1
|
Judd EN, Gilchrist AR, Meyerson NR, Sawyer SL. Positive natural selection in primate genes of the type I interferon response. BMC Ecol Evol 2021; 21:65. [PMID: 33902453 PMCID: PMC8074226 DOI: 10.1186/s12862-021-01783-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/29/2021] [Indexed: 12/28/2022] Open
Abstract
Background The Type I interferon response is an important first-line defense against viruses. In turn, viruses antagonize (i.e., degrade, mis-localize, etc.) many proteins in interferon pathways. Thus, hosts and viruses are locked in an evolutionary arms race for dominance of the Type I interferon pathway. As a result, many genes in interferon pathways have experienced positive natural selection in favor of new allelic forms that can better recognize viruses or escape viral antagonists. Here, we performed a holistic analysis of selective pressures acting on genes in the Type I interferon family. We initially hypothesized that the genes responsible for inducing the production of interferon would be antagonized more heavily by viruses than genes that are turned on as a result of interferon. Our logic was that viruses would have greater effect if they worked upstream of the production of interferon molecules because, once interferon is produced, hundreds of interferon-stimulated proteins would activate and the virus would need to counteract them one-by-one.
Results We curated multiple sequence alignments of primate orthologs for 131 genes active in interferon production and signaling (herein, “induction” genes), 100 interferon-stimulated genes, and 100 randomly chosen genes. We analyzed each multiple sequence alignment for the signatures of recurrent positive selection. Counter to our hypothesis, we found the interferon-stimulated genes, and not interferon induction genes, are evolving significantly more rapidly than a random set of genes. Interferon induction genes evolve in a way that is indistinguishable from a matched set of random genes (22% and 18% of genes bear signatures of positive selection, respectively). In contrast, interferon-stimulated genes evolve differently, with 33% of genes evolving under positive selection and containing a significantly higher fraction of codons that have experienced selection for recurrent replacement of the encoded amino acid. Conclusion Viruses may antagonize individual products of the interferon response more often than trying to neutralize the system altogether.
Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01783-z.
Collapse
Affiliation(s)
- Elena N Judd
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
| | - Alison R Gilchrist
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
| | - Nicholas R Meyerson
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
| | - Sara L Sawyer
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA.
| |
Collapse
|
2
|
Panda D, Gjinaj E, Bachu M, Squire E, Novatt H, Ozato K, Rabin RL. IRF1 Maintains Optimal Constitutive Expression of Antiviral Genes and Regulates the Early Antiviral Response. Front Immunol 2019; 10:1019. [PMID: 31156620 PMCID: PMC6529937 DOI: 10.3389/fimmu.2019.01019] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
Viral defense at mucosal sites depends on interferons (IFN) and IFN stimulated genes (ISGs), either of which may be constitutively expressed to maintain an “antiviral state” (AVS). However, the mechanisms that govern the AVS are poorly defined. Using a BEAS-2B respiratory epithelial cell line deficient in IRF1, we demonstrate higher susceptibility to infection with vesicular stomatitis virus (VSV) and influenza virus. IRF1-mediated restriction of VSV is IFN-independent, as blockade of types I and III IFNs and JAK-STAT signaling before infection did not affect VSV infection of either parent or IRF1 KO cells. Transcriptome analysis revealed that IRF1 regulates constitutive expression of ~300 genes, including antiviral ISGs: OAS2, BST2, and RNASEL and knockdown of any of these IRF1-dependent genes increased VSV infection. Additionally, IRF1 enhances rapid expression of IFNβ and IFNλ after stimulation with poly I:C and also regulates ISG expression. Mechanistically, IRF1 enhances recruitment of BRD4 to promotor-enhancer regions of ISGs for rapid expression and maintains levels of histone H3K4me1 for optimal constitutive expression. Finally, IRF1 also regulates constitutive expression of TLR2 and TLR3 and promotes signaling through these pattern recognition receptors (PRR). These data reveal multiple roles for IRF1 toward effective anti-viral responses by maintaining IFN-independent constitutive expression of anti-viral ISGs and supporting early IFN-dependent responses to PRR stimulation.
Collapse
Affiliation(s)
- Debasis Panda
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Erisa Gjinaj
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Mahesh Bachu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Erica Squire
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Hilary Novatt
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Keiko Ozato
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Ronald L Rabin
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
3
|
Meng K, Wu Y. Footprints of divergent evolution in two Na+/H+ type antiporter gene families (NHX and SOS1) in the genus Populus. TREE PHYSIOLOGY 2018; 38:813-824. [PMID: 29394412 DOI: 10.1093/treephys/tpx173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/19/2017] [Indexed: 05/19/2023]
Abstract
Populus, a deciduous tree species of major economic and ecological value, grows across the range in which trees are distributed in the Northern Hemisphere. Patterns of DNA variation are often used to identify the evolutionary forces shaping the genotypes of distinctive species lineages. Sodium/hydrogen (Na+/H+) antiporter genes have been shown to play a central role in plant salt tolerance. Here, we analyzed DNA nucleotide polymorphisms in the Na+/H+ antiporter (NHX and SOS1) gene families across 30 different Populus species using several methods of phylogenetic analysis and functional verification. NHX and SOS1 gene families in the genus Populus have expanded from the state in their common ancestors by duplication events, and their distinct lineages have been retained. Signals of positive selection at certain amino acid sites in different members of the Na/H antiporter gene families show that the dynamics that drive the evolution of each gene vary. SOS1 has undergone duplication in Populus euphratica and been subjected to adaptive evolution in section Turanga; the paralog of PeSOS1 (PeSOS1.2) can complement the Escherichia coli mutant EP432; and the expression pattern of PeSOS1.2 is different from that of PeSOS1, a fact which may have been beneficial for P. euphratica, conferring a fitness advantage in saline habitats. The divergent evolution of the individual members of the NHX and SOS1 gene families is likely to have been influenced by the varied ecological and environmental niches occupied by the different poplar species, giving rise to evolutionary footprints that reflect the specific functions and subcellular localizations of the proteins encoded by these genes.
Collapse
Affiliation(s)
- Kuibin Meng
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuxia Wu
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Mozzi A, Pontremoli C, Forni D, Clerici M, Pozzoli U, Bresolin N, Cagliani R, Sironi M. OASes and STING: adaptive evolution in concert. Genome Biol Evol 2015; 7:1016-32. [PMID: 25752600 PMCID: PMC4419793 DOI: 10.1093/gbe/evv046] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OAS (2′–5′-oligoadenylate synthases) proteins and cyclic GMP–AMP synthase (cGAS, gene symbol: MB21D1) patrol the cytoplasm for the presence of foreign nucleic acids. Upon binding to double-stranded RNA or double-stranded DNA, OAS proteins and cGAS produce nucleotide second messengers to activate RNase L and STING (stimulator of interferon genes, gene symbol: TMEM173), respectively; this leads to the initiation of antiviral responses. We analyzed the evolutionary history of the MB21D1–TMEM173 and OAS–RNASEL axes in primates and bats and found evidence of widespread positive selection in both orders. In TMEM173, residue 230, a major determinant of response to natural ligands and to mimetic drugs (e.g., DMXAA), was positively selected in Primates and Chiroptera. In both orders, selection also targeted an α-helix/loop element in RNase L that modulates the enzyme preference for single-stranded RNA versus stem loops. Analysis of positively selected sites in OAS1, OAS2, and MB21D1 revealed parallel evolution, with the corresponding residues being selected in different genes. As this cannot result from gene conversion, these data suggest that selective pressure acting on OAS and MB21D1 genes is related to nucleic acid recognition and to the specific mechanism of enzyme activation, which requires a conformational change. Finally, a population genetics-phylogenetics analysis in humans, chimpanzees, and gorillas detected several positively selected sites in most genes. Data herein shed light into species-specific differences in infection susceptibility and in response to synthetic compounds, with relevance for the design of synthetic compounds as vaccine adjuvants.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, Bosisio Parini, Italy
| | - Chiara Pontremoli
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Italy Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Uberto Pozzoli
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, Bosisio Parini, Italy
| | - Nereo Bresolin
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, Bosisio Parini, Italy Department of Physiopathology and Transplantation, Dino Ferrari Centre, University of Milan, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, Bosisio Parini, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, Bosisio Parini, Italy
| |
Collapse
|
5
|
Andolfo G, Ruocco M, Di Donato A, Frusciante L, Lorito M, Scala F, Ercolano MR. Genetic variability and evolutionary diversification of membrane ABC transporters in plants. BMC PLANT BIOLOGY 2015; 15:51. [PMID: 25850033 PMCID: PMC4358917 DOI: 10.1186/s12870-014-0323-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/06/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND ATP-binding cassette proteins have been recognized as playing a crucial role in the regulation of growth and resistance processes in all kingdoms of life. They have been deeply studied in vertebrates because of their role in drug resistance, but much less is known about ABC superfamily functions in plants. RESULTS Recently released plant genome sequences allowed us to identify 803 ABC transporters in four vascular plants (Oryza. sativa, Solanum lycopersicum, Solanum tuberosum and Vitis vinifera) and 76 transporters in the green alga Volvox carteri, by comparing them with those reannotated in Arabidopsis thaliana and the yeast Saccharomyces cerevisiae. Retrieved proteins have been phylogenetically analysed to infer orthologous relationships. Most orthologous relationships in the A, D, E and F subfamilies were found, and interesting expansions within the ABCG subfamily were observed and discussed. A high level of purifying selection is acting in the five ABC subfamilies A, B, C, D and E. However, evolutionary rates of recent duplicate genes could influence vascular plant genome diversification. The transcription profiles of ABC genes within tomato organs revealed a broad functional role for some transporters and a more specific activity for others, suggesting the presence of key ABC regulators in tomato. CONCLUSIONS The findings achieved in this work could contribute to address several biological questions concerning the evolution of the relationship between genomes of different species. Plant ABC protein inventories obtained could be a valuable tool both for basic and applied studies. Indeed, interpolation of the putative role of gene functions can accelerate the discovering of new ABC superfamily members.
Collapse
Affiliation(s)
- Giuseppe Andolfo
- />Department of Agricultural Sciences, University of Naples ‘Federico II’, Via Universita’ 100, 80055 Portici, Italy
| | - Michelina Ruocco
- />CNR – Istituto per la Protezione Sostenibile delle Piante (IPSP-CNR), Portici, Italy
| | - Antimo Di Donato
- />Department of Agricultural Sciences, University of Naples ‘Federico II’, Via Universita’ 100, 80055 Portici, Italy
| | - Luigi Frusciante
- />Department of Agricultural Sciences, University of Naples ‘Federico II’, Via Universita’ 100, 80055 Portici, Italy
| | - Matteo Lorito
- />Department of Agricultural Sciences, University of Naples ‘Federico II’, Via Universita’ 100, 80055 Portici, Italy
| | - Felice Scala
- />Department of Agricultural Sciences, University of Naples ‘Federico II’, Via Universita’ 100, 80055 Portici, Italy
| | - Maria Raffaella Ercolano
- />Department of Agricultural Sciences, University of Naples ‘Federico II’, Via Universita’ 100, 80055 Portici, Italy
| |
Collapse
|
6
|
Patterns of positive selection of the myogenic regulatory factor gene family in vertebrates. PLoS One 2014; 9:e92873. [PMID: 24651579 PMCID: PMC3961423 DOI: 10.1371/journal.pone.0092873] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 02/26/2014] [Indexed: 11/19/2022] Open
Abstract
The functional divergence of transcriptional factors is critical in the evolution of transcriptional regulation. However, the mechanism of functional divergence among these factors remains unclear. Here, we performed an evolutionary analysis for positive selection in members of the myogenic regulatory factor (MRF) gene family of vertebrates. We selected 153 complete vertebrate MRF nucleotide sequences from our analyses, which revealed substantial evidence of positive selection. Here, we show that sites under positive selection were more frequently detected and identified from the genes encoding the myogenic differentiation factors (MyoG and Myf6) than the genes encoding myogenic determination factors (Myf5 and MyoD). Additionally, the functional divergence within the myogenic determination factors or differentiation factors was also under positive selection pressure. The positive selection sites were more frequently detected from MyoG and MyoD than Myf6 and Myf5, respectively. Amino acid residues under positive selection were identified mainly in their transcription activation domains and on the surface of protein three-dimensional structures. These data suggest that the functional gain and divergence of myogenic regulatory factors were driven by distinct positive selection of their transcription activation domains, whereas the function of the DNA binding domains was conserved in evolution. Our study evaluated the mechanism of functional divergence of the transcriptional regulation factors within a family, whereby the functions of their transcription activation domains diverged under positive selection during evolution.
Collapse
|
7
|
Rabiau N, Dantal Y, Guy L, Ngollo M, Dagdemir A, Kemeny JL, Terris B, Vieillefond A, Boiteux JP, Bignon YJ, Bernard-Gallon D. Gene panel model predictive of outcome in patients with prostate cancer. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:407-13. [PMID: 23758475 DOI: 10.1089/omi.2012.0124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In men at high risk for prostate cancer, established clinical and pathological parameters provide only limited prognostic information. Here we analyzed a French cohort of 103 prostate cancer patients and developed a gene panel model predictive of outcome in this group of patients. The model comprised of a 15-gene TaqMan Low-Density Array (TLDA) card, with gene expressions compared to a standardized reference. The RQ value for each gene was calculated, and a scoring system was developed. Summing all the binary scores (0 or 1) corresponding to the 15 genes, a global score is obtained between 0 and 15. This global score can be compared to Gleason score (0 to 10) by recalculating it into a 0-10 scaled score. A scaled score ≥2 suggested that the patient is suffering from a prostate cancer, and a scaled score ≥7 flagged aggressive cancer. Statistical analyses demonstrated a strongly significant linear correlation (p=3.50E-08) between scaled score and Gleason score for this prostate cancer cohort (N=103). These results support the capacity of this designed 15 target gene TLDA card approach to predict outcome in prostate cancer, opening up a new avenue for personalized medicine through future independent replication and applications for rapid identification of aggressive prostate cancer phenotypes for early intervention.
Collapse
Affiliation(s)
- Nadège Rabiau
- Department of Oncogenetics, Centre Jean Perrin, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nokes BT, Cunliffe HE, Lafleur B, Mount DW, Livingston RB, Futscher BW, Lang JE. In Vitro Assessment of the Inflammatory Breast Cancer Cell Line SUM 149: Discovery of 2 Single Nucleotide Polymorphisms in the RNase L Gene. J Cancer 2013; 4:104-16. [PMID: 23386909 PMCID: PMC3563072 DOI: 10.7150/jca.5002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/12/2012] [Indexed: 01/04/2023] Open
Abstract
Background: Inflammatory breast cancer (IBC) is a rare, highly aggressive form of breast cancer. The mechanism of IBC carcinogenesis remains unknown. We sought to evaluate potential genetic risk factors for IBC and whether or not the IBC cell lines SUM149 and SUM190 demonstrated evidence of viral infection. Methods: We performed single nucleotide polymorphism (SNP) genotyping for 2 variants of the ribonuclease (RNase) L gene that have been correlated with the risk of prostate cancer due to a possible viral etiology. We evaluated dose-response to treatment with interferon-alpha (IFN-α); and assayed for evidence of the putative human mammary tumor virus (HMTV, which has been implicated in IBC) in SUM149 cells. A bioinformatic analysis was performed to evaluate expression of RNase L in IBC and non-IBC. Results: 2 of 2 IBC cell lines were homozygous for RNase L common missense variants 462 and 541; whereas 2 of 10 non-IBC cell lines were homozygous positive for the 462 variant (p= 0.09) and 0 of 10 non-IBC cell lines were homozygous positive for the 541 variant (p = 0.015). Our real-time polymerase chain reaction (RT-PCR) and Southern blot analysis for sequences of HMTV revealed no evidence of the putative viral genome. Conclusion: We discovered 2 SNPs in the RNase L gene that were homozygously present in IBC cell lines. The 462 variant was absent in non-IBC lines. Our discovery of these SNPs present in IBC cell lines suggests a possible biomarker for risk of IBC. We found no evidence of HMTV in SUM149 cells. A query of a panel of human IBC and non-IBC samples showed no difference in RNase L expression. Further studies of the RNase L 462 and 541 variants in IBC tissues are warranted to validate our in vitro findings.
Collapse
|