1
|
Roy SW, Gozashti L, Bowser BA, Weinstein BN, Larue GE, Corbett-Detig R. Intron-rich dinoflagellate genomes driven by Introner transposable elements of unprecedented diversity. Curr Biol 2023; 33:189-196.e4. [PMID: 36543167 DOI: 10.1016/j.cub.2022.11.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 06/18/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
Abstract
Spliceosomal introns, which interrupt nuclear genes, are ubiquitous features of eukaryotic nuclear genes.1 Spliceosomal intron evolution is complex, with different lineages ranging from virtually zero to thousands of newly created introns.2,3,4,5 This punctate phylogenetic distribution could be explained if intron creation is driven by specialized transposable elements ("Introners"), with Introner-containing lineages undergoing frequent intron gain.6,7,8,9,10 Fragmentation of nuclear genes by spliceosomal introns reaches its apex in dinoflagellates, which have some twenty introns per gene11,12; however, little is known about dinoflagellate intron evolution. We reconstructed intron evolution in five dinoflagellate genomes, revealing a dynamic history of intron gain. We find evidence for historical creation of introns in all five species and identify recently active Introners in 4/5 studied species. In one species, Polarella glacialis, we find an unprecedented diversity of Introners, with recent Introner insertion leading to creation of some 12,253 introns, and with 15 separate families of Introners accounting for at least 100 introns each. These Introner families show diverse mechanisms of moblization and intron creation. Comparison within and between Introner families provides evidence that biases in the so-called intron phase, intron position relative to codon periodicity, could be driven by Introner insertion site requirements.9,13,14 Finally, we report additional transformations of the spliceosomal system in dinoflagellates, including widespread loss of ancestral introns, and novelties of tolerated and favored donor sequence motifs. These results reveal unappreciated diversity of intron-creating elements and spliceosomal evolutionary capacity and highlight the complex evolutionary dependencies shaping genome structures.
Collapse
Affiliation(s)
- Scott William Roy
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; Department of Molecular and Cell Biology, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| | - Landen Gozashti
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Bradley A Bowser
- Department of Molecular and Cell Biology, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Brooke N Weinstein
- Department of Molecular and Cell Biology, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Graham E Larue
- Department of Molecular and Cell Biology, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
2
|
Abstract
BACKGROUND The evolution of spliceosomal introns has been widely studied among various eukaryotic groups. Researchers nearly reached the consensuses on the pattern and the mechanisms of intron losses and gains across eukaryotes. However, according to previous studies that analyzed a few genes or genomes, Nematoda seems to be an eccentric group. RESULTS Taking advantage of the recent accumulation of sequenced genomes, we extensively analyzed the intron losses and gains using 104 nematode genomes across all the five Clades of the phylum. Nematodes have a wide range of intron density, from less than one to more than nine per kbp coding sequence. The rates of intron losses and gains exhibit significant heterogeneity both across different nematode lineages and across different evolutionary stages of the same lineage. The frequency of intron losses far exceeds that of intron gains. Five pieces of evidence supporting the model of cDNA-mediated intron loss have been observed in ten Caenorhabditis species, the dominance of the precise intron losses, frequent loss of adjacent introns, high-level expression of the intron-lost genes, preferential losses of short introns, and the preferential losses of introns close to 3'-ends of genes. Like studies in most eukaryotic groups, we cannot find the source sequences for the limited number of intron gains detected in the Caenorhabditis genomes. CONCLUSIONS These results indicate that nematodes are a typical eukaryotic group rather than an outlier in intron evolution.
Collapse
Affiliation(s)
- Ming-Yue Ma
- Chongqing Key Laboratory of Big Data for Bio Intelligence, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Ji Xia
- Chongqing Key Laboratory of Big Data for Bio Intelligence, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Kun-Xian Shu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
3
|
Roddy AB, Alvarez-Ponce D, Roy SW. Mammals with small populations do not exhibit larger genomes. Mol Biol Evol 2021; 38:3737-3741. [PMID: 33956142 PMCID: PMC8382904 DOI: 10.1093/molbev/msab142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Genome size in cellular organisms varies by six orders of magnitude, yet the cause of this large variation remains unexplained. The influential Drift-Barrier Hypothesis proposes that large genomes tend to evolve in small populations due to inefficient selection. However, to our knowledge no explicit tests of the Drift-Barrier Hypothesis have been reported. We performed the first explicit test, by comparing estimated census population size and genome size in mammals while incorporating potential covariates and the effect of shared evolutionary history. We found a lack of correlation between census population size and genome size among 199 species of mammals. These results suggest that population size is not the predominant factor influencing genome size and that the Drift-Barrier Hypothesis should be considered provisional.
Collapse
Affiliation(s)
- Adam B Roddy
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL
| | | | - Scott W Roy
- Department of Biology, San Francisco State University, San Francisco, CA
| |
Collapse
|
4
|
Wang GD, Wang Y, Zeng Z, Mao JM, He QL, Yao Q, Chen KP. Simulation of Chordate Intron Evolution Using Randomly Generated and Mutated Base Sequences. Evol Bioinform Online 2020; 16:1176934320903108. [PMID: 32063698 PMCID: PMC6990610 DOI: 10.1177/1176934320903108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/01/2020] [Indexed: 11/15/2022] Open
Abstract
Introns are well known for their high variation not only in length but also in base sequence. The evolution of intron sequences has aroused broad interest in the past decades. However, very little is known about the evolutionary pattern of introns due to the lack of efficient analytical method. In this study, we designed 2 evolutionary models, that is, mutation-and-deletion (MD) and mutation-and-insertion (MI), to simulate intron evolution using randomly generated and mutated bases by referencing to the phylogenetic tree constructed using 14 chordate introns from TF4 (transcription factor-like protein 4) gene. A comparison of attributes between model-generated sequences and chordate introns showed that the MD model with proper parameter settings could generate sequences that have attributes matchable to chordate introns, whereas the MI model with any parameter settings failed in doing so. These data suggest that the surveyed chordate introns have evolved from a long ancestral sequence through gradual reduction in length. The established methodology provides an effective measure to study the evolutionary pattern of intron sequences from organisms of various taxonomic groups. (C++ scripts of MD and MI models are available upon request.).
Collapse
Affiliation(s)
- Guang-Dong Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yong Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zhen Zeng
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jun-Ming Mao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qin-Liu He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qin Yao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ke-Ping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Bhattachan P, Dong B. Multivariate analysis of genomic variables, effective population size, and mutation rate. BMC Res Notes 2019; 12:60. [PMID: 30683153 PMCID: PMC6347809 DOI: 10.1186/s13104-019-4097-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/19/2019] [Indexed: 11/26/2022] Open
Abstract
Objective The relationship between genomic variables (genome size, gene number, intron size, and intron number) and evolutionary forces has two implications. First, they help to unravel the mechanism underlying genome evolution. Second, they provide a solution to the debate over discrepancy between genome size variation and organismal complexity. Previously, a clear correlation between genomic variables and effective population size and mutation rate (Neu) led to an important hypothesis to consider random genetic drift as a major evolutionary force during evolution of genome size and complexity. But recent reports also support natural selection as the leading evolutionary force. As such, the debate remains unresolved. Results Here, we used a multivariate method to explore the relationship between genomic variables and Neu in order to understand the evolution of genome. Previously reported patterns between genomic variables and Neu were not observed in our multivariate study. We found only one association between intron number and Neu, but no relationships were observed between genome size, intron size, gene number, and Neu, suggesting that Neu of the organisms solely does not influence genome evolution. We, therefore, concluded that Neu influences intron evolution, while it may not be the only force that provides mechanistic insights into genome evolution and complexity. Electronic supplementary material The online version of this article (10.1186/s13104-019-4097-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Punit Bhattachan
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Bo Dong
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China. .,Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
6
|
Schaefke B, Sun W, Li YS, Fang L, Chen W. The evolution of posttranscriptional regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1485. [PMID: 29851258 DOI: 10.1002/wrna.1485] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022]
Abstract
"DNA makes RNA makes protein." After transcription, mRNAs undergo a series of intertwining processes to be finally translated into functional proteins. The "posttranscriptional" regulation (PTR) provides cells an extended option to fine-tune their proteomes. To meet the demands of complex organism development and the appropriate response to environmental stimuli, every step in these processes needs to be finely regulated. Moreover, changes in these regulatory processes are important driving forces underlying the evolution of phenotypic differences across different species. The major PTR mechanisms discussed in this review include the regulation of splicing, polyadenylation, decay, and translation. For alternative splicing and polyadenylation, we mainly discuss their evolutionary dynamics and the genetic changes underlying the regulatory differences in cis-elements versus trans-factors. For mRNA decay and translation, which, together with transcription, determine the cellular RNA or protein abundance, we focus our discussion on how their divergence coordinates with transcriptional changes to shape the evolution of gene expression. Then to highlight the importance of PTR in the evolution of higher complexity, we focus on their roles in two major phenomena during eukaryotic evolution: the evolution of multicellularity and the division of labor between different cell types and tissues; and the emergence of diverse, often highly specialized individual phenotypes, especially those concerning behavior in eusocial insects. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution Translation > Translation Regulation RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Bernhard Schaefke
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Wei Sun
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California San Francisco, San Francisco
| | - Yi-Sheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Liang Fang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Wei Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|