1
|
Simakov O, Wagner GP. The application of irreversible genomic states to define and trace ancient cell type homologies. EvoDevo 2025; 16:5. [PMID: 40319312 PMCID: PMC12049793 DOI: 10.1186/s13227-025-00242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025] Open
Abstract
Homology, or relationship among characters by common descent, has been notoriously difficult to assess for many morphological features, and cell types in particular. The ontogenetic origin of morphological traits means that the only physically inherited information is encoded in the genomes. However, the complexity of the underlying gene regulatory network and often miniscule changes that can impact gene expression, make it practically impossible to postulate a clear demarcation line for what molecular signature should "define" a homologous cell type between two deeply branching animals. In this Hypothesis article, we propose the use of the recently characterized irreversible genomic states, that occur after chromosomal and sub-chromosomal mixing of genes and regulatory elements, to dissect regulatory signatures of each cell type into irreversible and reversible configurations. While many of such states will be non-functional, some may permanently impact gene expression in a given cell type. Our proposal is that such evolutionarily irreversible, and thus synapomorphic, functional genomic states can constitute a criterion for the timing of the origin of deep evolutionary cell type homologies. Our proposal thus aims to close the gap between the clearly defined homology of the individual genomic characters and their genomic states to the homology at the phenotypic level through the identification of the underlying evolutionarily irreversible and regulatory linked states.
Collapse
Affiliation(s)
- Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Günter P Wagner
- Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Systems Biology Institute, Yale University, New Haven, CT, 06520, USA
- Hagler Institute for Advanced Studies, Texas A&M, College Station, TX, 77843, USA
| |
Collapse
|
2
|
Ulrich ND, Vargo A, Ma Q, Shen YC, Bazzano D, Hannum DF, Gurczynski SJ, Moore BB, Schon S, Lieberman R, Shikanov A, Marsh EE, Fazleabas A, Li JZ, Hammoud SS. Cellular heterogeneity and dynamics of the human uterus in healthy premenopausal women. Proc Natl Acad Sci U S A 2024; 121:e2404775121. [PMID: 39471215 PMCID: PMC11551439 DOI: 10.1073/pnas.2404775121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/19/2024] [Indexed: 11/01/2024] Open
Abstract
The human uterus is a complex and dynamic organ whose lining grows, remodels, and regenerates every menstrual cycle or upon tissue damage. Here, we applied single-cell RNA sequencing to profile more the 50,000 uterine cells from both the endometrium and myometrium of five healthy premenopausal individuals, and jointly analyzed the data with a previously published dataset from 15 subjects. The resulting normal uterus cell atlas contains more than 167K cells, representing the lymphatic endothelium, blood endothelium, stromal, ciliated epithelium, unciliated epithelium, and immune cell populations. Focused analyses within each major cell type and comparisons with subtype labels from prior studies allowed us to document supporting evidence, resolve naming conflicts, and propose a consensus annotation system of 39 subtypes. We release their gene expression centroids, differentially expressed genes, and messenger Ribonucleic Acid (mRNA) patterns of literature-based markers as a shared community resource. We identify multiple potential progenitor cells: compartment-wide progenitors for each major cell type and potential cross-lineage multipotent stromal progenitors that may replenish the epithelial, stromal, and endothelial compartments. Furthermore, many cell types and subtypes exhibit shifts in cell number and transcriptomes across different phases of the menstrual cycle. Finally, comparisons between premenopausal, postpartum, and postmenopausal samples revealed substantial alterations in tissue composition, particularly in the proportions of stromal, endothelial, and immune cells. The cell taxonomy and molecular markers we report here are expected to inform studies of both basic biology of uterine function and its disorders.
Collapse
Affiliation(s)
- Nicole D. Ulrich
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI48109
| | - Alex Vargo
- Department of Human Genetics, University of Michigan, Ann Arbor, MI48109
| | - Qianyi Ma
- Department of Human Genetics, University of Michigan, Ann Arbor, MI48109
| | - Yu-chi Shen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI48109
| | - Dominic Bazzano
- Department of Human Genetics, University of Michigan, Ann Arbor, MI48109
| | - D. Ford Hannum
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI48109
| | - Stephen J. Gurczynski
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI48109
| | - Bethany B. Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI48109
| | - Samantha Schon
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI48109
| | - Richard Lieberman
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Ariella Shikanov
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Erica E. Marsh
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI48109
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI49503
| | - Jun Z. Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI48109
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI48109
| | - Saher Sue Hammoud
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI48109
- Department of Human Genetics, University of Michigan, Ann Arbor, MI48109
- Department of Urology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
3
|
Wang M, Sun F, Zhang S, Zhang X, Sun Y, Yu T, Li Y, Jiang A, Qiao P, Ren C, Yang T. NEK2 promotes the development of ovarian endometriosis and impairs decidualization by phosphorylating FOXO1. Cell Mol Life Sci 2024; 81:237. [PMID: 38795132 PMCID: PMC11127904 DOI: 10.1007/s00018-024-05270-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/27/2024]
Abstract
Ovarian endometriosis is a common gynecological disease, and one of its most significant symptoms is infertility. In patients with endometriosis, defects in endometrial decidualization lead to impaired endometrial receptivity and embryo implantation, thus affecting early pregnancy and women's desire to have children. However, the mechanisms underlying the development of endometriosis and its associated defective decidualization are unclear. We find that NEK2 expression is increased in the ectopic and eutopic endometrium of patients with endometriosis. Meanwhile, NEK2 interacts with FOXO1 and phosphorylates FOXO1 at Ser184, inhibiting the stability of the FOXO1 protein. Importantly, NEK2-mediated phosphorylation of FOXO1 at Ser184 promotes cell proliferation, migration, invasion and impairs decidualization. Furthermore, INH1, an inhibitor of NEK2, inhibits the growth of ectopic lesions in mouse models of endometriosis and promotes endometrial decidualization in mouse models of artificially induced decidualization. Taken together, these findings indicate that NEK2 regulates the development of endometriosis and associated disorders of decidualization through the phosphorylation of FOXO1, providing a new therapeutic target for its treatment.
Collapse
Affiliation(s)
- Mengxue Wang
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, P.R. China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, P.R. China
| | - Fangyuan Sun
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, P.R. China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, P.R. China
| | - Shucai Zhang
- Emergency Department, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, P.R. China
| | - Xiaohui Zhang
- Department of Obstetrics and Gynecology, Zhucheng People's Hospital, Shandong Second Medical University, Weifang, Shandong Province, P.R. China
| | - Yujun Sun
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, P.R. China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, P.R. China
| | - Ting Yu
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, P.R. China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, P.R. China
| | - Yuanyuan Li
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, P.R. China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, P.R. China
| | - Aifang Jiang
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, P.R. China
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, P.R. China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, P.R. China.
| | - Tingting Yang
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, P.R. China.
| |
Collapse
|
4
|
杨 艳, 张 建, 李 冬, 刘 翠, 郭 融, 肖 伊, 周 玲, 佟 玲, 张 弘. [Notch1/Akt/Foxo1 Pathway Regulated by Kisspeptin Is Involved in Endometrial Decidualization in Patients With Recurrent Spontaneous Abortion]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:542-551. [PMID: 38948287 PMCID: PMC11211770 DOI: 10.12182/20240560206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 07/02/2024]
Abstract
Objective Kisspeptin, a protein encoded by the KISS1 gene, functions as an essential factor in suppressing tumor growth. The intricate orchestration of cellular processes such as proliferation and differentiation is governed by the Notch1/Akt/Foxo1 signaling pathway, which assumes a central role in maintaining cellular homeostasis. In the specific context of this investigation, the focal point lies in a meticulous exploration of the intricate mechanisms underlying the regulatory effect of kisspeptin on the process of endometrial decidualization. This investigation delves into the interplay between kisspeptin and the Notch1/Akt/Foxo1 signaling pathway, aiming to elucidate its significance in the pathophysiology of recurrent spontaneous abortion (RSA). Methods We enrolled a cohort comprising 45 individuals diagnosed with RSA, who were admitted to the outpatient clinic of the Reproductive Center at the Second Affiliated Hospital of Soochow University between June 2020 and December 2020. On the other hand, an additional group of 50 women undergoing elective abortion at the outpatient clinic of the Family Planning Department during the same timeframe was also included. To comprehensively assess the molecular landscape, Western blot and RT-qPCR were performed to analyze the expression levels of kisspeptin (and its gene KISS1), IGFBP1 (an established marker of decidualization), Notch1, Akt, and Foxo1 within the decidua. Human endometrial stromal cells (hESC) were given targeted interventions, including treatment with siRNA to disrupt KISS1 or exposure to kisspeptin10 (the bioactive fragment of kisspeptin), and were subsequently designated as the siKP group or the KP10 group, respectively. A control group comprised hESC was transfected with blank siRNA, and cell proliferation was meticulously evaluated with CCK8 assay. Following in vitro induction for decidualization across the three experimental groups, immunofluorescence assay was performed to identify differences in Notch1 expression and decidualization morphology between the siKP and the KP10 groups. Furthermore, RT-qPCR and Western blot were performed to gauge the expression levels of IGFBP1, Notch1, Akt, and Foxo1 across the three cell groups. Subsequently, decidualization was induced in hESC by adding inhibitors targeting Notch1, Akt, and Foxo1. The expression profiles of the aforementioned proteins and genes in the four groups were then examined, with hESC induced for decidualization without adding inhibitors serving as the normal control group. To establish murine models of normal pregnancy (NP) and RSA, CBA/J×BALB/c and CBA/J×DBA/2 mice were used. The mice were respectively labeled as the NP model and RSA model. The experimental groups received intraperitoneal injections of kisspeptin10 and kisspeptin234 (acting as a blocker) and were designated as RSA-KP10 and NP-KP234 groups. On the other hand, the control groups received intraperitoneal injections of normal saline (NS) and were referred to as RSA-NS and NP-NS groups. Each group comprised 6 mice, and uterine tissues from embryos at 9.5 days of gestation were meticulously collected for observation of embryo absorption and examination of the expression of the aforementioned proteins and genes. Results The analysis revealed that the expression levels of kisspeptin, IGFBP1, Notch1, Akt, and Foxo1 were significantly lower in patients diagnosed with RSA compared to those in women with NP (P<0.01 for kisspeptin and P<0.05 for IGFBP1, Notch1, Akt, and Foxo1). After the introduction of kisspeptin10 to hESC, there was an observed enhancement in decidualization capability. Subsequently, the expression levels of Notch1, Akt, and Foxo1 showed an increase, but they decreased after interference with KISS1. Through immunofluorescence analysis, it was observed that proliferative hESC displayed a slender morphology, but they transitioned to a rounder and larger morphology post-decidualization. Concurrently, the expression of Notch1 increased, suggesting enhanced decidualization upon the administration of kisspeptin10, but the expression decreased after interference with KISS1. Further experimentation involved treating hESC with inhibitors specific to Notch1, Akt, and Foxo1 separately, revealing a regulatory sequence of Notch1/Akt/Foxo1 (P<0.05). In comparison to the NS group, NP mice administered with kisspeptin234 exhibited increased fetal absorption rates (P<0.001) and decreased expression of IGFBP1, Notch1, Akt, and Foxo1 (P<0.05). Conversely, RSA mice administered with kisspeptin10 demonstrated decreased fetal absorption rates (P<0.001) and increased expression levels of the aforementioned molecules (P<0.05). Conclusion It is suggested that kisspeptin might exert its regulatory influence on the process of decidualization through the modulation of the Notch1/Akt/Foxo1 signaling cascade. A down-regulation of the expression levels of kisspeptin could result in suboptimal decidualization, which in turn might contribute to the development or progression of RSA.
Collapse
Affiliation(s)
- 艳红 杨
- 苏州大学附属第二医院 妇产科 (苏州 215004)Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - 建亮 张
- 苏州大学附属第二医院 妇产科 (苏州 215004)Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - 冬晓 李
- 苏州大学附属第二医院 妇产科 (苏州 215004)Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - 翠平 刘
- 苏州大学附属第二医院 妇产科 (苏州 215004)Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - 融 郭
- 苏州大学附属第二医院 妇产科 (苏州 215004)Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - 伊 肖
- 苏州大学附属第二医院 妇产科 (苏州 215004)Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - 玲 周
- 苏州大学附属第二医院 妇产科 (苏州 215004)Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - 玲霞 佟
- 苏州大学附属第二医院 妇产科 (苏州 215004)Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - 弘 张
- 苏州大学附属第二医院 妇产科 (苏州 215004)Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- 苏州大学附属第一医院 江苏省临床免疫研究所 (苏州 215021)Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou 215021, China
| |
Collapse
|
5
|
Thapa R, Marmo K, Ma L, Torry DS, Bany BM. The Long Non-Coding RNA Gene AC027288.3 Plays a Role in Human Endometrial Stromal Fibroblast Decidualization. Cells 2024; 13:778. [PMID: 38727314 PMCID: PMC11083667 DOI: 10.3390/cells13090778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
During the secretory phase of the menstrual cycle, endometrial fibroblast cells begin to change into large epithelial-like cells called decidual cells in a process called decidualization. This differentiation continues more broadly in the endometrium and forms the decidual tissue during early pregnancy. The cells undergoing decidualization as well as the resulting decidual cells, support successful implantation and placentation during early pregnancy. This study was carried out to identify new potentially important long non-coding RNA (lncRNA) genes that may play a role in human endometrial stromal fibroblast cells (hESF) undergoing decidualization in vitro, and several were found. The expression of nine was further characterized. One of these, AC027288.3, showed a dramatic increase in the expression of hESF cells undergoing decidualization. When AC027288.3 expression was targeted, the ability of the cells to undergo decidualization as determined by the expression of decidualization marker protein-coding genes was significantly altered. The most affected markers of decidualization whose expression was significantly reduced were FOXO1, FZD4, and INHBA. Therefore, AC027288.3 may be a major upstream regulator of the WNT-FOXO1 pathway and activin-SMAD3 pathways previously shown as critical for hESF decidualization. Finally, we explored possible regulators of AC027288.3 expression during human ESF decidualization. Expression was regulated by cAMP and progesterone. Our results suggest that AC027288.3 plays a role in hESF decidualization and identifies several other lncRNA genes that may also play a role.
Collapse
Affiliation(s)
- Rupak Thapa
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (R.T.)
| | - Kevin Marmo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (R.T.)
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Donald S. Torry
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Brent M. Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (R.T.)
| |
Collapse
|
6
|
Ulrich ND, Vargo A, Ma Q, Shen YC, Hannum DF, Gurczynski SJ, Moore BB, Schon S, Lieberman R, Shikanov A, Marsh EE, Fazleabas A, Li JZ, Hammoud SS. Cellular heterogeneity and dynamics of the human uterus in healthy premenopausal women. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583985. [PMID: 38559249 PMCID: PMC10979868 DOI: 10.1101/2024.03.07.583985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The human uterus is a complex and dynamic organ whose lining grows, remodels, and regenerates in every menstrual cycle or upon tissue damage. Here we applied single-cell RNA sequencing to profile more the 50,000 uterine cells from both the endometrium and myometrium of 5 healthy premenopausal individuals, and jointly analyzed the data with a previously published dataset from 15 subjects. The resulting normal uterus cell atlas contains more than 167K cells representing the lymphatic endothelium, blood endothelium, stromal, ciliated epithelium, unciliated epithelium, and immune cell populations. Focused analyses within each major cell type and comparisons with subtype labels from prior studies allowed us to document supporting evidence, resolve naming conflicts, and to propose a consensus annotation system of 39 subtypes. We release their gene expression centroids, differentially expressed genes, and mRNA patterns of literature-based markers as a shared community resource. We find many subtypes show dynamic changes over different phases of the cycle and identify multiple potential progenitor cells: compartment-wide progenitors for each major cell type, transitional cells that are upstream of other subtypes, and potential cross-lineage multipotent stromal progenitors that may be capable of replenishing the epithelial, stromal, and endothelial compartments. When compared to the healthy premenopausal samples, a postpartum and a postmenopausal uterus sample revealed substantially altered tissue composition, involving the rise or fall of stromal, endothelial, and immune cells. The cell taxonomy and molecular markers we report here are expected to inform studies of both basic biology of uterine function and its disorders. SIGNIFICANCE We present single-cell RNA sequencing data from seven individuals (five healthy pre-menopausal women, one post-menopausal woman, and one postpartum) and perform an integrated analysis of this data alongside 15 previously published scRNA-seq datasets. We identified 39 distinct cell subtypes across four major cell types in the uterus. By using RNA velocity analysis and centroid-centroid comparisons we identify multiple computationally predicted progenitor populations for each of the major cell compartments, as well as potential cross-compartment, multi-potent progenitors. While the function and interactions of these cell populations remain to be validated through future experiments, the markers and their "dual characteristics" that we describe will serve as a rich resource to the scientific community. Importantly, we address a significant challenge in the field: reconciling multiple uterine cell taxonomies being proposed. To achieve this, we focused on integrating historical and contemporary knowledge across multiple studies. By providing detailed evidence used for cell classification we lay the groundwork for establishing a stable, consensus cell atlas of the human uterus.
Collapse
|
7
|
Thapa R, Druessel L, Ma L, Torry DS, Bany BM. ATOH8 Expression Is Regulated by BMP2 and Plays a Key Role in Human Endometrial Stromal Cell Decidualization. Endocrinology 2023; 165:bqad188. [PMID: 38060684 PMCID: PMC10729865 DOI: 10.1210/endocr/bqad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 12/21/2023]
Abstract
During the secretory phase of the menstrual cycle, elongated fibroblast-like mesenchymal cells in the uterine endometrium begin to transdifferentiate into polygonal epithelioid-like (decidual) cells. This decidualization process continues more broadly during early pregnancy, and the resulting decidual tissue supports successful embryo implantation and placental development. This study was carried out to determine if atonal basic helix-loop-helix transcription factor 8 (ATOH8) plays a role in human endometrial stromal fibroblast (ESF) decidualization. ATOH8 messenger RNA and protein expression levels significantly increased in human ESF cells undergoing in vitro decidualization, with the protein primarily localized to the nucleus. When ATOH8 expression was silenced, the ability of the cells to undergo decidualization was significantly diminished. Overexpression of ATOH8 enhanced the expression of many decidualization markers. Silencing the expression of ATOH8 reduced the expression of FZD4, FOXO1, and several known FOXO1-downstream targets during human ESF cell decidualization. Therefore, ATOH8 may be a major upstream regulator of the WNT/FZD-FOXO1 pathway, previously shown to be critical for human endometrial decidualization. Finally, we explored possible regulators of ATOH8 expression during human ESF decidualization. BMP2 significantly enhanced ATOH8 expression when cells were stimulated to undergo decidualization, while an ALK2/3 inhibitor reduced ATOH8 expression. Finally, although the steroids progesterone plus estradiol did not affect ATOH8 expression, the addition of cyclic adenosine monophosphate (cAMP) analogue alone represented the major effect of ATOH8 expression when cells were stimulated to undergo decidualization. Our results suggest that ATOH8 plays a crucial role in human ESF decidualization and that BMP2 plus cAMP are major regulators of ATOH8 expression.
Collapse
Affiliation(s)
- Rupak Thapa
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Logan Druessel
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63018, USA
| | - Donald S Torry
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Brent M Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| |
Collapse
|
8
|
Cui L, Xu F, Xu C, Ding Y, Wang S, Du M. Circadian gene Rev-erbα influenced by sleep conduces to pregnancy by promoting endometrial decidualization via IL-6-PR-C/EBPβ axis. J Biomed Sci 2022; 29:101. [PMID: 36419076 PMCID: PMC9685872 DOI: 10.1186/s12929-022-00884-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Sleep disturbance can cause adverse pregnancy outcomes by changing circadian gene expression. The potential mechanisms remain unclear. Decidualization is critical for the establishment and maintenance of normal pregnancy, which can be regulated by circadian genes. Whether Rev-erbα, a critical circadian gene, affects early pregnancy outcome by regulating decidualization needs to be explored. METHODS QPCR, western blot and artificial decidualization mouse model were used to confirm the effect of sleep disturbance on Rev-erbα expression and decidualization. The regulatory mechanism of Rev-erbα on decidualization was assessed using QPCR, western blot, RNA-Seq, and Chip-PCR. Finally, sleep disturbance mouse model was used to investigate the effect of therapeutic methods targeting Rev-erbα and interleukin 6 (IL-6) on improving adverse pregnancy outcomes induced by sleep disturbance. RESULTS Dysregulation of circadian rhythm due to sleep disturbance displayed abnormal expression profile of circadian genes in uterine including decreased level of Rev-erbα, accompanied by defective decidualization. Rev-erbα could regulate decidualization by directly repressing IL-6, which reduced the expression of CCAAT/enhancer-binding protein β (C/EBPβ) and its target insulin-like growth factor binding protein 1 (IGFBP1), the marker of decidualization, by inhibiting progesterone receptors (PR) expression. Moreover, deficient decidualization, higher abortion rate and lower implantation number were exhibited in the mouse models with sleep disturbance compared with those in normal mouse. Pharmacological activation of Rev-erbα or neutralization of IL-6 alleviated the adverse effect of sleep disturbance on pregnancy outcomes. CONCLUSIONS Taken together, Rev-erbα regulated decidualization via IL-6-PR-C/EBPβ axis and might be a connector between sleep and pregnancy outcome. Therapies targeting Rev-erbα and IL-6 might help improving adverse pregnancy outcomes induced by sleep disturbance.
Collapse
Affiliation(s)
- Liyuan Cui
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200090, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China
| | - Feng Xu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200090, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China
| | - Chunfang Xu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200090, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China
| | - Yan Ding
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200090, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China
| | - Songcun Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200090, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China. .,Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, ZhaoZhou Road 413, Shanghai, 200011, China.
| | - Meirong Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200090, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China. .,Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, ZhaoZhou Road 413, Shanghai, 200011, China. .,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, SAR, China. .,Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| |
Collapse
|
9
|
Zhang M, Cai X, Liu J, Zhou J, Shi Q, Jiang Y, Kang N, Zhen X, Wu M, Qiu P, Yan G, Sun H, Li D. A novel lncRNA lncSAMD11-1: 1 interacts with PIP4K2A to promote endometrial decidualization by stabilizing FoxO1 nuclear localization. Int J Biochem Cell Biol 2022; 151:106280. [PMID: 35987479 DOI: 10.1016/j.biocel.2022.106280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 11/29/2022]
Abstract
Decidualization is essential for a successful pregnancy and determines embryo implantation and pregnancy maintenance. Abnormal decidualization is one of the main causes of recurrent implantation failure (RIF). Studies have shown that large amounts of long noncoding RNAs (lncRNAs) are abnormally expressed in endometrial samples from patients with RIF. However, the functional contributions of lncRNAs to decidualization in RIF have not been explored. In this study, we found that lncSAMD11-1:1 was significantly declined in the endometria of patients with RIF. The knockdown of lncSAMD11-1:1 in human endometrial stromal cells (hESCs) restrained decidualization and embryo implantation in vitro, while the overexpression of lncSAMD11-1:1 facilitated hESC decidualization and embryo implantation in vitro and ameliorated decidualization in RIF patients. Mechanistically, lncSAMD11-1:1 and phosphatidylinositol-5-phosphate 4-kinase type 2 alpha (PIP4K2A) translocated out of nucleus and bound to each other during decidualization, thereby inhibiting the phosphorylation of AKT and promoting FoxO1 nuclear localization. These data suggest that lncSAMD11-1:1 might be a critical novel lncRNA functionally required for human decidualization, and the dysregulation of lncSAMD11-1:1 in the endometrium may be a new predisposing factor of RIF.
Collapse
Affiliation(s)
- Mei Zhang
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, People's Republic of China
| | - Xinyu Cai
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Jingyu Liu
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, People's Republic of China
| | - Jidong Zhou
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, People's Republic of China
| | - Qingqing Shi
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, People's Republic of China
| | - Yue Jiang
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, People's Republic of China
| | - Nannan Kang
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, People's Republic of China
| | - Xin Zhen
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, People's Republic of China
| | - Min Wu
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, People's Republic of China
| | - Panpan Qiu
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, People's Republic of China
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, People's Republic of China
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, People's Republic of China.
| | - Dong Li
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, People's Republic of China.
| |
Collapse
|
10
|
Ma W, Cao M, Bi S, Du L, Chen J, Wang H, Jiang Y, Wu Y, Liao Y, Kong S, Liu J. MAX deficiency impairs human endometrial decidualization through down-regulating OSR2 in women with recurrent spontaneous abortion. Cell Tissue Res 2022; 388:453-469. [PMID: 35146559 PMCID: PMC9035420 DOI: 10.1007/s00441-022-03579-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/10/2022] [Indexed: 12/31/2022]
Abstract
Human uterine stromal cell undergoes decidualization for pregnancy establishment and maintenance, which involved extensive proliferation and differentiation. Increasing studies have suggested that recurrent spontaneous abortion (RSA) may result from defective endometrial stromal decidualization. However, the critical molecular mechanisms underlying impaired decidualization during RSA are still elusive. By using our recently published single-cell RNA sequencing (scRNA-seq) atlas, we found that MYC-associated factor X (MAX) was significantly downregulated in the stromal cells derived from decidual tissues of women with RSA, followed by verification with immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT-PCR). MAX knockdown significantly impairs human endometrial stromal cells (HESCs) proliferation as determined by MTS assay and Ki67 immunostaining, and decidualization determined by F-actin, and decidualization markers. RNA-seq together with chromatin immunoprecipitation sequencing (ChIP-seq) and cleavage under targets and release using nuclease sequencing (CUT&RUN-seq) analysis were applied to explore the molecular mechanisms of MAX in regulation of decidualization, followed by dual-luciferase reporter assay to verify that MAX targets to (odd-skipped related transcription factor 2) OSR2 directly. Reduced expression of OSR2 was also confirmed in decidual tissues in women with RSA by IHC and qRT-PCR. OSR2 knockdown also significantly impairs HESCs decidualization. OSR2-overexpression could at least partly rescue the downregulated insulin-like growth factor binding protein 1 (IGFBP1) expression level in response to MAX knockdown. Collectively, MAX deficiency observed in RSA stromal cells not only attenuates HESCs proliferation but also impairs HESCs decidualization by downregulating OSR2 expression at transcriptional level directly.
Collapse
Affiliation(s)
- Weixu Ma
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingzhu Cao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shilei Bi
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
| | - Lili Du
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
| | - Jingsi Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
| | - Haibin Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Yufei Jiang
- Xiamen Key Laboratory of Reproduction and Genetics, Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yixuan Wu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yixin Liao
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuangbo Kong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China.
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China.
| | - Jianqiao Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
11
|
|
12
|
Moldovan GE, Miele L, Fazleabas AT. Notch signaling in reproduction. Trends Endocrinol Metab 2021; 32:1044-1057. [PMID: 34479767 PMCID: PMC8585702 DOI: 10.1016/j.tem.2021.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022]
Abstract
The Notch signaling pathway is conserved among mammalian species and controls proliferation, differentiation, and cell death in many organs throughout the body including the reproductive tract. Notch signaling plays critical roles in the development and function of both the male and female reproductive systems. Specifically, within the female reproductive tract, Notch signaling is hormone regulated and mediates key reproductive events important for ovarian and uterine function. In this review, we highlight the tissues that express Notch receptors, ligands, and downstream effectors and distinguish how these molecules regulate reproductive function in male and female mice, non-human primates, and humans. Finally, we describe some of the aberrations in Notch signaling in female reproductive pathologies and identify opportunities for future investigation.
Collapse
Affiliation(s)
- Genna E Moldovan
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center and Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA.
| |
Collapse
|
13
|
Han S, Liu M, Liu S, Li Y. Transcriptomic analysis of human endometrial stromal cells during early embryo invasion. Ann Med 2021; 53:1758-1771. [PMID: 34643467 PMCID: PMC8519554 DOI: 10.1080/07853890.2021.1988139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/27/2021] [Indexed: 01/20/2023] Open
Abstract
PURPOSE During early embryo invasion (48 h after embryo attachment), what functional changes accompany dynamic gene expression alterations in human endometrial stromal cells? METHOD In the present study, primary human endometrial stromal cells (phESCs) were cultured. After in vitro decidualization, primary human endometrial stromal cells (phESCs) were cultured with blastocysts for 48 h. During this process, blastocysts attached and invaded the phESCs (embryo-invaded primary human endometrial stromal cells, ehESCs). We performed comprehensive transcriptomic profiling of phESCs (two replicates) and ehESCs (five replicates) and analyzed the differentially expressed gene (DEGs) sets for gene ontology (GO) terms and Kyoto encyclopaedia of genes and genomes (KEGG) pathway enrichment. To analyse potential connectivity patterns between the transcripts in these DEG sets, a protein-protein interaction (PPI) network was constructed using the STRING database. RESULTS A total of 592 DEGs were identified between phESCs and ehESCs after embryo invasion. Primary human endometrial stromal cells underwent significant transcriptomic changes that occur in a stepwise fashion. Oxidative phosphorylation, mitochondrial organization, and P53 signalling pathways were significantly altered in phESCs after embryo invasion. EP300 may play a key role in regulating transcription via chromatin remodelling to facilitate the adaptive gene expression changes that occur during embryo invasion. CONCLUSIONS Our data identify dynamic transcriptome changes that occur in endometrial stromal cells within 48 h after embryo invasion. The pathways that we found to be enriched in phESCs after embryo invasion (oxidative phosphorylation, mitochondrial organization, and P53 signalling) may represent novel mechanisms underlying embryo implantation, and may illuminate the reasons that some women experience reproductive failure.Key messagesHuman endometrial stromal cells have undergone changes in gene expression regulation and signalling pathways during the embryo invasion.Mitochondrial-oxidative phosphorylation changes in human stromal cells manifested as down-regulation of gene expression in the electron transport chain.TP53 signalling pathway and transcriptional regulator EP300 assist stromal cells to get adaptive changes during embryo invasion phase.
Collapse
Affiliation(s)
- Shuo Han
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Minghui Liu
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shan Liu
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yuan Li
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Stadtmauer DJ, Wagner GP. Single-cell analysis of prostaglandin E2-induced human decidual cell in vitro differentiation: a minimal ancestral deciduogenic signal†. Biol Reprod 2021; 106:155-172. [PMID: 34591094 PMCID: PMC8757638 DOI: 10.1093/biolre/ioab183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 05/31/2021] [Accepted: 09/23/2021] [Indexed: 02/04/2023] Open
Abstract
The decidua is a hallmark of reproduction in many placental mammals. Differentiation of decidual stromal cells is known to be induced by progesterone and the cyclic AMP/protein kinase A (cAMP/PKA) pathway. Several candidates have been identified as the physiological stimulus for adenylyl cyclase activation, but their relative importance remains unclear. To bypass this uncertainty, the standard approach for in vitro experiments uses membrane-permeable cAMP and progestin. We phylogenetically infer that prostaglandin E2 (PGE2) likely was the signal that ancestrally induced decidualization in conjunction with progesterone. This suggests that PGE2 and progestin should be able to activate the core gene regulatory network of decidual cells. To test this prediction, we performed a genome-wide study of gene expression in human endometrial fibroblasts decidualized with PGE2 and progestin. Comparison to a cAMP-based protocol revealed shared activation of core decidual genes and decreased induction of senescence-associated genes. Single-cell transcriptomics of PGE2-mediated decidualization revealed a distinct, early-activated state transitioning to a differentiated decidual state. PGE2-mediated decidualization was found to depend upon progestin-dependent induction of PGE2 receptor 2 (PTGER2) which in turn leads to PKA activation upon PGE2 stimulation. Progesterone-dependent induction of PTGER2 is absent in opossum, an outgroup taxon of placental mammals which is incapable of decidualization. Together, these findings suggest that the origin of decidualization involved the evolution of progesterone-dependent activation of the PGE2/PTGER2/PKA axis, facilitating entry into a PKA-dominant rather than AKT-dominant cellular state. We propose the use of PGE2 for in vitro decidualization as an alternative to 8-Br-cAMP.
Collapse
Affiliation(s)
- Daniel J Stadtmauer
- Correspondence: Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. Tel: 203-737-3091; E-mail: (Günter P. Wagner); Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. Tel: 203-737-3092; E-mail: (Daniel J. Stadtmauer)
| | - Günter P Wagner
- Correspondence: Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. Tel: 203-737-3091; E-mail: (Günter P. Wagner); Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. Tel: 203-737-3092; E-mail: (Daniel J. Stadtmauer)
| |
Collapse
|
15
|
Abstract
The characteristics of fetal membrane cells and their phenotypic adaptations to support pregnancy or promote parturition are defined by global patterns of gene expression controlled by chromatin structure. Heritable epigenetic chromatin modifications that include DNA methylation and covalent histone modifications establish chromatin regions permissive or exclusive of regulatory interactions defining the cell-specific scope and potential of gene activity. Non-coding RNAs acting at the transcriptional and post-transcriptional levels complement the system by robustly stabilizing gene expression patterns and contributing to ordered phenotype transitions. Here we review currently available information about epigenetic gene regulation in the amnion and the chorion laeve. In addition, we provide an overview of epigenetic phenomena in the decidua, which is the maternal tissue fused to the chorion membrane forming the anatomical and functional unit called choriodecidua. The relationship of gene expression with DNA (CpG) methylation, histone acetylation and methylation, micro RNAs, long non-coding RNAs and chromatin accessibility is discussed in the context of normal pregnancy, parturition and pregnancy complications. Data generated using clinical samples and cell culture models strongly suggests that epigenetic events are associated with the phenotypic transitions of fetal membrane cells during the establishment, maintenance and termination of pregnancy potentially driving and consolidating the changes as pregnancy progresses. Disease conditions and environmental factors may produce epigenetic footprints that indicate exposures and mediate adverse pregnancy outcomes. Although knowledge is expanding rapidly, fetal membrane epigenetics is still in an early stage of development necessitating further research to realize its remarkable basic and translational potential.
Collapse
Affiliation(s)
- Tamas Zakar
- Department of Maternity & Gynaecology, John Hunter Hospital, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan W. Paul
- School of Medicine and Public Health, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
16
|
Goswami S, Kareem O, Goyal RK, Mumtaz SM, Tonk RK, Gupta R, Pottoo FH. Role of Forkhead Transcription Factors of the O Class (FoxO) in Development and Progression of Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:709-721. [PMID: 33001019 DOI: 10.2174/1871527319666201001105553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 07/20/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
In the Central Nervous System (CNS), a specific loss of focal neurons leads to mental and neurological disorders like dementia, Alzheimer's Disease (AD), Huntington's disease, Parkinson's disease, etc. AD is a neurological degenerative disorder, which is progressive and irreversible in nature and is the widely recognized reason for dementia in the geriatric populace. It affects 10% of people above the age of 65 and is the fourth driving reason for death in the United States. Numerous evidence suggests that the neuronal compartment is not the only genesis of AD, but transcription factors also hold significant importance in the occurrence and advancement of the disease. It is the need of the time to find the novel molecular targets and new techniques for treating or slowing down the progression of neurological disorders, especially AD. In this article, we summarised a conceivable association between transcriptional factors and their defensive measures against neurodegeneration and AD. The mammalian forkhead transcription factors of the class O (FoxO) illustrate one of the potential objectives for the development of new methodologies against AD and other neurocognitive disorders. The presence of FoxO is easily noticeable in the "cognitive centers" of the brain, specifically in the amygdala, hippocampus, and the nucleus accumbens. FoxO proteins are the prominent and necessary factors in memory formation and cognitive functions. FoxO also assumes a pertinent role in the protection of multiple cells in the brain by controlling the involving mechanism of autophagy and apoptosis and also modulates the process of phosphorylation of the targeted protein, thus FoxO must be a putative target in the mitigation of AD. This review features the role of FoxO as an important biomarker and potential new targets for the treatment of AD.
Collapse
Affiliation(s)
- Shikha Goswami
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Ozaifa Kareem
- Department of Pharmaceutical Sciences, Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, JK, India
| | - Ramesh K Goyal
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Sayed M Mumtaz
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Rajiv K Tonk
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Rahul Gupta
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Faheem H Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University P.O.BOX 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
17
|
Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle. Nat Med 2020; 26:1644-1653. [PMID: 32929266 DOI: 10.1038/s41591-020-1040-z] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
In a human menstrual cycle the endometrium undergoes remodeling, shedding and regeneration, all of which are driven by substantial gene expression changes in the underlying cellular hierarchy. Despite its importance in human fertility and regenerative biology, our understanding of this unique type of tissue homeostasis remains rudimentary. We characterized the transcriptomic transformation of human endometrium at single-cell resolution across the menstrual cycle, resolving cellular heterogeneity in multiple dimensions. We profiled the behavior of seven endometrial cell types, including a previously uncharacterized ciliated cell type, during four major phases of endometrial transformation, and found characteristic signatures for each cell type and phase. We discovered that the human window of implantation opens with an abrupt and discontinuous transcriptomic activation in the epithelia, accompanied with a widespread decidualization feature in the stromal fibroblasts. Our study provides a high-resolution molecular and cellular characterization of human endometrial transformation across the menstrual cycle, providing insights into this essential physiological process.
Collapse
|
18
|
Liu H, Huang X, Mor G, Liao A. Epigenetic modifications working in the decidualization and endometrial receptivity. Cell Mol Life Sci 2020; 77:2091-2101. [PMID: 31813015 PMCID: PMC11105058 DOI: 10.1007/s00018-019-03395-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 09/24/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023]
Abstract
Decidualization is a critical event for the blastocyst implantation, placental development and fetal growth and the normal term. In mice, the embryo implantation to the uterine epithelial would trigger the endometrial stromal cells to differentiate into decidual stromal cells. However, decidualization in women takes place from the secretory phase of each menstrual cycle and continues to early pregnancy if there is conceptus. Deficient decidualization is often associated with pregnancy specific complications and reproductive disorders. Dramatic changes occur in the gene expression profiles during decidualization, which is coordinately regulated by steroid hormones, growth factors, and molecular and epigenetic mechanisms. Recently, emerging evidences showed that epigenetic modifications, mainly including DNA methylation, histone modification, and non-coding RNAs, play an important role in the decidualization process via affecting the target genes' expression. In this review, we will focus on the epigenetic modifications in decidualization and open novel avenues to predict and treat the pregnancy complications caused by abnormal decidualization.
Collapse
Affiliation(s)
- Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, People's Republic of China
| | - Xiaobo Huang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, People's Republic of China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, People's Republic of China
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
19
|
Deryabin P, Griukova A, Nikolsky N, Borodkina A. The link between endometrial stromal cell senescence and decidualization in female fertility: the art of balance. Cell Mol Life Sci 2020; 77:1357-1370. [PMID: 31728580 PMCID: PMC11104872 DOI: 10.1007/s00018-019-03374-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022]
Abstract
Cell senescence seems to be an ambivalent biological phenomenon in many aspects. At the cellular level it is considered as an irreversible cell-cycle arrest commonly caused by the DNA damage. Senescent cells harbor a lot of impairments in various intracellular systems. Presence of senescent cells within tissues should ultimately lead to their malfunctioning. However, the interlink between cellular senescence and tissue/organismal functioning is far from always being unidirectional. The entangled and complex relationship between senescence and tissue-specific decidual differentiation of endometrial stromal cells (ESCs) is the excellent example reflecting dualism of cellular senescence. ESCs decidualization conditions endometrium responsiveness to embryonic signals and plays a critical role in embryo biosensoring, selection and implantation. Based on the analysis of the existing literary data, here we will try (1) to puzzle out how cellular senescence simultaneously may be an integral part of normal decidualization and may be involved in the progression of repeated implantation failures and recurrent pregnancy losses; (2) to suppose the sequence of cellular events reflecting the role of ESCs' senescence during normal and impaired decidualization. Together, the deep scan of the interlink between ESCs' senescence and decidualization will allow to suggest the preferable application scheme for senolytics targeting senescent cells as a possible approach to restore impaired endometrial receptivity and thus to increase the effectiveness of in vitro fertilization cycles.
Collapse
Affiliation(s)
- Pavel Deryabin
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St-Petersburg, Russia
| | - Anastasiia Griukova
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St-Petersburg, Russia
| | - Nikolay Nikolsky
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St-Petersburg, Russia
| | - Aleksandra Borodkina
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St-Petersburg, Russia.
| |
Collapse
|
20
|
Deryabin P, Griukova A, Shatrova A, Petukhov A, Nikolsky N, Borodkina A. Optimization of lentiviral transduction parameters and its application for CRISPR-based secretome modification of human endometrial mesenchymal stem cells. Cell Cycle 2019; 18:742-758. [PMID: 30880567 PMCID: PMC6464586 DOI: 10.1080/15384101.2019.1593650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/08/2019] [Accepted: 02/19/2019] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stem cells (MSCs) hold a great promise for successful development of regenerative medicine. Among the plenty of uncovered MSCs sources, desquamated endometrium collected from the menstrual blood probably remains the most accessible. Though numerous studies have been published on human endometrium-derived mesenchymal stem cells (hMESCs) properties in the past years, there are only a few data regarding their genetic modulation. Moreover, there is a lack of information about the fate of the transduced hMESCs. The present study aimed to optimize hMESCs transduction parameters and apply Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology for genome and secretome modification. The fate of hMESCs transduced either in presence of polybrene (Pb) or protamine sulfate (Ps) was assessed by alterations in CD expression profile, growth rate, cell size, migration capability, osteogenic, adipogenic, and decidual differential potentials. Here, we postulated that the use of Ps for hMESCs genetic manipulations is preferable, as it has no impact on the stem-cell properties, whereas Pb application is undesirable, as it induces cellular senescence. Plasminogen activator inhibitor-1 was selected for further targeted hMESCs genome and secretome modification using CRISPR/Cas9 systems. The obtained data provide optimized transduction scheme for hMESCs and verification of its effectiveness by successful hMESCs genome editing via CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Pavel Deryabin
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Anastasiia Griukova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Alla Shatrova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Alexey Petukhov
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Nikolay Nikolsky
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | | |
Collapse
|
21
|
Cvekl A, Zhao Y, McGreal R, Xie Q, Gu X, Zheng D. Evolutionary Origins of Pax6 Control of Crystallin Genes. Genome Biol Evol 2018; 9:2075-2092. [PMID: 28903537 PMCID: PMC5737492 DOI: 10.1093/gbe/evx153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2017] [Indexed: 12/19/2022] Open
Abstract
The birth of novel genes, including their cell-specific transcriptional control, is a major source of evolutionary innovation. The lens-preferred proteins, crystallins (vertebrates: α- and β/γ-crystallins), provide a gateway to study eye evolution. Diversity of crystallins was thought to originate from convergent evolution through multiple, independent formation of Pax6/PaxB-binding sites within the promoters of genes able to act as crystallins. Here, we propose that αB-crystallin arose from a duplication of small heat shock protein (Hspb1-like) gene accompanied by Pax6-site and heat shock element (HSE) formation, followed by another duplication to generate the αA-crystallin gene in which HSE was converted into another Pax6-binding site. The founding β/γ-crystallin gene arose from the ancestral Hspb1-like gene promoter inserted into a Ca2+-binding protein coding region, early in the cephalochordate/tunicate lineage. Likewise, an ancestral aldehyde dehydrogenase (Aldh) gene, through multiple gene duplications, expanded into a multigene family, with specific genes expressed in invertebrate lenses (Ω-crystallin/Aldh1a9) and both vertebrate lenses (η-crystallin/Aldh1a7 and Aldh3a1) and corneas (Aldh3a1). Collectively, the present data reconstruct the evolution of diverse crystallin gene families.
Collapse
Affiliation(s)
- Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York.,Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Yilin Zhao
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Rebecca McGreal
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York.,Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Qing Xie
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York.,Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Xun Gu
- Program in Bioinformatics and Computational Biology, Department of Genetics, Development, and Cell Biology, Iowa State University
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York.,Department of Neurology, Albert Einstein College of Medicine, Bronx, New York.,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
22
|
Brighton PJ, Maruyama Y, Fishwick K, Vrljicak P, Tewary S, Fujihara R, Muter J, Lucas ES, Yamada T, Woods L, Lucciola R, Hou Lee Y, Takeda S, Ott S, Hemberger M, Quenby S, Brosens JJ. Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. eLife 2017; 6. [PMID: 29227245 PMCID: PMC5724991 DOI: 10.7554/elife.31274] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/02/2017] [Indexed: 12/22/2022] Open
Abstract
In cycling human endometrium, menstruation is followed by rapid estrogen-dependent growth. Upon ovulation, progesterone and rising cellular cAMP levels activate the transcription factor Forkhead box O1 (FOXO1) in endometrial stromal cells (EnSCs), leading to cell cycle exit and differentiation into decidual cells that control embryo implantation. Here we show that FOXO1 also causes acute senescence of a subpopulation of decidualizing EnSCs in an IL-8 dependent manner. Selective depletion or enrichment of this subpopulation revealed that decidual senescence drives the transient inflammatory response associated with endometrial receptivity. Further, senescent cells prevent differentiation of endometrial mesenchymal stem cells in decidualizing cultures. As the cycle progresses, IL-15 activated uterine natural killer (uNK) cells selectively target and clear senescent decidual cells through granule exocytosis. Our findings reveal that acute decidual senescence governs endometrial rejuvenation and remodeling at embryo implantation, and suggest a critical role for uNK cells in maintaining homeostasis in cycling endometrium.
Collapse
Affiliation(s)
- Paul J Brighton
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Yojiro Maruyama
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Katherine Fishwick
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Pavle Vrljicak
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Shreeya Tewary
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Risa Fujihara
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Joanne Muter
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Emma S Lucas
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Taihei Yamada
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Laura Woods
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom.,Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Raffaella Lucciola
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Yie Hou Lee
- Obstetrics & Gynaecology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.,KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Sascha Ott
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Myriam Hemberger
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom.,Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Siobhan Quenby
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jan Joris Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
23
|
The rewiring of transcription circuits in evolution. Curr Opin Genet Dev 2017; 47:121-127. [PMID: 29120735 DOI: 10.1016/j.gde.2017.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/24/2022]
Abstract
The binding of transcription regulators to cis-regulatory sequences is a key step through which all cells regulate expression of their genes. Due to gains and losses of cis-regulatory sequences and changes in the transcription regulators themselves, the binding connections between regulators and their target genes rapidly change over evolutionary time and constitute a major source of biological novelty. This review covers recent work, carried out in a wide range of species, that addresses the overall extent of these evolutionary changes, their consequences, and some of the molecular mechanisms that lie behind them.
Collapse
|
24
|
Xin Z, Ma Z, Jiang S, Wang D, Fan C, Di S, Hu W, Li T, She J, Yang Y. FOXOs in the impaired heart: New therapeutic targets for cardiac diseases. Biochim Biophys Acta Mol Basis Dis 2017; 1863:486-498. [PMID: 27890702 DOI: 10.1016/j.bbadis.2016.11.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/24/2016] [Accepted: 11/23/2016] [Indexed: 01/17/2023]
Abstract
Cardiac diseases have a high morbidity and mortality and affect the global population. Based on recent accumulating evidence, Forkhead box O (FOXOs) play important roles in cardiac diseases. Therefore, a summary of the current literature on the molecular mechanisms and roles of FOXOs in the heart will provide valuable information. In this review, we first briefly introduce the molecular features of FOXOs. Then, we discuss the regulation and cardiac actions of the FOXO pathways. Based on this background, we expand our discussion to the roles of FOXOs in several major cardiac diseases, such as ischemic cardiac diseases, diabetic cardiomyopathy and myocardial hypertrophy. Then, we describe some methodological problems associated with the FOXO gene-modified animal models. Finally, we discuss potential future directions. The information reviewed here may be significant for the design of future studies and may increase the potential of FOXOs as therapeutic targets.
Collapse
Affiliation(s)
- Zhenlong Xin
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Junjun She
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China.
| | - Yang Yang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| |
Collapse
|