. Genome Biol Evol 2013; 5:1087-98. [PMID: 23666865 PMCID: PMC3698919 DOI: 10.1093/gbe/evt073] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sex chromosome divergence has been documented across phylogenetically diverse species, with amphibians typically having cytologically nondiverged (“homomorphic”) sex chromosomes. With an aim of further characterizing sex chromosome divergence of an amphibian, we used “RAD-tags” and Sanger sequencing to examine sex specificity and heterozygosity in the Western clawed frog Silurana tropicalis (also known as Xenopus tropicalis). Our findings based on approximately 20 million genotype calls and approximately 200 polymerase chain reaction-amplified regions across multiple male and female genomes failed to identify a substantially sized genomic region with genotypic hallmarks of sex chromosome divergence, including in regions known to be tightly linked to the sex-determining region. We also found that expression and molecular evolution of genes linked to the sex-determining region did not differ substantially from genes in other parts of the genome. This suggests that the pseudoautosomal region, where recombination occurs, comprises a large portion of the sex chromosomes of S. tropicalis. These results may in part explain why African clawed frogs have such a high incidence of polyploidization, shed light on why amphibians have a high rate of sex chromosome turnover, and raise questions about why homomorphic sex chromosomes are so prevalent in amphibians.
Collapse
Affiliation(s)
- Adam J Bewick
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Brelsford A, Stöck M, Betto-Colliard C, Dubey S, Dufresnes C, Jourdan-Pineau H, Rodrigues N, Savary R, Sermier R, Perrin N. HOMOLOGOUS SEX CHROMOSOMES IN THREE DEEPLY DIVERGENT ANURAN SPECIES. Evolution 2013; 67:2434-40. [DOI: 10.1111/evo.12151] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/15/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Alan Brelsford
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Matthias Stöck
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB); Müggelseedamm; 310, D-12587 Berlin Germany
| | | | - Sylvain Dubey
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Christophe Dufresnes
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Hélène Jourdan-Pineau
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Nicolas Rodrigues
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Romain Savary
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Roberto Sermier
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
| |
Collapse
|
31
|
Hall AB, Qi Y, Timoshevskiy V, Sharakhova MV, Sharakhov IV, Tu Z. Six novel Y chromosome genes in Anopheles mosquitoes discovered by independently sequencing males and females. BMC Genomics 2013; 14:273. [PMID: 23617698 PMCID: PMC3660176 DOI: 10.1186/1471-2164-14-273] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/09/2013] [Indexed: 11/10/2022] Open
Abstract
Background Y chromosomes are responsible for the initiation of male development, male fertility, and other male-related functions in diverse species. However, Y genes are rarely characterized outside a few model species due to the arduous nature of studying the repeat-rich Y. Results The chromosome quotient (CQ) is a novel approach to systematically discover Y chromosome genes. In the CQ method, genomic DNA from males and females is sequenced independently and aligned to candidate reference sequences. The female to male ratio of the number of alignments to a reference sequence, a parameter called the chromosome quotient (CQ), is used to determine whether the sequence is Y-linked. Using the CQ method, we successfully identified known Y sequences from Homo sapiens and Drosophila melanogaster. The CQ method facilitated the discovery of Y chromosome sequences from the malaria mosquitoes Anopheles stephensi and An. gambiae. Comparisons to transcriptome sequence data with blastn led to the discovery of six Anopheles Y genes, three from each species. All six genes are expressed in the early embryo. Two of the three An. stephensi Y genes were recently acquired from the autosomes or the X. Although An. stephensi and An. gambiae belong to the same subgenus, we found no evidence of Y genes shared between the species. Conclusions The CQ method can reliably identify Y chromosome sequences using the ratio of alignments from male and female sequence data. The CQ method is widely applicable to species with fragmented genome assemblies produced from next-generation sequencing data. Analysis of the six Y genes characterized in this study indicates rapid Y chromosome evolution between An. stephensi and An. gambiae. The Anopheles Y genes discovered by the CQ method provide unique markers for population and phylogenetic analysis, and opportunities for novel mosquito control measures through the manipulation of sexual dimorphism and fertility.
Collapse
|
32
|
Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet 2013; 14:113-24. [PMID: 23329112 DOI: 10.1038/nrg3366] [Citation(s) in RCA: 545] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human Y chromosome is intriguing not only because it harbours the master-switch gene that determines gender but also because of its unusual evolutionary history. The Y chromosome evolved from an autosome, and its evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species and in plants have shed light on the current gene content of the Y chromosome, its origins and its long-term fate. Furthermore, comparative analysis of young and old Y chromosomes has given further insights into the evolutionary and molecular forces triggering Y-chromosome degeneration and into the evolutionary destiny of the Y chromosome.
Collapse
|
33
|
Johnson NA, Lachance J. The genetics of sex chromosomes: evolution and implications for hybrid incompatibility. Ann N Y Acad Sci 2012; 1256:E1-22. [PMID: 23025408 PMCID: PMC3509754 DOI: 10.1111/j.1749-6632.2012.06748.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Heteromorphic sex chromosomes, where one sex has two different types of sex chromosomes, face very different evolutionary consequences than do autosomes. Two important features of sex chromosomes arise from being present in only one copy in one of the sexes: dosage compensation and the meiotic silencing of sex chromosomes. Other differences arise because sex chromosomes spend unequal amounts of time in each sex. Thus, the impact of evolutionary processes (mutation, selection, genetic drift, and meiotic drive) differs substantially between each sex chromosome, and between the sex chromosomes and the autosomes. Sex chromosomes also play a disproportionate role in Haldane's rule and other important patterns related to hybrid incompatibility, and thus speciation. We review the consequences of sex chromosomes on hybrid incompatibility. A theme running through this review is that epigenetic processes, notably those related to chromatin, may be more important to the evolution of sex chromosomes and the evolution of hybrid incompatibility than previously recognized.
Collapse
Affiliation(s)
- Norman A Johnson
- Department of Plant, Soil, and Insect Sciences, and Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA.
| | | |
Collapse
|