1
|
Coquille S, Pereira CS, Roche J, Santoni G, Engilberge S, Brochier-Armanet C, Girard E, Sterpone F, Madern D. Allostery and Evolution: A Molecular Journey Through the Structural and Dynamical Landscape of an Enzyme Super Family. Mol Biol Evol 2025; 42:msae265. [PMID: 39834309 PMCID: PMC11747225 DOI: 10.1093/molbev/msae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/26/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Allosteric regulation is a powerful mechanism for controlling the efficiency of enzymes. Deciphering the evolutionary mechanisms by which allosteric properties have been acquired in enzymes is of fundamental importance. We used the malate (MalDH) and lactate deydrogenases (LDHs) superfamily as model to elucidate this phenomenon. By introducing a few of mutations associated to the emergence of allosteric LDHs into the non-allosteric MalDH from Methanopyrus kandleri, we have gradually shifted its enzymatic profile toward that typical of allosteric LDHs. We first investigated the process triggering homotropic activation. The structures of the resulting mutants show the typical compact organization of the R-active state of LDHs, but a distorted (T-like) catalytic site demonstrating that they corresponds to hybrid states. Molecular dynamics simulations and free energy calculations confirmed the capability of these mutants to sample the T-inactive state. By adding a final single mutation to fine-tune the flexibility of the catalytic site, we obtained an enzyme with both sigmoid (homotropic) and hyperbolic (heterotropic) substrate activation profiles. Its structure shows a typical extended T-state as in LDHs, whereas its catalytic state has as a restored configuration favorable for catalysis. Free energy calculations indicate that the T and R catalytic site configurations are in an equilibrium that depends on solvent conditions. We observed long-range communication between monomers as required for allosteric activation. Our work links the evolution of allosteric regulation in the LDH/MDH superfamily to the ensemble model of allostery at molecular level, and highlights the important role of the underlying protein dynamics.
Collapse
Affiliation(s)
| | - Caroline Simões Pereira
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Jennifer Roche
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Gianluca Santoni
- Structural Biology Group, European Synchrotron Radiation Facility, 38000 Grenoble, France
| | | | - Céline Brochier-Armanet
- Université Claude Bernard Lyon1, LBBE, UMR 5558 CNRS, VAS, Villeurbanne, F-69622, France
- Institut Universitaire de France (IUF), France
| | - Eric Girard
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | | |
Collapse
|
2
|
Bertrand Q, Coquille S, Iorio A, Sterpone F, Madern D. Biochemical, structural and dynamical characterizations of the lactate dehydrogenase from Selenomonas ruminantium provide information about an intermediate evolutionary step prior to complete allosteric regulation acquisition in the super family of lactate and malate dehydrogenases. J Struct Biol 2023; 215:108039. [PMID: 37884067 DOI: 10.1016/j.jsb.2023.108039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/26/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
In this work, we investigated the lactate dehydrogenase (LDH) from Selenomonas ruminantium (S. rum), an enzyme that differs at key amino acid positions from canonical allosteric LDHs. The wild type (Wt) of this enzyme recognises pyuvate as all LDHs. However, introducing a single point mutation in the active site loop (I85R) allows S. Rum LDH to recognize the oxaloacetate substrate as a typical malate dehydrogenase (MalDH), whilst maintaining homotropic activation as an LDH. We report the tertiary structure of the Wt and I85RLDH mutant. The Wt S. rum enzyme structure binds NADH and malonate, whilst also resembling the typical compact R-active state of canonical LDHs. The structure of the mutant with I85R was solved in the Apo State (without ligand), and shows no large conformational reorganization such as that observed with canonical allosteric LDHs in Apo state. This is due to a local structural feature typical of S. rum LDH that prevents large-scale conformational reorganization. The S. rum LDH was also studied using Molecular Dynamics simulations, probing specific local deformations of the active site that allow the S. rum LDH to sample the T-inactive state. We propose that, with respect to the LDH/MalDH superfamily, the S. rum enzyme possesses a specificstructural and dynamical way to ensure homotropic activation.
Collapse
Affiliation(s)
- Quentin Bertrand
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France; Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institut, Villigen, Switzerland
| | | | - Antonio Iorio
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | | |
Collapse
|
3
|
Robin AY, Brochier-Armanet C, Bertrand Q, Barette C, Girard E, Madern D. Deciphering Evolutionary Trajectories of Lactate Dehydrogenases Provides New Insights into Allostery. Mol Biol Evol 2023; 40:msad223. [PMID: 37797308 PMCID: PMC10583557 DOI: 10.1093/molbev/msad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023] Open
Abstract
Lactate dehydrogenase (LDH, EC.1.1.127) is an important enzyme engaged in the anaerobic metabolism of cells, catalyzing the conversion of pyruvate to lactate and NADH to NAD+. LDH is a relevant enzyme to investigate structure-function relationships. The present work provides the missing link in our understanding of the evolution of LDHs. This allows to explain (i) the various evolutionary origins of LDHs in eukaryotic cells and their further diversification and (ii) subtle phenotypic modifications with respect to their regulation capacity. We identified a group of cyanobacterial LDHs displaying eukaryotic-like LDH sequence features. The biochemical and structural characterization of Cyanobacterium aponinum LDH, taken as representative, unexpectedly revealed that it displays homotropic and heterotropic activation, typical of an allosteric enzyme, whereas it harbors a long N-terminal extension, a structural feature considered responsible for the lack of allosteric capacity in eukaryotic LDHs. Its crystallographic structure was solved in 2 different configurations typical of the R-active and T-inactive states encountered in allosteric LDHs. Structural comparisons coupled with our evolutionary analyses helped to identify 2 amino acid positions that could have had a major role in the attenuation and extinction of the allosteric activation in eukaryotic LDHs rather than the presence of the N-terminal extension. We tested this hypothesis by site-directed mutagenesis. The resulting C. aponinum LDH mutants displayed reduced allosteric capacity mimicking those encountered in plants and human LDHs. This study provides a new evolutionary scenario of LDHs that unifies descriptions of regulatory properties with structural and mutational patterns of these important enzymes.
Collapse
Affiliation(s)
- Adeline Y Robin
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie et Biologie Évolutive, Université Claude Bernard Lyon 1, CNRS, UMR5558, Villeurbanne F-69622, France
| | - Quentin Bertrand
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institut, Villigen, Switzerland
| | - Caroline Barette
- Université Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble 38000, France
| | - Eric Girard
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Dominique Madern
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| |
Collapse
|
4
|
Ghattavi S, Homaei A. Marine enzymes: Classification and application in various industries. Int J Biol Macromol 2023; 230:123136. [PMID: 36621739 DOI: 10.1016/j.ijbiomac.2023.123136] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
Oceans are regarded as a plentiful and sustainable source of biological compounds. Enzymes are a group of marine biomaterials that have recently drawn more attention because they are produced in harsh environmental conditions such as high salinity, extensive pH, a wide temperature range, and high pressure. Hence, marine-derived enzymes are capable of exhibiting remarkable properties due to their unique composition. In this review, we overviewed and discussed characteristics of marine enzymes as well as the sources of marine enzymes, ranging from primitive organisms to vertebrates, and presented the importance, advantages, and challenges of using marine enzymes with a summary of their applications in a variety of industries. Current biotechnological advancements need the study of novel marine enzymes that could be applied in a variety of ways. Resources of marine enzyme can benefit greatly for biotechnological applications duo to their biocompatible, ecofriendly and high effectiveness. It is beneficial to use the unique characteristics offered by marine enzymes to either develop new processes and products or improve existing ones. As a result, marine-derived enzymes have promising potential and are an excellent candidate for a variety of biotechnology applications and a future rise in the use of marine enzymes is to be anticipated.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
5
|
Iorio A, Brochier-Armanet C, Mas C, Sterpone F, Madern D. Protein Conformational Space at the Edge of Allostery: Turning a Non-allosteric Malate Dehydrogenase into an "Allosterized" Enzyme using Evolution Guided Punctual Mutations. Mol Biol Evol 2022; 39:6691310. [PMID: 36056899 PMCID: PMC9486893 DOI: 10.1093/molbev/msac186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We unveil the intimate relationship between protein dynamics and allostery by following the trajectories of model proteins in their conformational and sequence spaces. Starting from a nonallosteric hyperthermophilic malate dehydrogenase, we have tracked the role of protein dynamics in the evolution of the allosteric capacity. Based on a large phylogenetic analysis of the malate (MalDH) and lactate dehydrogenase (LDH) superfamily, we identified two amino acid positions that could have had a major role for the emergence of allostery in LDHs, which we targeted for investigation by site-directed mutagenesis. Wild-type MalDH and the single and double mutants were tested with respect to their substrate recognition profiles. The double mutant displayed a sigmoid-shaped profile typical of homotropic activation in LDH. By using molecular dynamics simulations, we showed that the mutations induce a drastic change in the protein sampling of its conformational landscape, making transiently T-like (inactive) conformers, typical of allosteric LDHs, accessible. Our data fit well with the seminal key concept linking protein dynamics and evolvability. We showed that the selection of a new phenotype can be achieved by a few key dynamics-enhancing mutations causing the enrichment of low-populated conformational substates.
Collapse
Affiliation(s)
- Antonio Iorio
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Céline Brochier-Armanet
- Univ Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, F-69622, Villeurbanne, France
| | - Caroline Mas
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | | |
Collapse
|
6
|
Iorio A, Roche J, Engilberge S, Coquelle N, Girard E, Sterpone F, Madern D. Biochemical, structural and dynamical studies reveal strong differences in the thermal-dependent allosteric behavior of two extremophilic lactate dehydrogenases. J Struct Biol 2021; 213:107769. [PMID: 34229075 DOI: 10.1016/j.jsb.2021.107769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 11/28/2022]
Abstract
In this work, we combined biochemical and structural investigations with molecular dynamics (MD) simulations to analyze the very different thermal-dependent allosteric behavior of two lactate dehydrogenases (LDH) from thermophilic bacteria. We found that the enzyme from Petrotoga mobilis (P. mob) necessitates an absolute requirement of the allosteric effector (fructose 1, 6-bisphosphate) to ensure functionality. In contrast, even without allosteric effector, the LDH from Thermus thermophilus (T. the) is functional when the temperature is raised. We report the crystal structure of P. mob LDH in the Apo state solved at 1.9 Å resolution. We used this structure and the one from T. the, obtained previously, as a starting point for MD simulations at various temperatures. We found clear differences between the thermal dynamics, which accounts for the behavior of the two enzymes. Our work demonstrates that, within an allosteric enzyme, some areas act as local gatekeepers of signal transmission, allowing the enzyme to populate either the T-inactive or the R-active states with different degrees of stringency.
Collapse
Affiliation(s)
- Antonio Iorio
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Jennifer Roche
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Sylvain Engilberge
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France; Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Nicolas Coquelle
- Large Scale Structures Group, Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Cedex 9 Grenoble, France
| | - Eric Girard
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| | | |
Collapse
|
7
|
Halgand F, Houée-Lévin C, Weik M, Madern D. Remote oxidative modifications induced by oxygen free radicals modify T/R allosteric equilibrium of a hyperthermophilic lactate dehydrogenase. J Struct Biol 2020; 210:107478. [PMID: 32087239 DOI: 10.1016/j.jsb.2020.107478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 12/01/2022]
Abstract
L-Lactate dehydrogenase (LDH) is a model protein allowing to shed light on the fundamental molecular mechanisms that drive the acquisition, evolution and regulation of enzyme properties. In this study, we test the hypothesis of a link between thermal stability of LDHs and their capacity against unfolding induced by reactive oxygen species (ROS) generated by γ-rays irradiation. By using circular dichroism spectroscopy, we analysed that high thermal stability of a thermophilic LDH favours strong resistance against ROS-induced unfolding, in contrast to its psychrophilic and mesophilic counterparts that are less resistant. We suggest that a protein's phenotype linking strong thermal stability and resistance against ROS damages would have been a selective evolutionary advantage. We also find that the enzymatic activity of the thermophilic LDH that is strongly resistant against ROS-unfolding is very sensitive to inactivation by irradiation. To address this counter-intuitive observation, we combined mass spectrometry analyses and enzymatic activity measurements. We demonstrate that the dramatic change on LDH activity was linked to remote chemical modifications away from the active site, that change the equilibrium between low-affinity tense (T-inactive) and high-affinity relaxed (R-active) forms. We found the T-inactive thermophilic enzyme obtained after irradiation can recover its LDH activity by addition of the allosteric effector 1, 6 fructose bis phosphate. We analyse our data within the general framework of allosteric regulation, which requires that an enzyme in solution populates a large diversity of dynamically-interchanging conformations. Our work demonstrates that the radiation-induced inactivation of an enzyme is controlled by its dynamical properties.
Collapse
Affiliation(s)
- Frédéric Halgand
- Université Paris Sud-CNRS, UMR 8000, bâtiments 201 P2 and 350, 91405 Orsay, France
| | - Chantal Houée-Lévin
- Université Paris Sud-CNRS, UMR 8000, bâtiments 201 P2 and 350, 91405 Orsay, France
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | | |
Collapse
|
8
|
Malash MN, Hussein NA, Muawia S, Nasr MI, Siam R. An optimized protocol for high yield expression and purification of an extremophilic protein. Protein Expr Purif 2020; 169:105585. [PMID: 31987929 DOI: 10.1016/j.pep.2020.105585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 11/18/2022]
Affiliation(s)
- Mohamed N Malash
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt; Biology Department, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo, Egypt; Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Menofia, Egypt
| | - Nahla A Hussein
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Cairo, Egypt
| | - Shaden Muawia
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Menofia, Egypt
| | - Mahmoud I Nasr
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Menofia, Egypt
| | - Rania Siam
- Biology Department, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo, Egypt; University of Medicine and Health Sciences, St. Kitts, West Indies.
| |
Collapse
|
9
|
Katava M, Marchi M, Madern D, Sztucki M, Maccarini M, Sterpone F. Temperature Unmasks Allosteric Propensity in a Thermophilic Malate Dehydrogenase via Dewetting and Collapse. J Phys Chem B 2020; 124:1001-1008. [DOI: 10.1021/acs.jpcb.9b10776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- M. Katava
- UPR9080, Laboratoire de Biochimie Théorique, CNRS, Université de Paris, 13 rue Pierre et Marie Curie, F-75005 Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - M. Marchi
- Centre d’Etudes de Saclay, Commissariat à l’Energie Atomique DRF/Joliot/SB2SM, 91191 Gif sur Yvette Cedex, France
| | - D. Madern
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - M. Sztucki
- ESRF - The European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - M. Maccarini
- Laboratoire TIMC/IMAG UMR CNRS 5525, Université Grenoble Alpes, 38000 Grenoble, France
| | - F. Sterpone
- UPR9080, Laboratoire de Biochimie Théorique, CNRS, Université de Paris, 13 rue Pierre et Marie Curie, F-75005 Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| |
Collapse
|
10
|
Dong M, Lauro ML, Koblish TJ, Bahnson BJ. Conformational sampling and kinetics changes across a non-Arrhenius break point in the enzyme thermolysin. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:014101. [PMID: 32095489 PMCID: PMC7021514 DOI: 10.1063/1.5130582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Numerous studies have suggested a significant role that protein dynamics play in optimizing enzyme catalysis, and changes in conformational sampling offer a window to explore this role. Thermolysin from Bacillus thermoproteolyticus rokko, which is a heat-stable zinc metalloproteinase, serves here as a model system to study changes of protein function and conformational sampling across a temperature range of 16-36 °C. The temperature dependence of kinetics of thermolysin showed a biphasic transition at 26 °C that points to potential conformational and dynamic differences across this temperature. The non-Arrhenius behavior observed resembled results from previous studies of a thermophilic alcohol dehydrogenase enzyme, which also indicated a biphasic transition at ambient temperatures. To explore the non-Arrhenius behavior of thermolysin, room temperature crystallography was applied to characterize structural changes in a temperature range across the biphasic transition temperature. The alternate conformation of side chain fitting to electron density of a group of residues showed a higher variability in the temperature range from 26 to 29 °C, which indicated a change in conformational sampling that correlated with the non-Arrhenius break point.
Collapse
Affiliation(s)
- Ming Dong
- Department of Chemistry, North Carolina A&T State University, Greensboro, North Carolina 27411, USA
| | - Mackenzie L. Lauro
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Timothy J. Koblish
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Brian J. Bahnson
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
11
|
Jin M, Gai Y, Guo X, Hou Y, Zeng R. Properties and Applications of Extremozymes from Deep-Sea Extremophilic Microorganisms: A Mini Review. Mar Drugs 2019; 17:md17120656. [PMID: 31766541 PMCID: PMC6950199 DOI: 10.3390/md17120656] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 01/09/2023] Open
Abstract
The deep sea, which is defined as sea water below a depth of 1000 m, is one of the largest biomes on the Earth, and is recognised as an extreme environment due to its range of challenging physical parameters, such as pressure, salinity, temperature, chemicals and metals (such as hydrogen sulphide, copper and arsenic). For surviving in such extreme conditions, deep-sea extremophilic microorganisms employ a variety of adaptive strategies, such as the production of extremozymes, which exhibit outstanding thermal or cold adaptability, salt tolerance and/or pressure tolerance. Owing to their great stability, deep-sea extremozymes have numerous potential applications in a wide range of industries, such as the agricultural, food, chemical, pharmaceutical and biotechnological sectors. This enormous economic potential combined with recent advances in sampling and molecular and omics technologies has led to the emergence of research regarding deep-sea extremozymes and their primary applications in recent decades. In the present review, we introduced recent advances in research regarding deep-sea extremophiles and the enzymes they produce and discussed their potential industrial applications, with special emphasis on thermophilic, psychrophilic, halophilic and piezophilic enzymes.
Collapse
Affiliation(s)
- Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Yingbao Gai
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
| | - Xun Guo
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
| | - Yanping Hou
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
| | - Runying Zeng
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Correspondence: ; Tel.: +86-592-2195323
| |
Collapse
|
12
|
Roche J, Girard E, Mas C, Madern D. The archaeal LDH-like malate dehydrogenase from Ignicoccus islandicus displays dual substrate recognition, hidden allostery and a non-canonical tetrameric oligomeric organization. J Struct Biol 2019; 208:7-17. [PMID: 31301348 DOI: 10.1016/j.jsb.2019.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022]
Abstract
The NAD(P)-dependent malate dehydrogenases (MalDHs) and NAD-dependent lactate dehydrogenases (LDHs) are homologous enzymes involved in central metabolism. They display a common protein fold and the same catalytic mechanism, yet have a stringent capacity to discriminate between their respective substrates. The MalDH/LDH superfamily is divided into several phylogenetically related groups. It has been shown that the canonical LDHs and LDH-like group of MalDHs are primarily tetrameric enzymes that diverged from a common ancestor. In order to gain understanding of the evolutionary history of the LDHs and MalDHs, the biochemical properties and crystallographic structure of the LDH-like MalDH from the hyperthermophilic archaeon Ignicoccus islandicus (I. isl) were determined. I. isl MalDH recognizes oxaloacetate as main substrate, but it is also able to use pyruvate. Surprisingly, with pyruvate, the enzymatic activity profile looks like that of allosteric LDHs, suggesting a hidden allosteric capacity in a MalDH. The I. isl MalDH tetrameric structure in the apo state is considerably different from those of canonical LDH-like MalDHs and LDHs, representing an alternative oligomeric organization. A comparison with MalDH and LDH counterparts provides strong evidence that the divergence between allosteric and non-allosteric members of the superfamily involves homologs with intermediate, atypical properties.
Collapse
Affiliation(s)
- Jennifer Roche
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Eric Girard
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Caroline Mas
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | | |
Collapse
|
13
|
Serrano-Hervás E, Casadevall G, Garcia-Borràs M, Feixas F, Osuna S. Epoxide Hydrolase Conformational Heterogeneity for the Resolution of Bulky Pharmacologically Relevant Epoxide Substrates. Chemistry 2018; 24:12254-12258. [DOI: 10.1002/chem.201801068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Eila Serrano-Hervás
- Laboratori de Bioquímica Computacional (CompBioLab); Institut de Química Computacional i Catàlisi (IQCC); Departament de Química; Universitat de Girona (UdG); Carrer Maria Aurèlia Capmany 69 17003 Girona Spain
| | - Guillem Casadevall
- Laboratori de Bioquímica Computacional (CompBioLab); Institut de Química Computacional i Catàlisi (IQCC); Departament de Química; Universitat de Girona (UdG); Carrer Maria Aurèlia Capmany 69 17003 Girona Spain
| | - Marc Garcia-Borràs
- Department of Chemistry and Biochemistry; University of California, Los Angeles (UCLA); 607 Charles E. Young Drive Los Angeles CA 90095 USA
| | - Ferran Feixas
- Laboratori de Bioquímica Computacional (CompBioLab); Institut de Química Computacional i Catàlisi (IQCC); Departament de Química; Universitat de Girona (UdG); Carrer Maria Aurèlia Capmany 69 17003 Girona Spain
| | - Sílvia Osuna
- Laboratori de Bioquímica Computacional (CompBioLab); Institut de Química Computacional i Catàlisi (IQCC); Departament de Química; Universitat de Girona (UdG); Carrer Maria Aurèlia Capmany 69 17003 Girona Spain
- ICREA; Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
14
|
Romero-Rivera A, Garcia-Borràs M, Osuna S. Role of Conformational Dynamics in the Evolution of Retro-Aldolase Activity. ACS Catal 2017; 7:8524-8532. [PMID: 29226011 PMCID: PMC5716449 DOI: 10.1021/acscatal.7b02954] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/19/2017] [Indexed: 12/19/2022]
Abstract
![]()
Enzymes exist as
ensembles of conformations that are important
for function. Tuning these populations of conformational states through
mutation enables evolution toward additional activities. Here we computationally
evaluate the population shifts induced by distal and active site mutations
in a family of computationally designed and experimentally optimized
retro-aldolases. The conformational landscape of these enzymes was
significantly altered during evolution, as pre-existing catalytically
active conformational substates became major states in the most evolved
variants. We further demonstrate that key residues responsible for
these substate conversions can be predicted computationally. Significantly,
the identified residues coincide with those positions mutated in the
laboratory evolution experiments. This study establishes that distal
mutations that affect enzyme catalytic activity can be predicted computationally
and thus provides the enzyme (re)design field with a rational strategy
to determine promising sites for enhancing activity through mutation.
Collapse
Affiliation(s)
- Adrian Romero-Rivera
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Spain
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), 607 Charles E. Young Drive, Los Angeles, California 90095, United States
| | - Sílvia Osuna
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Spain
| |
Collapse
|
15
|
Katava M, Maccarini M, Villain G, Paciaroni A, Sztucki M, Ivanova O, Madern D, Sterpone F. Thermal activation of 'allosteric-like' large-scale motions in a eukaryotic Lactate Dehydrogenase. Sci Rep 2017; 7:41092. [PMID: 28112231 PMCID: PMC5253740 DOI: 10.1038/srep41092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/14/2016] [Indexed: 01/22/2023] Open
Abstract
Conformational changes occurring during the enzymatic turnover are essential for the regulation of protein functionality. Individuating the protein regions involved in these changes and the associated mechanical modes is still a challenge at both experimental and theoretical levels. We present here a detailed investigation of the thermal activation of the functional modes and conformational changes in a eukaryotic Lactate Dehydrogenase enzyme (LDH). Neutron Spin Echo spectroscopy and Molecular Dynamics simulations were used to uncover the characteristic length- and timescales of the LDH nanoscale motions in the apo state. The modes involving the catalytic loop and the mobile region around the binding site are activated at room temperature, and match the allosteric reorganisation of bacterial LDHs. In a temperature window of about 15 degrees, these modes render the protein flexible enough and capable of reorganising the active site toward reactive configurations. On the other hand an excess of thermal excitation leads to the distortion of the protein matrix with a possible anti-catalytic effect. Thus, the temperature activates eukaryotic LDHs via the same conformational changes observed in the allosteric bacterial LDHs. Our investigation provides an extended molecular picture of eukaryotic LDH's conformational landscape that enriches the static view based on crystallographic studies alone.
Collapse
Affiliation(s)
- Marina Katava
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Marco Maccarini
- Univ. Grenoble Alpes - Laboratoire TIMC/IMAG UMR CNRS 5525, Grenoble Pavillon Taillefer Domaine de la merci, 38700 La Tronche, France
| | - Guillaume Villain
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Alessandro Paciaroni
- Dipartimento di Fisica e Geologia, Universitá di Perugia, via A. Pascoli, 06123 Perugia, Italy
| | - Michael Sztucki
- European Syncrotron Radiation Facility, 6, rue Jules Horowitz, 38042, Grenoble, France
| | - Oxana Ivanova
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Garching, Germany
| | - Dominique Madern
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
16
|
Campbell E, Kaltenbach M, Correy GJ, Carr PD, Porebski BT, Livingstone EK, Afriat-Jurnou L, Buckle AM, Weik M, Hollfelder F, Tokuriki N, Jackson CJ. The role of protein dynamics in the evolution of new enzyme function. Nat Chem Biol 2016; 12:944-950. [PMID: 27618189 DOI: 10.1038/nchembio.2175] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/17/2016] [Indexed: 11/09/2022]
Abstract
Enzymes must be ordered to allow the stabilization of transition states by their active sites, yet dynamic enough to adopt alternative conformations suited to other steps in their catalytic cycles. The biophysical principles that determine how specific protein dynamics evolve and how remote mutations affect catalytic activity are poorly understood. Here we examine a 'molecular fossil record' that was recently obtained during the laboratory evolution of a phosphotriesterase from Pseudomonas diminuta to an arylesterase. Analysis of the structures and dynamics of nine protein variants along this trajectory, and three rationally designed variants, reveals cycles of structural destabilization and repair, evolutionary pressure to 'freeze out' unproductive motions and sampling of distinct conformations with specific catalytic properties in bi-functional intermediates. This work establishes that changes to the conformational landscapes of proteins are an essential aspect of molecular evolution and that change in function can be achieved through enrichment of preexisting conformational sub-states.
Collapse
Affiliation(s)
- Eleanor Campbell
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Miriam Kaltenbach
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Galen J Correy
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Paul D Carr
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Benjamin T Porebski
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Emma K Livingstone
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Livnat Afriat-Jurnou
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Ashley M Buckle
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Martin Weik
- Institut de Biologie Structurale, University Grenoble Alpes, Commissariat à l'Energie Atomique and Centre National de la Recherche Scientifique, Grenoble, France
| | | | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, Australia
| |
Collapse
|
17
|
Taguchi H. The Simple and Unique Allosteric Machinery of Thermus caldophilus Lactate Dehydrogenase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 925:117-145. [DOI: 10.1007/5584_2016_171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Molecular adaptation and salt stress response of Halobacterium salinarum cells revealed by neutron spectroscopy. Extremophiles 2015; 19:1099-107. [PMID: 26376634 DOI: 10.1007/s00792-015-0782-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
Halobacterium salinarum is an extreme halophile archaeon with an absolute requirement for a multimolar salt environment. It accumulates molar concentrations of KCl in the cytosol to counterbalance the external osmotic pressure imposed by the molar NaCl. As a consequence, cytosolic proteins are permanently exposed to low water activity and highly ionic conditions. In non-adapted systems, such conditions would promote protein aggregation, precipitation, and denaturation. In contrast, in vitro studies showed that proteins from extreme halophilic cells are themselves obligate halophiles. In this paper, adaptation via dynamics to low-salt stress in H. salinarum cells was measured by neutron scattering experiments coupled with microbiological characterization. The molecular dynamic properties of a proteome represent a good indicator for environmental adaptation and the neutron/microbiology approach has been shown to be well tailored to characterize these modifications. In their natural setting, halophilic organisms often have to face important variations in environmental salt concentration. The results showed deleterious effects already occur in the H. salinarum proteome, even when the external salt concentration is still relatively high, suggesting the onset of survival mechanisms quite early when the environmental salt concentration decreases.
Collapse
|
19
|
Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 2015; 13:1925-65. [PMID: 25854643 PMCID: PMC4413194 DOI: 10.3390/md13041925] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 12/26/2022] Open
Abstract
The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons. Extremozymes are adapted to work in harsh physical-chemical conditions and their use in various industrial applications such as the biofuel, pharmaceutical, fine chemicals and food industries has increased. The understanding of the specific factors that confer the ability to withstand extreme habitats on such enzymes has become a priority for their biotechnological use. The most studied marine extremophiles are prokaryotes and in this review, we present the most studied archaea and bacteria extremophiles and their hydrolases, and discuss their use for industrial applications.
Collapse
|
20
|
Ikehara Y, Arai K, Furukawa N, Ohno T, Miyake T, Fushinobu S, Nakajima M, Miyanaga A, Taguchi H. The core of allosteric motion in Thermus caldophilus L-lactate dehydrogenase. J Biol Chem 2014; 289:31550-64. [PMID: 25258319 DOI: 10.1074/jbc.m114.599092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
For Thermus caldophilus L-lactate dehydrogenase (TcLDH), fructose 1,6-bisphosphate (FBP) reduced the pyruvate S(0.5) value 10(3)-fold and increased the V(max) value 4-fold at 30 °C and pH 7.0, indicating that TcLDH has a much more T state-sided allosteric equilibrium than Thermus thermophilus L-lactate dehydrogenase, which has only two amino acid replacements, A154G and H179Y. The inactive (T) and active (R) state structures of TcLDH were determined at 1.8 and 2.0 Å resolution, respectively. The structures indicated that two mobile regions, MR1 (positions 172-185) and MR2 (positions 211-221), form a compact core for allosteric motion, and His(179) of MR1 forms constitutive hydrogen bonds with MR2. The Q4(R) mutation, which comprises the L67E, H68D, E178K, and A235R replacements, increased V(max) 4-fold but reduced pyruvate S(0.5) only 5-fold in the reaction without FBP. In contrast, the P2 mutation, comprising the R173Q and R216L replacements, did not markedly increase V(max), but 10(2)-reduced pyruvate S(0.5), and additively increased the FBP-independent activity of the Q4(R) enzyme. The two types of mutation consistently increased the thermal stability of the enzyme. The MR1-MR2 area is a positively charged cluster, and its center approaches another positively charged cluster (N domain cluster) across the Q-axis subunit interface by 5 Å, when the enzyme undergoes the T to R transition. Structural and kinetic analyses thus revealed the simple and unique allosteric machinery of TcLDH, where the MR1-MR2 area pivotally moves during the allosteric motion and mediates the allosteric equilibrium through electrostatic repulsion within the protein molecule.
Collapse
Affiliation(s)
- Yoko Ikehara
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kazuhito Arai
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Nayuta Furukawa
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tadashi Ohno
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tatsuya Miyake
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shinya Fushinobu
- the Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan, and
| | - Masahiro Nakajima
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Akimasa Miyanaga
- the Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Hayao Taguchi
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan,
| |
Collapse
|
21
|
Pandya C, Farelli JD, Dunaway-Mariano D, Allen KN. Enzyme promiscuity: engine of evolutionary innovation. J Biol Chem 2014; 289:30229-30236. [PMID: 25210039 DOI: 10.1074/jbc.r114.572990] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Catalytic promiscuity and substrate ambiguity are keys to evolvability, which in turn is pivotal to the successful acquisition of novel biological functions. Action on multiple substrates (substrate ambiguity) can be harnessed for performance of functions in the cell that supersede catalysis of a single metabolite. These functions include proofreading, scavenging of nutrients, removal of antimetabolites, balancing of metabolite pools, and establishing system redundancy. In this review, we present examples of enzymes that perform these cellular roles by leveraging substrate ambiguity and then present the structural features that support both specificity and ambiguity. We focus on the phosphatases of the haloalkanoate dehalogenase superfamily and the thioesterases of the hotdog fold superfamily.
Collapse
Affiliation(s)
- Chetanya Pandya
- Bioinformatics Graduate Program and Boston University, Boston, Massachusetts 02215
| | - Jeremiah D Farelli
- Department of Chemistry, Boston University, Boston, Massachusetts 02215 and
| | - Debra Dunaway-Mariano
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131.
| | - Karen N Allen
- Bioinformatics Graduate Program and Boston University, Boston, Massachusetts 02215; Department of Chemistry, Boston University, Boston, Massachusetts 02215 and.
| |
Collapse
|
22
|
The universality of enzymatic rate-temperature dependency. Trends Biochem Sci 2013; 39:1-7. [PMID: 24315123 DOI: 10.1016/j.tibs.2013.11.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 11/21/2022]
Abstract
Organismal adaptation to extreme temperatures yields enzymes with distinct configurational stabilities, including thermophilic and psychrophilic enzymes, which are adapted to high and low temperatures, respectively. These enzymes are widely assumed to also have unique rate-temperature dependencies. Thermophilic enzymes, for example, are considered optimal at high temperatures and effectively inactive at low temperatures due to excess rigidity. Surveying published data, we find that thermophilic, mesophilic, and psychrophilic enzymes exhibit indistinguishable rate-temperature dependencies. Furthermore, given the nonenzymatic rate-temperature dependency, all enzymes, regardless of their operation temperatures, become >10-fold less powerful catalysts per 25 °C temperature increase. Among other factors, this loss of rate acceleration may be ascribed to thermally induced vibrations compromising the active-site catalytic configuration, suggesting that many enzymes are in fact insufficiently rigid.
Collapse
|
23
|
Rusevich L, García Sakai V, Franzetti B, Johnson M, Natali F, Pellegrini E, Peters J, Pieper J, Weik M, Zaccai G. Perspectives in biological physics: the nDDB project for a neutron Dynamics Data Bank for biological macromolecules. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:80. [PMID: 23884625 DOI: 10.1140/epje/i2013-13080-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/13/2013] [Accepted: 02/19/2013] [Indexed: 06/02/2023]
Abstract
Neutron spectroscopy provides experimental data on time-dependent trajectories, which can be directly compared to molecular dynamics simulations. Its importance in helping us to understand biological macromolecules at a molecular level is demonstrated by the results of a literature survey over the last two to three decades. Around 300 articles in refereed journals relate to neutron scattering studies of biological macromolecular dynamics, and the results of the survey are presented here. The scope of the publications ranges from the general physics of protein and solvent dynamics, to the biologically relevant dynamics-function relationships in live cells. As a result of the survey we are currently setting up a neutron Dynamics Data Bank (nDDB) with the aim to make the neutron data on biological systems widely available. This will benefit, in particular, the MD simulation community to validate and improve their force fields. The aim of the database is to expose and give easy access to a body of experimental data to the scientific community. The database will be populated with as much of the existing data as possible. In the future it will give value, as part of a bigger whole, to high throughput data, as well as more detailed studies. A range and volume of experimental data will be of interest in determining how quantitatively MD simulations can reproduce trends across a range of systems and to what extent such trends may depend on sample preparation and data reduction and analysis methods. In this context, we strongly encourage researchers in the field to deposit their data in the nDDB.
Collapse
Affiliation(s)
- Leonid Rusevich
- ILL, 6, rue Jules Horowitz, BP 156, F-38042 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Detection and Characterisation of Mutations Responsible for Allele-Specific Protein Thermostabilities at the Mn-Superoxide Dismutase Gene in the Deep-Sea Hydrothermal Vent Polychaete Alvinella pompejana. J Mol Evol 2013; 76:295-310. [DOI: 10.1007/s00239-013-9559-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 03/27/2013] [Indexed: 12/19/2022]
|
25
|
|
26
|
Probing the mutational interplay between primary and promiscuous protein functions: a computational-experimental approach. PLoS Comput Biol 2012; 8:e1002558. [PMID: 22719242 PMCID: PMC3375227 DOI: 10.1371/journal.pcbi.1002558] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 04/29/2012] [Indexed: 12/16/2022] Open
Abstract
Protein promiscuity is of considerable interest due its role in adaptive metabolic plasticity, its fundamental connection with molecular evolution and also because of its biotechnological applications. Current views on the relation between primary and promiscuous protein activities stem largely from laboratory evolution experiments aimed at increasing promiscuous activity levels. Here, on the other hand, we attempt to assess the main features of the simultaneous modulation of the primary and promiscuous functions during the course of natural evolution. The computational/experimental approach we propose for this task involves the following steps: a function-targeted, statistical coupling analysis of evolutionary data is used to determine a set of positions likely linked to the recruitment of a promiscuous activity for a new function; a combinatorial library of mutations on this set of positions is prepared and screened for both, the primary and the promiscuous activities; a partial-least-squares reconstruction of the full combinatorial space is carried out; finally, an approximation to the Pareto set of variants with optimal primary/promiscuous activities is derived. Application of the approach to the emergence of folding catalysis in thioredoxin scaffolds reveals an unanticipated scenario: diverse patterns of primary/promiscuous activity modulation are possible, including a moderate (but likely significant in a biological context) simultaneous enhancement of both activities. We show that this scenario can be most simply explained on the basis of the conformational diversity hypothesis, although alternative interpretations cannot be ruled out. Overall, the results reported may help clarify the mechanisms of the evolution of new functions. From a different viewpoint, the partial-least-squares-reconstruction/Pareto-set-prediction approach we have introduced provides the computational basis for an efficient directed-evolution protocol aimed at the simultaneous enhancement of several protein features and should therefore open new possibilities in the engineering of multi-functional enzymes. Interpretations of evolutionary processes at the molecular level have been determined to a significant extent by the concept of “trade-off”, the idea that improving a given feature of a protein molecule by mutation will likely bring about deterioration in other features. For instance, if a protein is able to carry out two different molecular tasks based on the same functional site (competing tasks), optimization for one task could be naively expected to impair its performance for the other task. In this work, we report a computational/experimental approach to assess the potential patterns of modulation of two competing molecular tasks in the course of natural evolution. Contrary to the naïve expectation, we find that diverse modulation patterns are possible, including the simultaneous optimization of the two tasks. We show, however, that this simultaneous optimization is not in conflict with the trade-offs expected for two competing tasks: using the language of the theory of economic efficiency, trade-offs are realized in the Pareto set of optimal variants for the two tasks, while most protein variants do not belong to such Pareto set. That is, most protein variants are not Pareto-efficient and can potentially be improved in terms of several features.
Collapse
|
27
|
Cipolla A, Delbrassine F, Da Lage JL, Feller G. Temperature adaptations in psychrophilic, mesophilic and thermophilic chloride-dependent alpha-amylases. Biochimie 2012; 94:1943-50. [PMID: 22634328 DOI: 10.1016/j.biochi.2012.05.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/12/2012] [Indexed: 11/15/2022]
Abstract
The functional and structural adaptations to temperature have been addressed in homologous chloride-dependent α-amylases from a psychrophilic Antarctic bacterium, the ectothermic fruit fly, the homeothermic pig and from a thermophilic actinomycete. This series covers nearly all temperatures encountered by living organisms. We report a striking continuum in the functional properties of these enzymes coupled to their structural stability and related to the thermal regime of the source organism. In particular, thermal stability recorded by intrinsic fluorescence, circular dichroism and differential scanning calorimetry appears to be a compromise between the requirement for a stable native state and the proper structural dynamics to sustain the function at the environmental/physiological temperatures. The thermodependence of activity, the kinetic parameters, the activations parameters and fluorescence quenching support these activity-stability relationships in the investigated α-amylases.
Collapse
Affiliation(s)
- Alexandre Cipolla
- Laboratory of Biochemistry, Center for Protein Engineering, University of Liège, B-4000 Liège-Sart Tilman, Belgium
| | | | | | | |
Collapse
|