1
|
Mathiesen BT, Ohta M, Magalhaes BPD, Castelletti C, Perria V, Schuster K, Christiaen L, Ohta N. A simple inland culture system provides insights into ascidian post-embryonic developmental physiology. Open Biol 2025; 15:240340. [PMID: 39809318 PMCID: PMC11732436 DOI: 10.1098/rsob.240340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Maintenance and breeding of experimental organisms are fundamental to life sciences, but both initial and running costs, and hands-on zootechnical demands can be challenging for many laboratories. Here, we first aimed to further develop a simple protocol for reliable inland culture of tunicate model species of the Ciona genus. We cultured both Ciona robusta and Ciona intestinalis in controlled experimental conditions, with a focus on dietary variables, and quantified growth and maturation parameters. From statistical analysis of these standardized datasets, we gained insights into the post-embryonic developmental physiology of Ciona and inferred an improved diet and culturing conditions for sexual maturation. We showed that body length is a critical determinant of both somatic and sexual maturation, which suggests the existence of systemic control mechanisms of resource allocation towards somatic growth or maturation and supports applying size selection as a predictor of reproductive fitness in our inland culture to keep the healthiest animals at low density in the system. In the end, we successfully established a new protocol, including size selection, to promote both sperm and egg production. Our protocol using small tanks will empower researchers to initiate inland Ciona cultures with low costs and reduced space constraints.
Collapse
Affiliation(s)
| | - Mayu Ohta
- Michael Sars Centre, University of Bergen, Bergen, Norway
| | | | | | | | - Keaton Schuster
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Lionel Christiaen
- Michael Sars Centre, University of Bergen, Bergen, Norway
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Naoyuki Ohta
- Michael Sars Centre, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Satou Y, Sato A, Yasuo H, Mihirogi Y, Bishop J, Fujie M, Kawamitsu M, Hisata K, Satoh N. Chromosomal Inversion Polymorphisms in Two Sympatric Ascidian Lineages. Genome Biol Evol 2021; 13:6209075. [PMID: 33822040 PMCID: PMC8186479 DOI: 10.1093/gbe/evab068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 12/26/2022] Open
Abstract
Chromosomal rearrangements can reduce fitness of heterozygotes and can thereby prevent gene flow. Therefore, such rearrangements can play a role in local adaptation and speciation. In particular, inversions are considered to be a major potential cause for chromosomal speciation. There are two closely related, partially sympatric lineages of ascidians in the genus Ciona, which we call type-A and type-B animals in the present study. Although these invertebrate chordates are largely isolated reproductively, hybrids can be found in wild populations, suggesting incomplete prezygotic barriers. Although the genome of type-A animals has been decoded and widely used, the genome for type-B animals has not been decoded at the chromosomal level. In the present study, we sequenced the genomes of two type-B individuals from different sides of the English Channel (in the zone of sympatry with type-A individuals) and compared them at the chromosomal level with the type-A genome. Although the overall structures were well conserved between type A and type B, chromosomal alignments revealed many inversions differentiating these two types of Ciona; it is probable that the frequent inversions have contributed to separation between these two lineages. In addition, comparisons of the genomes between the two type-B individuals revealed that type B had high rates of inversion polymorphisms and nucleotide polymorphisms, and thus type B might be in the process of differentiation into multiple new types or species. Our results suggest an important role of inversions in chromosomal speciation of these broadcasting spawners.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan
| | - Atsuko Sato
- Department of Biology, Ochanomizu University, Otsuka, Bunkyo-ku, Japan.,Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, United Kingdom.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hitoyoshi Yasuo
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Villefranche-sur-mer, France
| | - Yukie Mihirogi
- Department of Biology, Ochanomizu University, Otsuka, Bunkyo-ku, Japan
| | - John Bishop
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, United Kingdom
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Mayumi Kawamitsu
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| |
Collapse
|
3
|
Satou Y, Nakamura R, Yu D, Yoshida R, Hamada M, Fujie M, Hisata K, Takeda H, Satoh N. A Nearly Complete Genome of Ciona intestinalis Type A (C. robusta) Reveals the Contribution of Inversion to Chromosomal Evolution in the Genus Ciona. Genome Biol Evol 2020; 11:3144-3157. [PMID: 31621849 PMCID: PMC6836712 DOI: 10.1093/gbe/evz228] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
Since its initial publication in 2002, the genome of Ciona intestinalis type A (Ciona robusta), the first genome sequence of an invertebrate chordate, has provided a valuable resource for a wide range of biological studies, including developmental biology, evolutionary biology, and neuroscience. The genome assembly was updated in 2008, and it included 68% of the sequence information in 14 pairs of chromosomes. However, a more contiguous genome is required for analyses of higher order genomic structure and of chromosomal evolution. Here, we provide a new genome assembly for an inbred line of this animal, constructed with short and long sequencing reads and Hi-C data. In this latest assembly, over 95% of the 123 Mb of sequence data was included in the chromosomes. Short sequencing reads predicted a genome size of 114-120 Mb; therefore, it is likely that the current assembly contains almost the entire genome, although this estimate of genome size was smaller than previous estimates. Remapping of the Hi-C data onto the new assembly revealed a large inversion in the genome of the inbred line. Moreover, a comparison of this genome assembly with that of Ciona savignyi, a different species in the same genus, revealed many chromosomal inversions between these two Ciona species, suggesting that such inversions have occurred frequently and have contributed to chromosomal evolution of Ciona species. Thus, the present assembly greatly improves an essential resource for genome-wide studies of ascidians.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Japan
| | - Ryohei Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| | - Deli Yu
- Department of Zoology, Graduate School of Science, Kyoto University, Japan
| | - Reiko Yoshida
- Department of Zoology, Graduate School of Science, Kyoto University, Japan
| | - Mayuko Hamada
- Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi, Japan
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
4
|
Sawada H, Yamamoto K, Yamaguchi A, Yamada L, Higuchi A, Nukaya H, Fukuoka M, Sakuma T, Yamamoto T, Sasakura Y, Shirae-Kurabayashi M. Three multi-allelic gene pairs are responsible for self-sterility in the ascidian Ciona intestinalis. Sci Rep 2020; 10:2514. [PMID: 32054881 PMCID: PMC7018956 DOI: 10.1038/s41598-020-59147-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Many hermaphroditic organisms possess a self-incompatibility system to avoid inbreeding. Although the mechanisms of self-incompatibility in flowering plants are well known, little is known about the mechanisms of self-sterility in hermaphroditic marine invertebrates. Ascidians are hermaphroditic sessile marine invertebrates that release sperm and eggs into the surrounding seawater. Several species, including Ciona intestinalis type A (Ciona robusta), exhibit strict self-sterility. In a previous study, we found that the candidate genes responsible for self-sterility in Ciona reside in chromosome 2q (locus A) and chromosome 7q (locus B). Two pairs of multi-allelic genes, named s(sperm)-Themis-A and v(vitelline-coat)-Themis-A in locus A and s-Themis-B and v-Themis-B in locus B, are responsible for self-sterility. In this study, we identified a third multi-allelic gene pair, s-Themis-B2 and v-Themis-B2, within locus B that is also involved in this system. Genetic analysis revealed that the haplotypes of s/v-Themis-A, s/v-Themis-B and s/v-Themis-B2 play essential roles in self-sterility. When three haplotypes were matched between s-Themis and v-Themis, fertilization never occurred even in nonself crossing. Interestingly, gene targeting of either s/v-Themis-B/B2 or s/v-Themis-A by genome editing enabled self-fertilization. These results indicate that s/v-Themis-A, -B and -B2 are S-determinant genes responsible for self-sterility in the ascidian C. intestinalis type A.
Collapse
Affiliation(s)
- Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, 517-0004, Japan.
| | - Kazunori Yamamoto
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, 517-0004, Japan
| | - Akira Yamaguchi
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, 517-0004, Japan
| | - Lixy Yamada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, 517-0004, Japan
| | - Arata Higuchi
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, 517-0004, Japan
| | - Haruhiko Nukaya
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, 517-0004, Japan
| | - Masashi Fukuoka
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, 517-0004, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan
| | - Maki Shirae-Kurabayashi
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, 517-0004, Japan
| |
Collapse
|
5
|
Kosman ET, Hipp B, Levitan DR. Chemoattractant-Mediated Preference of Non-Self Eggs in Ciona robusta Sperm. THE BIOLOGICAL BULLETIN 2017; 233:183-189. [PMID: 29553818 DOI: 10.1086/696217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Self-fertilization in hermaphroditic species might or might not be advantageous based on the level of inbreeding or outbreeding depression and the opportunity to outcross. This study examined whether chemoattractants can influence selfing rates through changes in sperm swimming behavior in the hermaphroditic tunicate Ciona robusta. The first set of experiments tested sperm preference in a dichotomous choice chamber by allowing the sperm to choose between wells with no eggs and wells with eggs, while the second experiment gave sperm a choice between self eggs and non-self eggs from another C. robusta individual. We found that sperm were about 5 times more likely to be captured in wells with eggs than in empty wells (P < 0.001) and that they were about 1.6 times more likely to be captured in wells with non-self eggs than in those with self eggs (P = 0.002). Additionally, we found that although sperm were activated by water pretreated with eggs, there was no difference in sperm swimming speed and motility in water treated with pooled-egg water compared to self-egg-treated water (P = 0.636 and P = 0.854, respectively). Our results indicate that while chemoattractant identity does not affect the basic mechanics of sperm activation and thus fertilization ability, it can cause sperm to aggregate near non-self eggs in greater numbers. This may allow for sperm to fertilize non-self eggs in greater numbers when available while still retaining the ability to fertilize self eggs.
Collapse
|
6
|
Roy SW. Is Genome Complexity a Consequence of Inefficient Selection? Evidence from Intron Creation in Nonrecombining Regions. Mol Biol Evol 2016; 33:3088-3094. [DOI: 10.1093/molbev/msw172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|