1
|
Lu J, Huang X. Identification, expression profiling and potential functional roles of nuclear receptors in the social aphid Pseudoregma bambucicola. BMC Genomics 2025; 26:518. [PMID: 40399792 PMCID: PMC12093900 DOI: 10.1186/s12864-025-11724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 05/16/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND Nuclear receptors (NRs) constitute a superfamily of transcription factors that regulate diverse biological processes. In insects, NRs not only govern essential physiological functions including metabolism, development, and reproduction, but also play pivotal roles in regulating caste differentiation and division of labor within social insect colonies. Pseudoregma bambucicola is a species of social aphid in which adults exhibit a specialized reproductive division of labor. This unique system produces first-instar nymphs and soldiers, which share an identical genetic background yet exhibit distinct morphological and behavioral traits. Although NRs exhibit pleiotropic regulatory capacities, their roles in the unique developmental patterns of P. bambucicola remain unclear. RESULTS This study identified 21 NR genes based on the genomic data of P. bambucicola and analyzed the duplication and loss events of these genes through phylogenetic analysis. Additionally, differential expression of NR genes was analyzed using transcriptomic data. The TLL exhibited significant differential expression in adults with distinct reproductive behaviors, suggesting its involvement in the regulation of reproductive division of labor. E75 and HNF4 were found to be important for the post-embryonic development of soldiers. Furthermore, quantitative real-time PCR confirmed caste-specific expression patterns of HR4 and HR39, indicating their potential involvement in morphological differentiation and developmental regulation among castes. CONCLUSIONS This study conducted bioinformatic identification of NR genes in the social aphid P. bambucicola, and investigated their potential roles in morphological differentiation and behavioral division through analysis of differential gene expression. The findings provide preliminary evidence for the functional significance of NR genes in social aphids, while offering novel insights for subsequent research exploration.
Collapse
Affiliation(s)
- Jianjun Lu
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaolei Huang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
2
|
Lu K, Cheng YB, Li YM, Li WR, Song YY, Zeng RS, Sun ZX. The KNRL nuclear receptor controls hydrolase-mediated vitellin breakdown during embryogenesis in the brown planthopper, Nilaparvata lugens. INSECT SCIENCE 2021; 28:1633-1650. [PMID: 33191602 DOI: 10.1111/1744-7917.12885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/19/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Vitellin (Vn) homeostasis is central to the fecundity of oviparous insects. Most studies have focused on the synthesis and transportation of Vn as a building block for developing eggs during vitellogenesis; however, less is known about how the utilization of this nutrient reserve affects embryonic development. Here, we show that the single ortholog of the knirps and knirps-like nuclear receptors, KNRL, negatively regulates Vn breakdown by suppressing the expression of hydrolase genes in the brown planthopper, Nilaparvata lugens. KNRL was highly expressed in the ovary of adult females, and knockdown of KNRL by RNA interference resulted in the acceleration of Vn breakdown and the inhibition of embryonic development. Transcriptome sequencing analysis revealed that numerous hydrolase genes, including cathepsins and trypsins were up-regulated after KNRL knockdown. At least eight of the nine significantly enriched Gene Ontology terms for the up-regulated genes were in proteolysis-related categories. The expression levels of five selected trypsin genes and the enzymatic activities of trypsin in the embryos were significantly increased after KNRL knockdown. Moreover, trypsin injection prolonged egg duration, delayed embryonic development, accelerated Vn breakdown and severely reduced egg hatchability, a pattern similar to that observed in KNRL-silenced N. lugens. These observations suggest that KNRL controls Vn breakdown in embryos via the transcriptional inhibition of hydrolases. Generally, this study provides a foundation for understanding how embryo nutrient reserves are mobilized during embryogenesis and identifies several genes and pathways that may prove valuable targets for pest control.
Collapse
Affiliation(s)
- Kai Lu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi-Bei Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi-Min Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wen-Ru Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan-Yuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ren-Sen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong-Xiang Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Chipman AD. The evolution of the gene regulatory networks patterning the Drosophila Blastoderm. Curr Top Dev Biol 2021; 139:297-324. [PMID: 32450964 DOI: 10.1016/bs.ctdb.2020.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Drosophila blastoderm gene regulatory network is one of the best studied networks in biology. It is composed of a series of tiered sub-networks that act sequentially to generate a primary segmental pattern. Many of these sub-networks have been studied in other arthropods, allowing us to reconstruct how each of them evolved over the transition from the arthropod ancestor to the situation seen in Drosophila today. I trace the evolution of each of these networks, showing how some of them have been modified significantly in Drosophila relative to the ancestral state while others are largely conserved across evolutionary timescales. I compare the putative ancestral arthropod segmentation network with that found in Drosophila and discuss how and why it has been modified throughout evolution, and to what extent this modification is unusual.
Collapse
Affiliation(s)
- Ariel D Chipman
- The Department of Ecology, Evolution & Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
| |
Collapse
|
4
|
Nascimento PVP, Almeida-Oliveira F, Macedo-Silva A, Ausina P, Motinha C, Sola-Penna M, Majerowicz D. Gene annotation of nuclear receptor superfamily genes in the kissing bug Rhodnius prolixus and the effects of 20-hydroxyecdysone on lipid metabolism. INSECT MOLECULAR BIOLOGY 2021; 30:297-314. [PMID: 33455040 DOI: 10.1111/imb.12696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/29/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The hormone 20-hydroxyecdysone is fundamental for regulating moulting and metamorphosis in immature insects, and it plays a role in physiological regulation in adult insects. This hormone acts by binding and activating a receptor, the ecdysone receptor, which is part of the nuclear receptor gene superfamily. Here, we analyse the genome of the kissing bug Rhodnius prolixus to annotate the nuclear receptor superfamily genes. The R. prolixus genome displays a possible duplication of the HNF4 gene. All the analysed insect organs express most nuclear receptor genes as shown by RT-PCR. The quantitative PCR analysis showed that the RpEcR and RpUSP genes are highly expressed in the testis, while the RpHNF4-1 and RpHNF4-2 genes are more active in the fat body and ovaries and in the anterior midgut, respectively. Feeding does not induce detectable changes in the expression of these genes in the fat body. However, the expression of the RpHNF4-2 gene is always higher than that of RpHNF4-1. Treating adult females with 20-hydroxyecdysone increased the amount of triacylglycerol stored in the fat bodies by increasing their lipogenic capacity. These results indicate that 20-hydroxyecdysone acts on the lipid metabolism of adult insects, although the underlying mechanism is not clear.
Collapse
Affiliation(s)
- P V P Nascimento
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - F Almeida-Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - A Macedo-Silva
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - P Ausina
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - C Motinha
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Sola-Penna
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - D Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Hu B, Huang H, Hu S, Ren M, Wei Q, Tian X, Esmail Abdalla Elzaki M, Bass C, Su J, Reddy Palli S. Changes in both trans- and cis-regulatory elements mediate insecticide resistance in a lepidopteron pest, Spodoptera exigua. PLoS Genet 2021; 17:e1009403. [PMID: 33690635 PMCID: PMC7978377 DOI: 10.1371/journal.pgen.1009403] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/19/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
The evolution of insect resistance to insecticides is frequently associated with overexpression of one or more cytochrome P450 enzyme genes. Although overexpression of CYP450 genes is a well-known mechanism of insecticide resistance, the underlying regulatory mechanisms are poorly understood. Here we uncovered the mechanisms of overexpression of the P450 gene, CYP321A8 in a major pest insect, Spodoptera exigua that is resistant to multiple insecticides. CYP321A8 confers resistance to organophosphate (chlorpyrifos) and pyrethroid (cypermethrin and deltamethrin) insecticides in this insect. Constitutive upregulation of transcription factors CncC/Maf are partially responsible for upregulated expression of CYP321A8 in the resistant strain. Reporter gene assays and site-directed mutagenesis analyses demonstrated that CncC/Maf enhanced the expression of CYP321A8 by binding to specific sites in the promoter. Additional cis-regulatory elements resulting from a mutation in the CYP321A8 promoter in the resistant strain facilitates the binding of the orphan nuclear receptor, Knirps, and enhances the promoter activity. These results demonstrate that two independent mechanisms; overexpression of transcription factors and mutations in the promoter region resulting in a new cis-regulatory element that facilitates binding of the orphan nuclear receptor are involved in overexpression of CYP321A8 in insecticide-resistant S. exigua. Insect pests developing resistance to insecticides used for their control is a major problem in agriculture. Many pests including the beet armyworm, Spodoptera exigua have developed resistance to insecticides used for their control. Information on the mechanisms of resistance would help in resistance management programs. Overexpression of detoxifying enzymes were associated with insecticide resistance, but their functions and regulatory mechanisms are still unidentified. The expression levels of P450 genes between susceptible and resistant strains of S. exigua were compared and CYP321A8 was identified as the major contributor to resistance to organophosphate and pyrethroid insecticides. Further studies uncovered two independent but synergistic mechanisms; constitutive upregulation of b-Zip transcription factors and mutations in the promoter that facilitates the binding of an orphan nuclear receptor, Knirps contributing to increase in the expression of CYP321A8 and resistance to multiple insecticides in S. exigua.
Collapse
Affiliation(s)
- Bo Hu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - He Huang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Songzhu Hu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Miaomiao Ren
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qi Wei
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiangrui Tian
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Jianya Su
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- * E-mail: (JS); (SRP)
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail: (JS); (SRP)
| |
Collapse
|
6
|
Latorre-Estivalis JM, Sterkel M, Ons S, Lorenzo MG. Transcriptomics supports local sensory regulation in the antenna of the kissing-bug Rhodnius prolixus. BMC Genomics 2020; 21:101. [PMID: 32000664 PMCID: PMC6993403 DOI: 10.1186/s12864-020-6514-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Background Rhodnius prolixus has become a model for revealing the molecular bases of insect sensory biology due to the publication of its genome and its well-characterized behavioural repertoire. Gene expression modulation underlies behaviour-triggering processes at peripheral and central levels. Still, the regulation of sensory-related gene transcription in sensory organs is poorly understood. Here we study the genetic bases of plasticity in antennal sensory function, using R. prolixus as an insect model. Results Antennal expression of neuromodulatory genes such as those coding for neuropeptides, neurohormones and their receptors was characterized in fifth instar larvae and female and male adults by means of RNA-Sequencing (RNA-Seq). New nuclear receptor and takeout gene sequences were identified for this species, as well as those of enzymes involved in the biosynthesis and processing of neuropeptides and biogenic amines. Conclusions We report a broad repertoire of neuromodulatory and neuroendocrine-related genes expressed in the antennae of R. prolixus and suggest that they may serve as the local basis for modulation of sensory neuron physiology. Diverse neuropeptide precursor genes showed consistent expression in the antennae of all stages studied. Future studies should characterize the role of these modulatory components acting over antennal sensory processes to assess the relative contribution of peripheral and central regulatory systems on the plastic expression of insect behaviour.
Collapse
Affiliation(s)
- Jose Manuel Latorre-Estivalis
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil. .,Laboratorio de Neurobiología de Insectos - Centro Regional de Estudios Genómicos - CREG, Facultad de Ciencias Exactas. Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| | - Marcos Sterkel
- Laboratorio de Neurobiología de Insectos - Centro Regional de Estudios Genómicos - CREG, Facultad de Ciencias Exactas. Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos - Centro Regional de Estudios Genómicos - CREG, Facultad de Ciencias Exactas. Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Marcelo Gustavo Lorenzo
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
7
|
Bao R, Dia SE, Issa HA, Alhusein D, Friedrich M. Comparative Evidence of an Exceptional Impact of Gene Duplication on the Developmental Evolution of Drosophila and the Higher Diptera. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
8
|
Baldwin WS, Boswell WT, Ginjupalli G, Litoff EJ. Annotation of the Nuclear Receptors in an Estuarine Fish species, Fundulus heteroclitus. NUCLEAR RECEPTOR RESEARCH 2017; 4. [PMID: 28804711 DOI: 10.11131/2017/101285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The nuclear receptors (NRs) are ligand-dependent transcription factors that respond to various internal as well as external cues such as nutrients, pheromones, and steroid hormones that play crucial roles in regulation and maintenance of homeostasis and orchestrating the physiological and stress responses of an organism. We annotated the Fundulus heteroclitus (mummichog; Atlantic killifish) nuclear receptors. Mummichog are a non-migratory, estuarine fish with a limited home range often used in environmental research as a field model for studying ecological and evolutionary responses to variable environmental conditions such as salinity, oxygen, temperature, pH, and toxic compounds because of their hardiness. F. heteroclitus have at least 74 NRs spanning all seven gene subfamilies. F. heteroclitus is unique in that no RXRα member was found within the genome. Interestingly, some of the NRs are highly conserved between species, while others show a higher degree of divergence such as PXR, SF1, and ARα. Fundulus like other fish species show expansion of the RAR (NR1B), Rev-erb (NR1D), ROR (NR1F), COUPTF (NR2F), ERR (NR3B), RXR (NR2B), and to a lesser extent the NGF (NR4A), and NR3C steroid receptors (GR/AR). Of particular interest is the co-expansion of opposing NRs, Reverb-ROR, and RAR/RXR-COUPTF.
Collapse
Affiliation(s)
- William S Baldwin
- Biological Sciences, Clemson University, Clemson, SC 29634.,Environmental Toxicology Program, Clemson University, Clemson, SC 29634
| | | | - Gautam Ginjupalli
- Environmental Toxicology Program, Clemson University, Clemson, SC 29634
| | | |
Collapse
|
9
|
Janssen R. A molecular view of onychophoran segmentation. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:341-353. [PMID: 27725255 DOI: 10.1016/j.asd.2016.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/22/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
This paper summarizes our current knowledge on the expression and assumed function of Drosophila and (other) arthropod segmentation gene orthologs in Onychophora, a closely related outgroup to Arthropoda. This includes orthologs of the so-called Drosophila segmentation gene cascade including the Hox genes, as well as other genetic factors and pathways involved in non-drosophilid arthropods. Open questions about and around the topic are addressed, such as the definition of segments in onychophorans, the unclear regulation of conserved expression patterns downstream of non-conserved factors, and the potential role of mesodermal patterning in onychophoran segmentation.
Collapse
Affiliation(s)
- Ralf Janssen
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden.
| |
Collapse
|
10
|
The Function and Evolution of Nuclear Receptors in Insect Embryonic Development. Curr Top Dev Biol 2017; 125:39-70. [DOI: 10.1016/bs.ctdb.2017.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Gupta K, Dhawan R, Kajla M, Misra T, Kumar S, Gupta L. The evolutionary divergence of STAT transcription factor in different Anopheles species. Gene 2016; 596:89-97. [PMID: 27664587 DOI: 10.1016/j.gene.2016.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 08/28/2016] [Accepted: 09/14/2016] [Indexed: 12/27/2022]
Abstract
Anopheles mosquito transmits Plasmodium, the malaria causing parasite. Different species of Anopheles mosquito dominate in a particular geographical location and are capable of transmitting specific strains of Plasmodium. It is important to understand the biology of different anophelines to control the parasite transmission. STAT is an evolutionary conserved transcription factor that regulates the parasite development in African malaria vector Anopheles gambiae. Unlike Drosophila and Aedes aegypti, where a single STAT gene plays an important role in immunity, An. gambiae contains one evolutionary conserved STAT-A and another retro-duplicated, introns-less STAT-B gene. To find out whether other species of Anopheles also have two STATs, the available genomic data of different anophelines were used to annotate their STATs through in silico analyses. Our results revealed that Indian malaria vector An. stephensi genome contains two STATs, AsSTAT-A and AsSTAT-B genes. These genes were cloned and confirmed by sequencing. Both AsSTATs were found to be expressed in different development stages of mosquito. However, the relative mRNA levels of evolutionary conserved AsSTAT-A gene were always higher than the retroduplicated AsSTAT-B gene. STAT pathway was activated upon Plasmodium berghei infection, indicated its role in immunity. Furthermore, comparative in silico analysis of eighteen Anopheles species revealed that five species: An. sinensis, An. albimanus, An. darlingi, An. dirus andAn. farauti do not contain STAT-B gene in their genome. Interestingly, thirteen species of the subgenus Anopheles and Cellia that contain both STATs were also mutually diverged. This consequence leads to sequence variability in some significant protein motifs within the STAT-B genes. Phylogenetic analyses indicated that an independent, lineage-specific duplication occurred in the subgenus Cellia after the diversification of series Neomyzomyia from its last common ancestor. In An. atroparvus (subgenus Anopheles), STAT gene underwent recent lineage-specific duplication and give rise to a highly similar STAT-B gene. This suggested that the genetic divergence in various Anopheles species might appeared due to their adaptations to the altered environmental conditions or pathogen encounters.
Collapse
Affiliation(s)
- Kuldeep Gupta
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology & Sciences (BITS) - Pilani, Pilani 333031, Rajasthan, India
| | - Rini Dhawan
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology & Sciences (BITS) - Pilani, Pilani 333031, Rajasthan, India
| | - Mithilesh Kajla
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology & Sciences (BITS) - Pilani, Pilani 333031, Rajasthan, India
| | - Tripti Misra
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology & Sciences (BITS) - Pilani, Pilani 333031, Rajasthan, India
| | - Sanjeev Kumar
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology & Sciences (BITS) - Pilani, Pilani 333031, Rajasthan, India; Department of Biotechnology, Ch. Bansi Lal University, Bhiwani, Haryana, India
| | - Lalita Gupta
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology & Sciences (BITS) - Pilani, Pilani 333031, Rajasthan, India; Department of Zoology, Ch. Bansi Lal University, Bhiwani, Haryana, India.
| |
Collapse
|
12
|
Litoff EJ, Garriott TE, Ginjupalli GK, Butler L, Gay C, Scott K, Baldwin WS. Annotation of the Daphnia magna nuclear receptors: comparison to Daphnia pulex. Gene 2014; 552:116-25. [PMID: 25239664 DOI: 10.1016/j.gene.2014.09.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 09/09/2014] [Accepted: 09/13/2014] [Indexed: 11/18/2022]
Abstract
Most nuclear receptors (NRs) are ligand-dependent transcription factors crucial in homeostatic physiological responses or environmental responses. We annotated the Daphnia magna NRs and compared them to Daphnia pulex and other species, primarily through phylogenetic analysis. Daphnia species contain 26 NRs spanning all seven gene subfamilies. Thirteen of the 26 receptors found in Daphnia species phylogenetically segregate into the NR1 subfamily, primarily involved in energy metabolism and resource allocation. Some of the Daphnia NRs, such as RXR, HR96, and E75 show strong conservation between D. magna and D. pulex. Other receptors, such as EcRb, THRL-11 and RARL-10 have diverged considerably and therefore may show different functions in the two species. Curiously, there is an inverse association between the number of NR splice variants and conservation of the LBD. Overall, D. pulex and D. magna possess the same NRs; however not all of the NRs demonstrate high conservation indicating the potential for a divergence of function.
Collapse
Affiliation(s)
| | | | | | - LaToya Butler
- Biological Sciences, Clemson University, United States
| | - Claudy Gay
- Biological Sciences, Clemson University, United States
| | - Kiandra Scott
- Biological Sciences, Clemson University, United States
| | - William S Baldwin
- Biological Sciences, Clemson University, United States; Environmental Toxicology Program, Clemson University, United States.
| |
Collapse
|
13
|
Peel AD, Schanda J, Grossmann D, Ruge F, Oberhofer G, Gilles AF, Schinko JB, Klingler M, Bucher G. Tc-knirps plays different roles in the specification of antennal and mandibular parasegment boundaries and is regulated by a pair-rule gene in the beetle Tribolium castaneum. BMC DEVELOPMENTAL BIOLOGY 2013; 13:25. [PMID: 23777260 PMCID: PMC3698154 DOI: 10.1186/1471-213x-13-25] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/12/2013] [Indexed: 01/03/2023]
Abstract
Background The Drosophila larval head is evolutionarily derived at the genetic and morphological level. In the beetle Tribolium castaneum, development of the larval head more closely resembles the ancestral arthropod condition. Unlike in Drosophila, a knirps homologue (Tc-kni) is required for development of the antennae and mandibles. However, published Tc-kni data are restricted to cuticle phenotypes and Tc-even-skipped and Tc-wingless stainings in knockdown embryos. Hence, it has remained unclear whether the entire antennal and mandibular segments depend on Tc-kni function, and whether the intervening intercalary segment is formed completely. We address these questions with a detailed examination of Tc-kni function. Results By examining the expression of marker genes in RNAi embryos, we show that Tc-kni is required only for the formation of the posterior parts of the antennal and mandibular segments (i.e. the parasegmental boundaries). Moreover, we find that the role of Tc-kni is distinct in these segments: Tc-kni is required for the initiation of the antennal parasegment boundary, but only for the maintenance of the mandibular parasegmental boundary. Surprisingly, Tc-kni controls the timing of expression of the Hox gene Tc-labial in the intercalary segment, although this segment does form in the absence of Tc-kni function. Unexpectedly, we find that the pair-rule gene Tc-even-skipped helps set the posterior boundary of Tc-kni expression in the mandible. Using the mutant antennaless, a likely regulatory Null mutation at the Tc-kni locus, we provide evidence that our RNAi studies represent a Null situation. Conclusions Tc-kni is required for the initiation of the antennal and the maintenance of the mandibular parasegmental boundaries. Tc-kni is not required for specification of the anterior regions of these segments, nor the intervening intercalary segment, confirming that Tc-kni is not a canonical ‘gap-gene’. Our finding that a gap gene orthologue is regulated by a pair rule gene adds to the view that the segmentation gene hierarchies differ between Tribolium and Drosophila upstream of the pair rule gene level. In Tribolium, as in Drosophila, head and trunk segmentation gene networks cooperate to pattern the mandibular segment, albeit involving Tc-kni as novel component.
Collapse
Affiliation(s)
- Andrew D Peel
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FoRTH), Nikolaou Plastira 100, GR-70013, Heraklion, Crete, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|