1
|
Larue GE, Roy SW. Where the minor things are: a pan-eukaryotic survey suggests neutral processes may explain much of minor intron evolution. Nucleic Acids Res 2023; 51:10884-10908. [PMID: 37819006 PMCID: PMC10639083 DOI: 10.1093/nar/gkad797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Spliceosomal introns are gene segments removed from RNA transcripts by ribonucleoprotein machineries called spliceosomes. In some eukaryotes a second 'minor' spliceosome is responsible for processing a tiny minority of introns. Despite its seemingly modest role, minor splicing has persisted for roughly 1.5 billion years of eukaryotic evolution. Identifying minor introns in over 3000 eukaryotic genomes, we report diverse evolutionary histories including surprisingly high numbers in some fungi and green algae, repeated loss, as well as general biases in their positional and genic distributions. We estimate that ancestral minor intron densities were comparable to those of vertebrates, suggesting a trend of long-term stasis. Finally, three findings suggest a major role for neutral processes in minor intron evolution. First, highly similar patterns of minor and major intron evolution contrast with both functionalist and deleterious model predictions. Second, observed functional biases among minor intron-containing genes are largely explained by these genes' greater ages. Third, no association of intron splicing with cell proliferation in a minor intron-rich fungus suggests that regulatory roles are lineage-specific and thus cannot offer a general explanation for minor splicing's persistence. These data constitute the most comprehensive view of minor introns and their evolutionary history to date, and provide a foundation for future studies of these remarkable genetic elements.
Collapse
Affiliation(s)
- Graham E Larue
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA 95343, USA
| | - Scott W Roy
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA 95343, USA
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| |
Collapse
|
2
|
Roy SW, Gozashti L, Bowser BA, Weinstein BN, Larue GE, Corbett-Detig R. Intron-rich dinoflagellate genomes driven by Introner transposable elements of unprecedented diversity. Curr Biol 2023; 33:189-196.e4. [PMID: 36543167 DOI: 10.1016/j.cub.2022.11.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 06/18/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
Abstract
Spliceosomal introns, which interrupt nuclear genes, are ubiquitous features of eukaryotic nuclear genes.1 Spliceosomal intron evolution is complex, with different lineages ranging from virtually zero to thousands of newly created introns.2,3,4,5 This punctate phylogenetic distribution could be explained if intron creation is driven by specialized transposable elements ("Introners"), with Introner-containing lineages undergoing frequent intron gain.6,7,8,9,10 Fragmentation of nuclear genes by spliceosomal introns reaches its apex in dinoflagellates, which have some twenty introns per gene11,12; however, little is known about dinoflagellate intron evolution. We reconstructed intron evolution in five dinoflagellate genomes, revealing a dynamic history of intron gain. We find evidence for historical creation of introns in all five species and identify recently active Introners in 4/5 studied species. In one species, Polarella glacialis, we find an unprecedented diversity of Introners, with recent Introner insertion leading to creation of some 12,253 introns, and with 15 separate families of Introners accounting for at least 100 introns each. These Introner families show diverse mechanisms of moblization and intron creation. Comparison within and between Introner families provides evidence that biases in the so-called intron phase, intron position relative to codon periodicity, could be driven by Introner insertion site requirements.9,13,14 Finally, we report additional transformations of the spliceosomal system in dinoflagellates, including widespread loss of ancestral introns, and novelties of tolerated and favored donor sequence motifs. These results reveal unappreciated diversity of intron-creating elements and spliceosomal evolutionary capacity and highlight the complex evolutionary dependencies shaping genome structures.
Collapse
Affiliation(s)
- Scott William Roy
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; Department of Molecular and Cell Biology, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| | - Landen Gozashti
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Bradley A Bowser
- Department of Molecular and Cell Biology, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Brooke N Weinstein
- Department of Molecular and Cell Biology, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Graham E Larue
- Department of Molecular and Cell Biology, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
3
|
Gottin C, Dievart A, Summo M, Droc G, Périn C, Ranwez V, Chantret N. A new comprehensive annotation of leucine-rich repeat-containing receptors in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:492-508. [PMID: 34382706 PMCID: PMC9292849 DOI: 10.1111/tpj.15456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Oryza sativa (rice) plays an essential food security role for more than half of the world's population. Obtaining crops with high levels of disease resistance is a major challenge for breeders, especially today, given the urgent need for agriculture to be more sustainable. Plant resistance genes are mainly encoded by three large leucine-rich repeat (LRR)-containing receptor (LRR-CR) families: the LRR-receptor-like kinase (LRR-RLK), LRR-receptor-like protein (LRR-RLP) and nucleotide-binding LRR receptor (NLR). Using lrrprofiler, a pipeline that we developed to annotate and classify these proteins, we compared three publicly available annotations of the rice Nipponbare reference genome. The extended discrepancies that we observed for LRR-CR gene models led us to perform an in-depth manual curation of their annotations while paying special attention to nonsense mutations. We then transferred this manually curated annotation to Kitaake, a cultivar that is closely related to Nipponbare, using an optimized strategy. Here, we discuss the breakthrough achieved by manual curation when comparing genomes and, in addition to 'functional' and 'structural' annotations, we propose that the community adopts this approach, which we call 'comprehensive' annotation. The resulting data are crucial for further studies on the natural variability and evolution of LRR-CR genes in order to promote their use in breeding future resilient varieties.
Collapse
Affiliation(s)
- Céline Gottin
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
- CIRADUMR AGAP InstitutF‐34398MontpellierFrance
| | - Anne Dievart
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
- CIRADUMR AGAP InstitutF‐34398MontpellierFrance
| | - Marilyne Summo
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
- CIRADUMR AGAP InstitutF‐34398MontpellierFrance
| | - Gaëtan Droc
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
- CIRADUMR AGAP InstitutF‐34398MontpellierFrance
| | - Christophe Périn
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
- CIRADUMR AGAP InstitutF‐34398MontpellierFrance
| | - Vincent Ranwez
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
| | - Nathalie Chantret
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
| |
Collapse
|
4
|
Zheng J, Wang J, Gong Z, Han GZ. Molecular fossils illuminate the evolution of retroviruses following a macroevolutionary transition from land to water. PLoS Pathog 2021; 17:e1009730. [PMID: 34252162 PMCID: PMC8297934 DOI: 10.1371/journal.ppat.1009730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/22/2021] [Accepted: 06/18/2021] [Indexed: 11/18/2022] Open
Abstract
The ancestor of cetaceans underwent a macroevolutionary transition from land to water early in the Eocene Period >50 million years ago. However, little is known about how diverse retroviruses evolved during this shift from terrestrial to aquatic environments. Did retroviruses transition into water accompanying their hosts? Did retroviruses infect cetaceans through cross-species transmission after cetaceans invaded the aquatic environments? Endogenous retroviruses (ERVs) provide important molecular fossils for tracing the evolution of retroviruses during this macroevolutionary transition. Here, we use a phylogenomic approach to study the origin and evolution of ERVs in cetaceans. We identify a total of 8,724 ERVs within the genomes of 25 cetaceans, and phylogenetic analyses suggest these ERVs cluster into 315 independent lineages, each of which represents one or more independent endogenization events. We find that cetacean ERVs originated through two possible routes. 298 ERV lineages may derive from retrovirus endogenization that occurred before or during the transition from land to water of cetaceans, and most of these cetacean ERVs were reaching evolutionary dead-ends. 17 ERV lineages are likely to arise from independent retrovirus endogenization events that occurred after the split of mysticetes and odontocetes, indicating that diverse retroviruses infected cetaceans through cross-species transmission from non-cetacean mammals after the transition to aquatic life of cetaceans. Both integration time and synteny analyses support the recent or ongoing activity of multiple retroviral lineages in cetaceans, some of which proliferated into hundreds of copies within the host genomes. Although ERVs only recorded a proportion of past retroviral infections, our findings illuminate the complex evolution of retroviruses during one of the most marked macroevolutionary transitions in vertebrate history.
Collapse
Affiliation(s)
- Jialu Zheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jianhua Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhen Gong
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
- * E-mail:
| |
Collapse
|
5
|
Lim CS, Weinstein BN, Roy SW, Brown CM. Analysis of fungal genomes reveals commonalities of intron gain or loss and functions in intron-poor species. Mol Biol Evol 2021; 38:4166-4186. [PMID: 33772558 PMCID: PMC8476143 DOI: 10.1093/molbev/msab094] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous evolutionary reconstructions have concluded that early eukaryotic ancestors including both the last common ancestor of eukaryotes and of all fungi had intron-rich genomes. By contrast, some extant eukaryotes have few introns, underscoring the complex histories of intron–exon structures, and raising the question as to why these few introns are retained. Here, we have used recently available fungal genomes to address a variety of questions related to intron evolution. Evolutionary reconstruction of intron presence and absence using 263 diverse fungal species supports the idea that massive intron reduction through intron loss has occurred in multiple clades. The intron densities estimated in various fungal ancestors differ from zero to 7.6 introns per 1 kb of protein-coding sequence. Massive intron loss has occurred not only in microsporidian parasites and saccharomycetous yeasts, but also in diverse smuts and allies. To investigate the roles of the remaining introns in highly-reduced species, we have searched for their special characteristics in eight intron-poor fungi. Notably, the introns of ribosome-associated genes RPL7 and NOG2 have conserved positions; both intron-containing genes encoding snoRNAs. Furthermore, both the proteins and snoRNAs are involved in ribosome biogenesis, suggesting that the expression of the protein-coding genes and noncoding snoRNAs may be functionally coordinated. Indeed, these introns are also conserved in three-quarters of fungi species. Our study shows that fungal introns have a complex evolutionary history and underappreciated roles in gene expression.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Brooke N Weinstein
- Quantitative & Systems Biology, School of Natural Sciences, University of California-Merced, Merced, CA, USA.,Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Scott W Roy
- Quantitative & Systems Biology, School of Natural Sciences, University of California-Merced, Merced, CA, USA.,Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Chris M Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Mao JM, Wang Y, Yang L, Yao Q, Chen KP. An Intron of Invertebrate Microphthalmia Transcription Factor Gene Is Evolved from a Longer Ancestral Sequence. Evol Bioinform Online 2021; 17:1176934320988558. [PMID: 33551639 PMCID: PMC7841239 DOI: 10.1177/1176934320988558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022] Open
Abstract
Introns are highly variable in number and size. Sequence simulation is an
effective method to elucidate intron evolution patterns. Previously, we have
reported that introns are more likely to evolve through mutation-and-deletion
(MD) rather than through mutation-and-insertion (MI). In the present study, we
further studied evolution models by allowing insertion in the MD model and by
allowing deletion in the MI model at various frequencies. It was found that all
deletion-biased models with proper parameter settings could generate sequences
with attributes matchable to 16 invertebrate introns from the microphthalmia
transcription factor gene, whereas all insertion-biased models with any
parameter settings failed to generate such sequences. We conclude that the
examined invertebrate introns may have evolved from a longer ancestral sequence
in a deletion-biased pattern. The constructed models are useful for studying the
evolution of introns from other genes and/or from other taxonomic groups. (C++
scripts of all deletion- and insertion-biased models are available upon
request.)
Collapse
Affiliation(s)
- Jun-Ming Mao
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yong Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Liu Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qin Yao
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ke-Ping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Poverennaya IV, Roytberg MA. Spliceosomal Introns: Features, Functions, and Evolution. BIOCHEMISTRY (MOSCOW) 2021; 85:725-734. [PMID: 33040717 DOI: 10.1134/s0006297920070019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Spliceosomal introns, which have been found in most eukaryotic genes, are non-coding sequences excised from pre-mRNAs by a special complex called spliceosome during mRNA splicing. Introns occur in both protein- and RNA-coding genes and can be found in coding and untranslated gene regions. Because intron sequences vary greatly due to a high rate of polymorphism, the functions of intron had been for a long time associated only with alternative splicing, while intron evolution had been viewed not as an evolution of an individual genomic element, but rather considered within a framework of the evolution of the gene intron-exon structure. Here, we review the theories of intron origin, evolutionary events in the exon-intron structure, such as intron gain, loss, and sliding, intron functions known to date, and mechanisms by which changes in the intron features (length and phase) can affect the regulation of gene-mediated processes.
Collapse
Affiliation(s)
- I V Poverennaya
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia. .,Institute of Mathematical Problems in Biology, Keldysh Branch of Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - M A Roytberg
- Institute of Mathematical Problems in Biology, Keldysh Branch of Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.,Higher School of Economics, Moscow, 101000, Russia
| |
Collapse
|
8
|
Yu J, Hu F, Dossa K, Wang Z, Ke T. Genome-wide analysis of UDP-glycosyltransferase super family in Brassica rapa and Brassica oleracea reveals its evolutionary history and functional characterization. BMC Genomics 2017. [PMID: 28645261 PMCID: PMC5481917 DOI: 10.1186/s12864-017-3844-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Glycosyltransferases comprise a highly divergent and polyphyletic multigene family that is involved in widespread modification of plant secondary metabolites in a process called glycosylation. According to conserved domains identified in their amino acid sequences, these glycosyltransferases can be classified into a single UDP-glycosyltransferase (UGT) 1 superfamily. Results We performed genome-wide comparative analysis of UGT genes to trace evolutionary history in algae, bryophytes, pteridophytes, and angiosperms; then, we further investigated the expansion mechanisms and function characterization of UGT gene families in Brassica rapa and Brassica oleracea. Using Hidden Markov Model search, we identified 3, 21, 140, 200, 115, 147, and 147 UGTs in Chlamydomonas reinhardtii, Physcomitrella patens, Selaginella moellendorffii, Oryza sativa, Arabidopsis thaliana, B. rapa, and B. oleracea, respectively. Phylogenetic analysis revealed that UGT80 gene family is an ancient gene family, which is shared by all plants and UGT74 gene family is shared by ferns and angiosperms, but the remaining UGT gene families were shared by angiosperms. In dicot lineage, UGTs among three species were classified into three subgroups containing 3, 6, and 12 UGT gene families. Analysis of chromosomal distribution indicates that 98.6 and 71.4% of UGTs were located on B. rapa and B. oleracea pseudo-molecules, respectively. Expansion mechanism analyses uncovered that whole genome duplication event exerted larger influence than tandem duplication on expansion of UGT gene families in B. rapa, and B. oleracea. Analysis of selection forces of UGT orthologous gene pairs in B. rapa, and B. oleracea compared to A. thaliana suggested that orthologous genes in B. rapa, and B. oleracea have undergone negative selection, but there were no significant differences between A. thaliana –B. rapa and A. thaliana –B. oleracea lineages. Our comparisons of expression profiling illustrated that UGTs in B. rapa performed more discrete expression patterns than these in B. oleracea indicating stronger function divergence. Combing with phylogeny and expression analysis, the UGTs in B. rapa and B. oleracea experienced parallel evolution after they diverged from a common ancestor. Conclusion We first traced the evolutionary history of UGT gene families in plants and revealed its evolutionary and functional characterization of UGTs in B. rapa, and B. oleracea. This study provides novel insights into the evolutionary history and functional divergence of important traits or phenotype-related gene families in plants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3844-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingyin Yu
- Department of Life Science and Technology, Nanyang Normal University, Wolong Road, Nanyang, 473061, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Fan Hu
- Third Institute of Oceanography, State Oceanic Administration, Fujian, 361005, China
| | - Komivi Dossa
- Department of Life Science and Technology, Nanyang Normal University, Wolong Road, Nanyang, 473061, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Zhaokai Wang
- Third Institute of Oceanography, State Oceanic Administration, Fujian, 361005, China.
| | - Tao Ke
- Department of Life Science and Technology, Nanyang Normal University, Wolong Road, Nanyang, 473061, China.
| |
Collapse
|