1
|
Telizhenko V, Kosiol C, McGowen MR, Gol'din P. Relaxed selection in evolution of genes regulating limb development gives clue to variation in forelimb morphology of cetaceans and other mammals. Proc Biol Sci 2024; 291:20241106. [PMID: 39378996 PMCID: PMC11606503 DOI: 10.1098/rspb.2024.1106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/29/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
Cetaceans have evolved unique limb structures, such as flippers, due to genetic changes during their transition to aquatic life. However, the full understanding of the genetic and evolutionary mechanisms behind these changes is still developing. By examining 25 limb-related protein-coding genes across various mammalian species, we compared genetic changes between aquatic mammals, like whales, and other mammals with unique limb structures such as bats, rodents and elephants. Our findings revealed significant modifications in limb-related genes, including variations in the Hox, GDF5 and Evx genes. Notably, a relaxed selection in several key genes was observed, suggesting a lifting of developmental constraints, which might have facilitated the emergence of morphological innovations in cetacean limb morphology. We also uncovered non-synonymous changes, insertions and deletions in these genes, particularly in the polyalanine tract of HOXD13, which are distinctive to cetaceans or convergent with other aquatic mammals. These genetic variations correlated with the diverse and specialized limb structures observed in cetaceans, indicating a complex interplay of relaxed selection and specific mutations in mammalian limb evolution.
Collapse
Affiliation(s)
| | | | - Michael R. McGowen
- Department of Vertebrate Zoology, Smithsonian National Museum of Natural History, Washington, DC20560, USA
| | | |
Collapse
|
2
|
de March CA, Matsunami H, Abe M, Cobb M, Hoover KC. Genetic and functional odorant receptor variation in the Homo lineage. iScience 2022; 26:105908. [PMID: 36691623 PMCID: PMC9860384 DOI: 10.1016/j.isci.2022.105908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/07/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Humans, Neanderthals, and Denisovans independently adapted to a wide range of geographic environments and their associated food odors. Using ancient DNA sequences, we explored the in vitro function of thirty odorant receptor genes in the genus Homo. Our extinct relatives had highly conserved olfactory receptor sequence, but humans did not. Variations in odorant receptor protein sequence and structure may have produced variation in odor detection and perception. Variants led to minimal changes in specificity but had more influence on functional sensitivity. The few Neanderthal variants disturbed function, whereas Denisovan variants increased sensitivity to sweet and sulfur odors. Geographic adaptations may have produced greater functional variation in our lineage, increasing our olfactory repertoire and expanding our adaptive capacity. Our survey of olfactory genes and odorant receptors suggests that our genus has a shared repertoire with possible local ecological adaptations.
Collapse
Affiliation(s)
- Claire A. de March
- Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Université Paris-Saclay, Gif-sur-Yvette 91190, France,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA,Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, USA,Corresponding author
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA,Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, USA
| | - Masashi Abe
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA,Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Matthew Cobb
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Kara C. Hoover
- Department of Anthropology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA,Corresponding author
| |
Collapse
|
3
|
Contiguously hydrophobic sequences are functionally significant throughout the human exome. Proc Natl Acad Sci U S A 2022; 119:e2116267119. [PMID: 35294280 PMCID: PMC8944643 DOI: 10.1073/pnas.2116267119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
SignificanceProteins rely on the hydrophobic effect to maintain structure and interactions with the environment. Surprisingly, natural selection on amino acid hydrophobicity has not been detected using modern genetic data. Analyses that treat each amino acid separately do not reveal significant results, which we confirm here. However, because the hydrophobic effect becomes more powerful as more hydrophobic molecules are introduced, we tested whether unbroken stretches of hydrophobic amino acids are under selection. Using genetic variant data from across the human genome, we find evidence that selection increases with the length of the unbroken hydrophobic sequence. These results could lead to improvements in a wide range of genomic tools as well as insights into protein-aggregation disease etiology and protein evolutionary history.
Collapse
|
4
|
Benítez-Burraco A, Chekalin E, Bruskin S, Tatarinova T, Morozova I. Recent selection of candidate genes for mammal domestication in Europeans and language change in Europe: a hypothesis. Ann Hum Biol 2021; 48:313-320. [PMID: 34241552 DOI: 10.1080/03014460.2021.1936634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIM Human evolution resulted from changes in our biology, behaviour, and culture. One source of these changes has been hypothesised to be our self-domestication (that is, the development in humans of features commonly found in domesticated strains of mammals, seemingly as a result of selection for reduced aggression). Signals of domestication, notably brain size reduction, have increased in recent times. METHODS In this paper, we compare whole-genome data between the Late Neolithic/Bronze Age individuals and modern Europeans. RESULTS We show that genes associated with mammal domestication and with neural crest development and function are significantly differently enriched in nonsynonymous single nucleotide polymorphisms between these two groups. CONCLUSION We hypothesise that these changes might account for the increased features of self-domestication in modern humans and, ultimately, for subtle recent changes in human cognition and behaviour, including language.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature, Faculty of Philology, University of Seville, Seville, Spain
| | - Evgeny Chekalin
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Bruskin
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Tatarinova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Department of Biology, University of La Verne, La Verne, CA, USA.,A. A. Kharkevich Institute for Information Transmission Problems, Moscow, Russia.,Department of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Irina Morozova
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Breuss MW, Mamerto A, Renner T, Waters ER. The Evolution of the Mammalian ABCA6-like Genes: Analysis of Phylogenetic, Expression, and Population Genetic Data Reveals Complex Evolutionary Histories. Genome Biol Evol 2020; 12:2093-2106. [PMID: 32877505 PMCID: PMC7674697 DOI: 10.1093/gbe/evaa179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 01/25/2023] Open
Abstract
ABC membrane transporters are a large and complex superfamily of ATP-binding cassette transporters that are present in all domains of life. Both their essential function and complexity are reflected by their retention across large expanses of organismal diversity and by the extensive expansion of individual members and subfamilies during evolutionary history. This expansion has resulted in the diverse ABCA transporter family that has in turn evolved into multiple subfamilies. Here, we focus on the ABCA6-like subfamily of ABCA transporters with the goal of understanding their evolutionary history including potential functional changes in, or loss of, individual members. Our analysis finds that ABCA6-like genes, consisting of ABCA6, 8, 9, and 10, are absent from representatives of both monotremes and marsupials and thus the duplications that generated these families most likely occurred at the base of the Eutherian or placental mammals. We have found evidence of both positive and relaxed selection among the ABCA6-like genes, suggesting dynamic changes in function and the potential of gene redundancy. Analysis of the ABCA10 genes further suggests that this gene has undergone relaxed selection only within the human lineage. These findings are complemented by human population data, where we observe an excess of deactivating homozygous mutations. We describe the complex evolutionary history of this ABCA transporter subfamily and demonstrate through the combination of evolutionary and population genetic analysis that ABCA10 is undergoing pseudogenization within humans.
Collapse
Affiliation(s)
- Martin W Breuss
- Department of Neurosciences, University of California, San Diego
- Rady Children’s Institute for Genomic Medicine, San Diego, California
| | - Allen Mamerto
- Department of Biology and Program in Biological and Medical Informatics, San Diego State University
| | - Tanya Renner
- Department of Entomology, The Pennsylvania State University, University Park
| | - Elizabeth R Waters
- Department of Biology and Program in Biological and Medical Informatics, San Diego State University
| |
Collapse
|
6
|
Chekalin E, Rubanovich A, Tatarinova TV, Kasianov A, Bender N, Chekalina M, Staub K, Koepke N, Rühli F, Bruskin S, Morozova I. Changes in Biological Pathways During 6,000 Years of Civilization in Europe. Mol Biol Evol 2019; 36:127-140. [PMID: 30376122 DOI: 10.1093/molbev/msy201] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The beginning of civilization was a turning point in human evolution. With increasing separation from the natural environment, mankind stimulated new adaptive reactions in response to new environmental factors. In this paper, we describe direct signs of these reactions in the European population during the past 6,000 years. By comparing whole-genome data between Late Neolithic/Bronze Age individuals and modern Europeans, we revealed biological pathways that are significantly differently enriched in nonsynonymous single nucleotide polymorphisms in these two groups and which therefore could be shaped by cultural practices during the past six millennia. They include metabolic transformations, immune response, signal transduction, physical activity, sensory perception, reproduction, and cognitive functions. We demonstrated that these processes were influenced by different types of natural selection. We believe that our study opens new perspectives for more detailed investigations about when and how civilization has been modifying human genomes.
Collapse
Affiliation(s)
- Evgeny Chekalin
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexandr Rubanovich
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V Tatarinova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Department of Biology, University of La Verne, La Verne, CA.,A. A. Kharkevich Institute for Information Transmission Problems, Moscow, Russia.,Department of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Artem Kasianov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Nicole Bender
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Marina Chekalina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kaspar Staub
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Nikola Koepke
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Frank Rühli
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Sergey Bruskin
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Irina Morozova
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Mothay D, Ramesh KV. Evolutionary history and genetic diversity study of heat-shock protein 60 of Rhizophagus irregularis. J Genet 2019; 98:48. [PMID: 31204704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Despite the ubiquitous occurrence of heat-shock protein 60 (Hsp60) and their role in maintenance of cell activity and integrity, this protein remains poorly characterized in many of the symbiotic soil mycorrhizal fungi such as Rhizophagus irregularis. Thus, in the current study, an attempt has been made to elucidate the evolutionary history, time of divergence followed by estimation of population genetic parameters of hsp60 using R. irregularis as a model organism. Sequence alignment reported here identified several close homologues for hsp60 (gene) and Hsp60 (protein) from diverse taxa, while the output from protein-based phylogenetic tree indicates that mitochondrial Hsp60 of R. irregularis shares close evolutionary relationship with classical α-proteobacteria. This is perhaps the first line of evidence elucidating the likelihood of hsp60 from fungal taxa sharing a close evolutionary relationship with classical α-proteobacteria as a common ancestor. Comprehensive analysis of mitochondrial hsp60 from selected fungal taxa from the evolutionary point of view explains the possibility of gene duplication and or horizontal gene transfer of this gene across various fungal species. Synteny relationships and population genetics credibly explain high genetic variability associated with fungal hsp60 presumably brought by random genetic recombination events. The results presented here also confirm a high level of genetic differentiation of hsp60 among all the three fungal populations analysed. In this context, the outcome of the current study, basedon computational approach, stands as a testimony for explaining the possibility of increased genetic differentiation experienced by hsp60 of R. irregularis.
Collapse
Affiliation(s)
- Dipti Mothay
- Department of Biotechnology, Jain University, School of Sciences, Bengaluru, India.
| | | |
Collapse
|
8
|
Pajic P, Lin YL, Xu D, Gokcumen O. The psoriasis-associated deletion of late cornified envelope genes LCE3B and LCE3C has been maintained under balancing selection since Human Denisovan divergence. BMC Evol Biol 2016; 16:265. [PMID: 27919236 PMCID: PMC5139038 DOI: 10.1186/s12862-016-0842-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 11/23/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A common, 32kb deletion of LCE3B and LCE3C genes is strongly associated with psoriasis. We recently found that this deletion is ancient, predating Human-Denisovan divergence. However, it was not clear why negative selection has not removed this deletion from the population. RESULTS Here, we show that the haplotype block that harbors the deletion (i) retains high allele frequency among extant and ancient human populations; (ii) harbors unusually high nucleotide variation (π, P < 4.1 × 10-3); (iii) contains an excess of intermediate frequency variants (Tajima's D, P < 3.9 × 10-3); and (iv) has an unusually long time to coalescence to the most recent common ancestor (TSel, 0.1 quantile). CONCLUSIONS Our results are most parsimonious with the scenario where the LCE3BC deletion has evolved under balancing selection in humans. More broadly, this is consistent with the hypothesis that a balance between autoimmunity and natural vaccination through increased exposure to pathogens maintains this deletion in humans.
Collapse
Affiliation(s)
- Petar Pajic
- Department of Biological Sciences, University at Buffalo, Cooke 639, Buffalo, NY, 14260, USA
| | - Yen-Lung Lin
- Department of Biological Sciences, University at Buffalo, Cooke 639, Buffalo, NY, 14260, USA
| | - Duo Xu
- Department of Biological Sciences, University at Buffalo, Cooke 639, Buffalo, NY, 14260, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, Cooke 639, Buffalo, NY, 14260, USA.
| |
Collapse
|
9
|
Eaaswarkhanth M, Xu D, Flanagan C, Rzhetskaya M, Hayes MG, Blekhman R, Jablonski NG, Gokcumen O. Atopic Dermatitis Susceptibility Variants in Filaggrin Hitchhike Hornerin Selective Sweep. Genome Biol Evol 2016; 8:3240-3255. [PMID: 27678121 PMCID: PMC5174745 DOI: 10.1093/gbe/evw242] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human skin has evolved rapidly, leaving evolutionary signatures in the genome. The filaggrin (FLG) gene is widely studied for its skin-barrier function in humans. The extensive genetic variation in this gene, especially common loss-of-function (LoF) mutations, has been established as primary risk factors for atopic dermatitis. To investigate the evolution of this gene, we analyzed 2,504 human genomes and genotyped the copy number variation of filaggrin repeats within FLG in 126 individuals from diverse ancestral backgrounds. We were unable to replicate a recent study claiming that LoF of FLG is adaptive in northern latitudes with lower ultraviolet light exposure. Instead, we present multiple lines of evidence suggesting that FLG genetic variation, including LoF variants, have little or no effect on fitness in modern humans. Haplotype-level scrutinization of the locus revealed signatures of a recent selective sweep in Asia, which increased the allele frequency of a haplotype group (Huxian haplogroup) in Asian populations. Functionally, we found that the Huxian haplogroup carries dozens of functional variants in FLG and hornerin (HRNR) genes, including those that are associated with atopic dermatitis susceptibility, HRNR expression levels and microbiome diversity on the skin. Our results suggest that the target of the adaptive sweep is HRNR gene function, and the functional FLG variants that involve susceptibility to atopic dermatitis, seem to hitchhike the selective sweep on HRNR. Our study presents a novel case of a locus that harbors clinically relevant common genetic variation with complex evolutionary trajectories.
Collapse
Affiliation(s)
- Muthukrishnan Eaaswarkhanth
- Department of Biological Sciences, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY
| | - Duo Xu
- Department of Biological Sciences, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY
| | - Colin Flanagan
- Department of Biological Sciences, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY
| | - Margarita Rzhetskaya
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Ran Blekhman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN
| | - Nina G Jablonski
- Department of Anthropology, Pennsylvania State University, University Park, PA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY
| |
Collapse
|
10
|
Mammalian proteasome subtypes: Their diversity in structure and function. Arch Biochem Biophys 2015; 591:132-40. [PMID: 26724758 DOI: 10.1016/j.abb.2015.12.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/22/2015] [Indexed: 11/21/2022]
Abstract
The 20S proteasome is a multicatalytic proteinase catalysing the degradation of the majority of intracellular proteins. Thereby it is involved in almost all basic cellular processes, which is facilitated by its association with various regulator complexes so that it appears in different disguises like 26S proteasome, hybrid-proteasome and others. The 20S proteasome has a cylindrical structure built up by four stacked rings composed of α- and β-subunits. Since the three active site-containing β-subunits can all or in part be replaced by immuno-subunits, three main subpopulations exist, namely standard-, immuno- and intermediate-proteasomes. Due to posttranslational modifications or/and genetic variations all α- and β-subunits occur in multiple iso- or proteoforms. This leads to the fact that each of the three subpopulations is composed of a variety of 20S proteasome subtypes. This review summarizes the knowledge of proteasome subtypes in mammalian cells and tissues and their possible biological and medical relevancy.
Collapse
|
11
|
A comparison of human and mouse gene co-expression networks reveals conservation and divergence at the tissue, pathway and disease levels. BMC Evol Biol 2015; 15:259. [PMID: 26589719 PMCID: PMC4654840 DOI: 10.1186/s12862-015-0534-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022] Open
Abstract
Background A deeper understanding of differences and similarities in transcriptional regulation between species can uncover important information about gene functions and the role of genes in disease. Deciphering such patterns between mice and humans is especially important since mice play an essential role in biomedical research. Results Here, in order to characterize evolutionary changes between humans and mice, we compared gene co-expression maps to evaluate the conservation of co-expression. We show that the conservation of co-expression connectivity of homologous genes is negatively correlated with molecular evolution rates, as expected. Then we investigated evolutionary aspects of gene sets related to functions, tissues, pathways and diseases. Genes expressed in the testis, eye and skin, and those associated with regulation of transcription, olfaction, PI3K signalling, response to virus and bacteria were more divergent between mice and humans in terms of co-expression connectivity. Surprisingly, a deeper investigation of the PI3K signalling cascade revealed that its divergence is caused by the most crucial genes of this pathway, such as mTOR and AKT2. On the other hand, our analysis revealed that genes expressed in the brain and in the bone, and those associated with cell adhesion, cell cycle, DNA replication and DNA repair are most strongly conserved in terms of co-expression network connectivity as well as having a lower rate of duplication events. Genes involved in lipid metabolism and genes specific to blood showed a signature of increased co-expression connectivity in the mouse. In terms of diseases, co-expression connectivity of genes related to metabolic disorders is the most strongly conserved between mice and humans and tumor-related genes the most divergent. Conclusions This work contributes to discerning evolutionary patterns between mice and humans in terms of gene interactions. Conservation of co-expression is a powerful approach to identify gene targets and processes with potential similarity and divergence between mice and humans, which has implications for drug testing and other studies employing the mouse as a model organism. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0534-7) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Schrider DR, Kern AD. Inferring Selective Constraint from Population Genomic Data Suggests Recent Regulatory Turnover in the Human Brain. Genome Biol Evol 2015; 7:3511-28. [PMID: 26590212 PMCID: PMC4700959 DOI: 10.1093/gbe/evv228] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The comparative genomics revolution of the past decade has enabled the discovery of functional elements in the human genome via sequence comparison. While that is so, an important class of elements, those specific to humans, is entirely missed by searching for sequence conservation across species. Here we present an analysis based on variation data among human genomes that utilizes a supervised machine learning approach for the identification of human-specific purifying selection in the genome. Using only allele frequency information from the complete low-coverage 1000 Genomes Project data set in conjunction with a support vector machine trained from known functional and nonfunctional portions of the genome, we are able to accurately identify portions of the genome constrained by purifying selection. Our method identifies previously known human-specific gains or losses of function and uncovers many novel candidates. Candidate targets for gain and loss of function along the human lineage include numerous putative regulatory regions of genes essential for normal development of the central nervous system, including a significant enrichment of gain of function events near neurotransmitter receptor genes. These results are consistent with regulatory turnover being a key mechanism in the evolution of human-specific characteristics of brain development. Finally, we show that the majority of the genome is unconstrained by natural selection currently, in agreement with what has been estimated from phylogenetic methods but in sharp contrast to estimates based on transcriptomics or other high-throughput functional methods.
Collapse
Affiliation(s)
| | - Andrew D Kern
- Department of Genetics, Rutgers University, Piscataway Human Genetics Institute of New Jersey, Piscataway, New Jersey
| |
Collapse
|
13
|
Haasl RJ, Payseur BA. Fifteen years of genomewide scans for selection: trends, lessons and unaddressed genetic sources of complication. Mol Ecol 2015. [PMID: 26224644 DOI: 10.1111/mec.13339] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genomewide scans for natural selection (GWSS) have become increasingly common over the last 15 years due to increased availability of genome-scale genetic data. Here, we report a representative survey of GWSS from 1999 to present and find that (i) between 1999 and 2009, 35 of 49 (71%) GWSS focused on human, while from 2010 to present, only 38 of 83 (46%) of GWSS focused on human, indicating increased focus on nonmodel organisms; (ii) the large majority of GWSS incorporate interpopulation or interspecific comparisons using, for example F(ST), cross-population extended haplotype homozygosity or the ratio of nonsynonymous to synonymous substitutions; (iii) most GWSS focus on detection of directional selection rather than other modes such as balancing selection; and (iv) in human GWSS, there is a clear shift after 2004 from microsatellite markers to dense SNP data. A survey of GWSS meant to identify loci positively selected in response to severe hypoxic conditions support an approach to GWSS in which a list of a priori candidate genes based on potential selective pressures are used to filter the list of significant hits a posteriori. We also discuss four frequently ignored determinants of genomic heterogeneity that complicate GWSS: mutation, recombination, selection and the genetic architecture of adaptive traits. We recommend that GWSS methodology should better incorporate aspects of genomewide heterogeneity using empirical estimates of relevant parameters and/or realistic, whole-chromosome simulations to improve interpretation of GWSS results. Finally, we argue that knowledge of potential selective agents improves interpretation of GWSS results and that new methods focused on correlations between environmental variables and genetic variation can help automate this approach.
Collapse
Affiliation(s)
- Ryan J Haasl
- Department of Biology, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI, 53818, USA
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI, 53706, USA
| |
Collapse
|
14
|
Shen Y, Fu GH, Liu F, Yue GH. Characterization of the duodenase-1 gene and its associations with resistance to Streptococuus agalactiae in hybrid tilapia (Oreochromis spp.). FISH & SHELLFISH IMMUNOLOGY 2015; 45:717-724. [PMID: 26052009 DOI: 10.1016/j.fsi.2015.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/15/2015] [Accepted: 05/29/2015] [Indexed: 06/04/2023]
Abstract
Tilapia is a group of cultured teleost fishes whose production is threatened by some diseases. Identification of DNA markers associated with disease resistance in candidate genes may facilitate to accelerate the selection of disease resistance. The gene encoding a duodenase, which can trigger immune response, has not been studied in fish. We characterized the cDNA of duodenase-1 gene of hybrid tilapia. Its ORF is 759 bp, encoding a serine protease of 252 amino acids. This gene consisted of five exons and four introns. Its expression was detected in all 10 tissues examined, and it was highly expressed in the intestine and kidney. After a challenge with the bacterial pathogen, Streptococcus agalactiae, its expression was up-regulated significantly in the intestine, liver and spleen. We identified seven SNPs in the gene and found that four of them were significantly associated with the resistance to S. agalactiae (P < 0.05). The CGTCC haplotype, CAGTC/CGGTC and CGTCC/CGTCC diplotype were significantly associated with the resistance to S. agalactiae (P = 0.00, 0.04 and < 0.0001, respectively). In addition, one SNP was associated significantly with growth traits (P < 0.05). These findings suggest that the duodenase-1 gene plays an important role in the resistance to S. agalactiae in tilapia. The SNP markers in the duodenase-1 gene associated with resistance to the bacterial pathogen, may facilitate the selection of tilapia resistant to the bacterial disease.
Collapse
Affiliation(s)
- Yubang Shen
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Gui Hong Fu
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Feng Liu
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Gen Hua Yue
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
15
|
Daub JT, Dupanloup I, Robinson-Rechavi M, Excoffier L. Inference of Evolutionary Forces Acting on Human Biological Pathways. Genome Biol Evol 2015; 7:1546-58. [PMID: 25971280 PMCID: PMC4494071 DOI: 10.1093/gbe/evv083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2015] [Indexed: 12/15/2022] Open
Abstract
Because natural selection is likely to act on multiple genes underlying a given phenotypic trait, we study here the potential effect of ongoing and past selection on the genetic diversity of human biological pathways. We first show that genes included in gene sets are generally under stronger selective constraints than other genes and that their evolutionary response is correlated. We then introduce a new procedure to detect selection at the pathway level based on a decomposition of the classical McDonald-Kreitman test extended to multiple genes. This new test, called 2DNS, detects outlier gene sets and takes into account past demographic effects and evolutionary constraints specific to gene sets. Selective forces acting on gene sets can be easily identified by a mere visual inspection of the position of the gene sets relative to their two-dimensional null distribution. We thus find several outlier gene sets that show signals of positive, balancing, or purifying selection but also others showing an ancient relaxation of selective constraints. The principle of the 2DNS test can also be applied to other genomic contrasts. For instance, the comparison of patterns of polymorphisms private to African and non-African populations reveals that most pathways show a higher proportion of nonsynonymous mutations in non-Africans than in Africans, potentially due to different demographic histories and selective pressures.
Collapse
Affiliation(s)
- Josephine T Daub
- CMPG, Institute of Ecology and Evolution, University of Berne, Switzerland Swiss Institute of Bioinformatics SIB, Lausanne, Switzerland Present address: Institute of Evolutionary Biology (UPF-CSIC), Barcelona, Spain
| | - Isabelle Dupanloup
- CMPG, Institute of Ecology and Evolution, University of Berne, Switzerland Swiss Institute of Bioinformatics SIB, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Swiss Institute of Bioinformatics SIB, Lausanne, Switzerland Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Laurent Excoffier
- CMPG, Institute of Ecology and Evolution, University of Berne, Switzerland Swiss Institute of Bioinformatics SIB, Lausanne, Switzerland
| |
Collapse
|