1
|
Malekian N, Al-Fatlawi A, Berendonk TU, Schroeder M. Mutations in bdcA and valS Correlate with Quinolone Resistance in Wastewater Escherichia coli. Int J Mol Sci 2021; 22:ijms22116063. [PMID: 34199768 PMCID: PMC8200043 DOI: 10.3390/ijms22116063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 11/16/2022] Open
Abstract
Single mutations can confer resistance to antibiotics. Identifying such mutations can help to develop and improve drugs. Here, we systematically screen for candidate quinolone resistance-conferring mutations. We sequenced highly diverse wastewater E. coli and performed a genome-wide association study (GWAS) to determine associations between over 200,000 mutations and quinolone resistance phenotypes. We uncovered 13 statistically significant mutations including 1 located at the active site of the biofilm dispersal gene bdcA and 6 silent mutations in the aminoacyl-tRNA synthetase valS. The study also recovered the known mutations in the topoisomerases gyrase (gyrA) and topoisomerase IV (parC). In summary, we demonstrate that GWAS effectively and comprehensively identifies resistance mutations without a priori knowledge of targets and mode of action. The results suggest that mutations in the bdcA and valS genes, which are involved in biofilm dispersal and translation, may lead to novel resistance mechanisms.
Collapse
Affiliation(s)
- Negin Malekian
- Biotechnology Center (BIOTEC), Dresden University of Technology, Tatzberg 47-49, 01307 Dresden, Germany; (N.M.); (A.A.-F.)
| | - Ali Al-Fatlawi
- Biotechnology Center (BIOTEC), Dresden University of Technology, Tatzberg 47-49, 01307 Dresden, Germany; (N.M.); (A.A.-F.)
| | - Thomas U. Berendonk
- Institute of Hydrobiology, Dresden University of Technology, 01217 Dresden, Germany;
| | - Michael Schroeder
- Biotechnology Center (BIOTEC), Dresden University of Technology, Tatzberg 47-49, 01307 Dresden, Germany; (N.M.); (A.A.-F.)
- Correspondence:
| |
Collapse
|
2
|
Elbediwi M, Beibei W, Pan H, Jiang Z, Biswas S, Li Y, Yue M. Genomic Characterization of mcr-1-carrying Salmonella enterica Serovar 4,[5],12:i:- ST 34 Clone Isolated From Pigs in China. Front Bioeng Biotechnol 2020; 8:663. [PMID: 32714906 PMCID: PMC7344297 DOI: 10.3389/fbioe.2020.00663] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022] Open
Abstract
Salmonella enterica serovar 4,[5],12:i:-, so-called Typhimurium monophasic variant, has become one of the most frequently isolated serovars both in humans and in animals all over the world. The increasing prevalence of mcr-1-carrying Salmonella poses significant global health concerns. However, the potential role of Salmonella 4,[5],12:i:- in mcr-1 gene migration through the food chain to the human remains obscure. Here, we investigated 337 Salmonella isolates from apparently healthy finishing pigs, which is rarely studied, obtained from pig farms and slaughterhouses in China. The mcr-1 gene was found in four colistin-resistant S. enterica 4,[5],12:i:- isolates. Notably, all four isolates belonged to sequence type 34 (ST34) with multidrug resistance phenotype. Further genomic sequencing and antimicrobial resistance characterization confirmed that mcr was responsible for the colistin resistance, and the conjugation assay demonstrated that three of four isolates carried mcr-1 in IncHI2 plasmid. Importantly, mcr-1 and class-1 integron were found to co-localize in two strains with IncHI2 plasmid. By collecting all the mcr-1-carrying Typhimurium and monophasic variant strains across the food chain (farm animals, animal-origin food, and humans), our phylogenomic analysis of available 66 genomes, including four strains in this study, demonstrated an independent phylogenetic cluster of all eight Chinese swine-originated isolates and one human isolate. Together, this study provides direct evidence for clonal and pork-borne transmission of mcr-1 by Salmonella 4,[5],12:i:- ST34 in China and highlighted a domestication pathway by acquisition of additional antimicrobial resistance determinants in Chinese ST34 isolates.
Collapse
Affiliation(s)
- Mohammed Elbediwi
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wu Beibei
- Zhejiang Province Center for Disease Control and Prevention, Hangzhou, China
| | - Hang Pan
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zenghai Jiang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Silpak Biswas
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yan Li
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Min Yue
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Metagenomics Approaches in Discovery and Development of New Bioactive Compounds from Marine Actinomycetes. Curr Microbiol 2019; 77:645-656. [PMID: 31069462 DOI: 10.1007/s00284-019-01698-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023]
Abstract
Marine actinomycetes are prolific sources of marine drug discovery system contributing for several bioactive compounds of biomedical prominence. Metagenomics, a culture-independent technique through its sequence- and function-based screening has led to the discovery and synthesis of numerous biologically significant compounds like polyketide synthase, Non-ribosomal peptide synthetase, antibiotics, and biocatalyst. While metagenomics offers different advantages over conventional sequencing techniques, they also have certain limitations including bias classification, non-availability of quality DNA samples, heterologous expression, and host selection. The assimilation of advanced amplification and screening methods such as φ29 DNA polymerase, Next-Generation Sequencing, Cosmids, and recent bioinformatics tools like automated genome mining, anti-SMASH have shown promising results to overcome these constrains. Consequently, functional genomics and bioinformatics along with synthetic biology will be crucial for the success of the metagenomic approach and indeed for exploring new possibilities among the microbial consortia for the future drug discovery process.
Collapse
|
4
|
Predicting the evolution of Escherichia coli by a data-driven approach. Nat Commun 2018; 9:3562. [PMID: 30177705 PMCID: PMC6120903 DOI: 10.1038/s41467-018-05807-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 06/12/2018] [Indexed: 12/31/2022] Open
Abstract
A tantalizing question in evolutionary biology is whether evolution can be predicted from past experiences. To address this question, we created a coherent compendium of more than 15,000 mutation events for the bacterium Escherichia coli under 178 distinct environmental settings. Compendium analysis provides a comprehensive view of the explored environments, mutation hotspots and mutation co-occurrence. While the mutations shared across all replicates decrease with the number of replicates, our results argue that the pairwise overlapping ratio remains the same, regardless of the number of replicates. An ensemble of predictors trained on the mutation compendium and tested in forward validation over 35 evolution replicates achieves a 49.2 ± 5.8% (mean ± std) precision and 34.5 ± 5.7% recall in predicting mutation targets. This work demonstrates how integrated datasets can be harnessed to create predictive models of evolution at a gene level and elucidate the effect of evolutionary processes in well-defined environments. How reproducible evolutionary processes are remains an important question in evolutionary biology. Here, the authors compile a compendium of more than 15,000 mutation events for Escherichia coli under 178 distinct environmental settings, and develop an ensemble of predictors to predict evolution at a gene level.
Collapse
|
5
|
Gámez G, Castro A, Gómez-Mejia A, Gallego M, Bedoya A, Camargo M, Hammerschmidt S. The variome of pneumococcal virulence factors and regulators. BMC Genomics 2018; 19:10. [PMID: 29298677 PMCID: PMC5753484 DOI: 10.1186/s12864-017-4376-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In recent years, the idea of a highly immunogenic protein-based vaccine to combat Streptococcus pneumoniae and its severe invasive infectious diseases has gained considerable interest. However, the target proteins to be included in a vaccine formulation have to accomplish several genetic and immunological characteristics, (such as conservation, distribution, immunogenicity and protective effect), in order to ensure its suitability and effectiveness. This study aimed to get comprehensive insights into the genomic organization, population distribution and genetic conservation of all pneumococcal surface-exposed proteins, genetic regulators and other virulence factors, whose important function and role in pathogenesis has been demonstrated or hypothesized. RESULTS After retrieving the complete set of DNA and protein sequences reported in the databases GenBank, KEGG, VFDB, P2CS and Uniprot for pneumococcal strains whose genomes have been fully sequenced and annotated, a comprehensive bioinformatic analysis and systematic comparison has been performed for each virulence factor, stand-alone regulator and two-component regulatory system (TCS) encoded in the pan-genome of S. pneumoniae. A total of 25 S. pneumoniae strains, representing different pneumococcal phylogenetic lineages and serotypes, were considered. A set of 92 different genes and proteins were identified, classified and studied to construct a pan-genomic variability map (variome) for S. pneumoniae. Both, pneumococcal virulence factors and regulatory genes, were well-distributed in the pneumococcal genome and exhibited a conserved feature of genome organization, where replication and transcription are co-oriented. The analysis of the population distribution for each gene and protein showed that 49 of them are part of the core genome in pneumococci, while 43 belong to the accessory-genome. Estimating the genetic variability revealed that pneumolysin, enolase and Usp45 (SP_2216 in S. p. TIGR4) are the pneumococcal virulence factors with the highest conservation, while TCS08, TCS05, and TCS02 represent the most conserved pneumococcal genetic regulators. CONCLUSIONS The results identified well-distributed and highly conserved pneumococcal virulence factors as well as regulators, representing promising candidates for a new generation of serotype-independent protein-based vaccine(s) to combat pneumococcal infections.
Collapse
Affiliation(s)
- Gustavo Gámez
- Genetics, Regeneration and Cancer Research Group (GRC), University Research Centre (SIU), Universidad de Antioquia (UdeA), Calle 70 # 52 - 21, 050010, Medellín, Colombia. .,Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia (UdeA), Calle 70 # 52 - 21, 050010, Medellín, Colombia. .,Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, Ernst-Moritz-Arndt University of Greifswald, Felix-Hausdorff-Str. 8, D-17487, Greifswald, Germany. .,School of Microbiology, University of Antioquia, Bloque 5 - Oficina 408, Calle 70 # 52 - 21, 050010, Medellín, Colombia.
| | - Andrés Castro
- Genetics, Regeneration and Cancer Research Group (GRC), University Research Centre (SIU), Universidad de Antioquia (UdeA), Calle 70 # 52 - 21, 050010, Medellín, Colombia.,Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia (UdeA), Calle 70 # 52 - 21, 050010, Medellín, Colombia
| | - Alejandro Gómez-Mejia
- Genetics, Regeneration and Cancer Research Group (GRC), University Research Centre (SIU), Universidad de Antioquia (UdeA), Calle 70 # 52 - 21, 050010, Medellín, Colombia.,Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, Ernst-Moritz-Arndt University of Greifswald, Felix-Hausdorff-Str. 8, D-17487, Greifswald, Germany
| | - Mauricio Gallego
- Genetics, Regeneration and Cancer Research Group (GRC), University Research Centre (SIU), Universidad de Antioquia (UdeA), Calle 70 # 52 - 21, 050010, Medellín, Colombia.,Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia (UdeA), Calle 70 # 52 - 21, 050010, Medellín, Colombia
| | - Alejandro Bedoya
- Genetics, Regeneration and Cancer Research Group (GRC), University Research Centre (SIU), Universidad de Antioquia (UdeA), Calle 70 # 52 - 21, 050010, Medellín, Colombia.,Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia (UdeA), Calle 70 # 52 - 21, 050010, Medellín, Colombia
| | - Mauricio Camargo
- Genetics, Regeneration and Cancer Research Group (GRC), University Research Centre (SIU), Universidad de Antioquia (UdeA), Calle 70 # 52 - 21, 050010, Medellín, Colombia
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, Ernst-Moritz-Arndt University of Greifswald, Felix-Hausdorff-Str. 8, D-17487, Greifswald, Germany
| |
Collapse
|
6
|
Lee CA, Yeh KS. The Non-Fimbriate Phenotype Is Predominant among Salmonella enterica Serovar Choleraesuis from Swine and Those Non-Fimbriate Strains Possess Distinct Amino Acid Variations in FimH. PLoS One 2016; 11:e0151126. [PMID: 26974320 PMCID: PMC4790892 DOI: 10.1371/journal.pone.0151126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/24/2016] [Indexed: 11/22/2022] Open
Abstract
Although most Salmonella serovars are able to infect a range of animal hosts, some have acquired the ability to cause systemic infections of specific hosts. For example, Salmonella enterica serovar Choleraesuis is primarily associated with systemic infection in swine. Adherence to host epithelial cells is considered a prerequisite for initial infection, and fimbrial appendages on the outer membrane of the bacteria are implicated in this process. Although type 1 fimbriae encoded by the fim gene cluster are commonly found in Salmonella serovars, it is not known whether S. Choleraesuis produces this fimbrial type and if and how fimbriae are involved in pathogenesis. In the present study, we demonstrated that only four out of 120 S. Choleraesuis isolates from pigs with salmonellosis produced type 1 fimbriae as assayed by the yeast agglutination test and electron microscopy. One of the 116 non-type 1 fimbria-producing isolates was transformed with plasmids carrying different fim genes from S. Typhimurium LB5010, a type 1 fimbria-producing strain. Our results indicate that non-type 1 fimbria-producing S. Choleraesuis required only an intact fimH to regain the ability to produce fimbrial appendages. Sequence comparison revealed six amino acid variations between the FimH of the non-type 1 fimbria-producing S. Choleraesuis isolates and those of the type 1 fimbria-producing S. Choleraesuis isolates. S. Choleraesuis that produced type 1 fimbriae contained FimH with an amino acid sequence identical to that of S. Typhimurium LB5010. Site-directed mutagenesis leading to the replacement of the non-conserved residues revealed that a change from glycine to valine at position of 63 (G63V) resulted in a non-type 1 fimbria-producing S. Choleraesuis being able to express type 1 fimbriae on its outer membrane. It is possible that this particular amino acid change prevents this polypeptide from proper interaction with other Fim subunits required for assembly of an intact type 1 fimbrial shaft in S. Choleraesuis; however, it remains to be determined if and how the absence of type 1 fimbriae production is related to the systemic infection of the swine host by S. Choleraesuis.
Collapse
Affiliation(s)
- Chien-An Lee
- Department of Veterinary Medicine, School of Veterinary Medicine, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Kuang-Sheng Yeh
- Department of Veterinary Medicine, School of Veterinary Medicine, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- National Taiwan University Veterinary Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
8
|
A new clone sweeps clean: the enigmatic emergence of Escherichia coli sequence type 131. Antimicrob Agents Chemother 2014; 58:4997-5004. [PMID: 24867985 DOI: 10.1128/aac.02824-14] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Escherichia coli sequence type 131 (ST131) is an extensively antimicrobial-resistant E. coli clonal group that has spread explosively throughout the world. Recent molecular epidemiologic and whole-genome phylogenetic studies have elucidated the fine clonal structure of ST131, which comprises multiple ST131 subclones with distinctive resistance profiles, including the (nested) H30, H30-R, and H30-Rx subclones. The most prevalent ST131 subclone, H30, arose from a single common fluoroquinolone (FQ)-susceptible ancestor containing allele 30 of fimH (type 1 fimbrial adhesin gene). An early H30 subclone member acquired FQ resistance and launched the rapid expansion of the resulting FQ-resistant subclone, H30-R. Subsequently, a member of H30-R acquired the CTX-M-15 extended-spectrum beta-lactamase and launched the rapid expansion of the CTX-M-15-containing subclone within H30-R, H30-Rx. Clonal expansion clearly is now the dominant mechanism for the rising prevalence of both FQ resistance and CTX-M-15 production in ST131 and in E. coli generally. Reasons for the successful dissemination and expansion of the key ST131 subclones remain undefined but may include increased transmissibility, greater ability to colonize and/or persist in the intestine or urinary tract, enhanced virulence, and more-extensive antimicrobial resistance compared to other E. coli. Here we discuss the epidemiology and molecular phylogeny of ST131 and its key subclones, possible mechanisms for their ecological success, implications of their widespread dissemination, and future research needs.
Collapse
|