1
|
Camperio G, Ladd SN, Prebble M, Lloren R, Argiriadis E, Nelson DB, Krentscher C, Dubois N. Sedimentary biomarkers of human presence and taro cultivation reveal early horticulture in Remote Oceania. COMMUNICATIONS EARTH & ENVIRONMENT 2024; 5:667. [PMID: 39525699 PMCID: PMC11541199 DOI: 10.1038/s43247-024-01831-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Remote Oceania was among the last places settled by humans. However, the timing of initial human settlements and the early introduction of horticulture remain debated. We retrieved a sediment core close to Teouma, the oldest cemetery in Remote Oceania that reveals evidence of initial settlement, horticulture practice, and concurrent climatic conditions on the island of Efate, Vanuatu. Sedimentary biomarkers indicating human presence (coprostanol and epicoprostanol), and taro cultivation (palmitone), increase simultaneously, attesting to the early introduction of horticulture by first settlers. The precipitation signal preserved in leaf waxes shows that the initial settlement occurred during a period of increasing wetness-climatic conditions favourable for the establishment of horticulture. The timing of these events is constrained by a high-resolution radiocarbon chronology that places the first unequivocal trace of human activity and horticulture at 2800 years ago. These findings advance our understanding of human history in the Pacific.
Collapse
Affiliation(s)
- Giorgia Camperio
- Department of Surface Waters Research & Management, Eawag, Dübendorf, Switzerland
- Department of Earth Sciences, ETH Zürich, Zürich, Switzerland
| | - S. Nemiah Ladd
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Matiu Prebble
- School of Earth and Environment, College of Science, University of Canterbury, Christchurch, New Zealand
- Archaeology and Natural History, Culture History and Languages, The Australian National University, Canberra, Australia
| | - Ronald Lloren
- Department of Surface Waters Research & Management, Eawag, Dübendorf, Switzerland
- Department of Earth Sciences, ETH Zürich, Zürich, Switzerland
| | - Elena Argiriadis
- Institute of Polar Sciences, Venice, Italy
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University, Venice, Italy
| | - Daniel B. Nelson
- Department of Environmental Sciences—Botany, University of Basel, Basel, Switzerland
| | | | - Nathalie Dubois
- Department of Surface Waters Research & Management, Eawag, Dübendorf, Switzerland
- Department of Earth Sciences, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Zinger W, Valentin F, Spriggs M, Bedford S, Flexner JL, Willie E, Kuautonga T, Détroit F. "Feeling at home in Vanuatu": Integration of newcomers from the East during the last millennium. PLoS One 2024; 19:e0290465. [PMID: 38295041 PMCID: PMC10830024 DOI: 10.1371/journal.pone.0290465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/09/2023] [Indexed: 02/02/2024] Open
Abstract
Several localities across the Vanuatu archipelago (Melanesia), so-called 'Polynesian Outliers', are inhabited by communities that display Polynesian linguistic and cultural features although being located outside the Polynesian Triangle. Several introductions of Polynesian genetic components to Central and Southern Vanuatu during the last millenium have resulted in the cultural distinctiveness observed among the Polynesian Outliers in Vanuatu. However, social, political or economic process surrounding the exchange of genes between Polynesian and local individuals remain unidentified. Recent bioanthropological studies suggest the existence of female mobilities from neighboring regions to Vanuatu but also to the Polynesian Outliers of Taumako (Solomon Islands) within patrilocal societies. We aim to examine the hypothesis that Polynesian biological affinities observed in ancient individuals from Vanuatu are gendered or sex-specific, and that some of the Polynesian migrations during the last millennium may have involved practices of exogamy. By reconstructing phenotypes and biological identities from 13 archaeologically-recovered human skulls (400-300 years ago) from "Polynesian-related" regions of Vanuatu, we provide new insights to better contextualize the settlement patterns of Polynesian individuals. Eastern-Pacific associated phenotype are observable in 4 women from the Eretok burial complex (Efate region) and the Polynesian Outlier of Futuna, who were buried in close proximity to individuals with Western-Pacific associated phenotype. We suggest that close integration of individuals from the East into the local Vanuatu society, as well as the practice of exogamy, might have been key processes contributing to the preservation of Polynesian cultural features in Vanuatu over the past millennium. Our finding are cross-referenced with oral records from these two areas, as well as the known genetic makeup of the Vanuatu Polynesian Outliers.
Collapse
Affiliation(s)
- Wanda Zinger
- Archaeo- and Palaeogenetics Group, Institute for Archaeological Sciences, Tübingen University, Tübingen, Germany
| | - Frédérique Valentin
- UMR 8068 TEMPS/CNRS/ Université Paris1 Panthéon Sorbonne/ Université Paris Nanterre/ Ministère de la Culture, MSH Mondes, Nanterre, France
| | - Matthew Spriggs
- School of Archaeology and Anthropology, College of Arts and Social Sciences, The Australian National University, Canberra, ACT, Australia
| | - Stuart Bedford
- School of Culture, History & Language, College of Asia and the Pacific, The Australian National University, Canberra, ACT, Australia
- Max Planck Institute for Evolutionary Anthropology Department of Linguistic and Cultural Evolution, Leipzig, Germany
| | - James L. Flexner
- Department of Archaeology, School of Philosophical and Historical Inquiry, University of Sydney, Sydney, Australia
| | - Edson Willie
- Vanuatu Cultural Centre Port Vila, Port Vila, Vanuatu
| | | | - Florent Détroit
- Archaeo- and Palaeogenetics Group, Institute for Archaeological Sciences, Tübingen University, Tübingen, Germany
| |
Collapse
|
3
|
Oliveira S, Fehn AM, Amorim B, Stoneking M, Rocha J. Genome-wide variation in the Angolan Namib Desert reveals unique pre-Bantu ancestry. SCIENCE ADVANCES 2023; 9:eadh3822. [PMID: 37738339 PMCID: PMC10516492 DOI: 10.1126/sciadv.adh3822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/18/2023] [Indexed: 09/24/2023]
Abstract
Ancient DNA studies reveal the genetic structure of Africa before the expansion of Bantu-speaking agriculturalists; however, the impact of now extinct hunter-gatherer and herder societies on the genetic makeup of present-day African groups remains elusive. Here, we uncover the genetic legacy of pre-Bantu populations from the Angolan Namib Desert, where we located small-scale groups associated with enigmatic forager traditions, as well as the last speakers of the Khoe-Kwadi family's Kwadi branch. By applying an ancestry decomposition approach to genome-wide data from these and other African populations, we reconstructed the fine-scale histories of contact emerging from the migration of Khoe-Kwadi-speaking pastoralists and identified a deeply divergent ancestry, which is exclusively shared between groups from the Angolan Namib and adjacent areas of Namibia. The unique genetic heritage of the Namib peoples shows how modern DNA research targeting understudied regions of high ethnolinguistic diversity can complement ancient DNA studies in probing the deep genetic structure of the African continent.
Collapse
Affiliation(s)
- Sandra Oliveira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Computational and Molecular Population Genetics, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Anne-Maria Fehn
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Biopolis Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Beatriz Amorim
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Biopolis Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558 Villeurbanne, France
| | - Jorge Rocha
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Biopolis Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
| |
Collapse
|
4
|
Watanabe Y, Ohashi J. Modern Japanese ancestry-derived variants reveal the formation process of the current Japanese regional gradations. iScience 2023; 26:106130. [PMID: 36879818 PMCID: PMC9984562 DOI: 10.1016/j.isci.2023.106130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/02/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Modern Japanese people have two major ancestral populations: indigenous Jomon hunter-gatherers and continental East Asian farmers. To determine the formation process of the current Japanese population, we developed a detection method for variants derived from ancestral populations using a summary statistic, the ancestry marker index (AMI). We applied AMI to modern Japanese population samples and identified 208,648 single nucleotide polymorphisms (SNPs) that were likely derived from the Jomon people (Jomon-derived variants). Analysis of Jomon-derived variants in 10,842 modern Japanese individuals recruited from all over Japan revealed that the admixture proportions of the Jomon people varied between prefectures, probably owing to the prehistoric population size difference. The estimated allele frequencies of genome-wide SNPs in the ancestral populations of the modern Japanese suggested their adaptive phenotypic characteristics to their respective livelihoods. Based on our findings, we propose a formation model for the genotypic and phenotypic gradations of the current Japanese archipelago populations.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.,Genome Medical Science Project Toyama Project, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Arauna LR, Bergstedt J, Choin J, Mendoza-Revilla J, Harmant C, Roux M, Mas-Sandoval A, Lémée L, Colleran H, François A, Valentin F, Cassar O, Gessain A, Quintana-Murci L, Patin E. The genomic landscape of contemporary western Remote Oceanians. Curr Biol 2022; 32:4565-4575.e6. [PMID: 36108636 DOI: 10.1016/j.cub.2022.08.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/01/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022]
Abstract
The Vanuatu archipelago served as a gateway to Remote Oceania during one of the most extensive human migrations to uninhabited lands ∼3,000 years ago. Ancient DNA studies suggest an initial settlement by East Asian-related peoples that was quickly followed by the arrival of Papuan-related populations, leading to a major population turnover. Yet there is uncertainty over the population processes and the sociocultural factors that have shaped the genomic diversity of ni-Vanuatu, who present nowadays among the world's highest linguistic and cultural diversity. Here, we report new genome-wide data for 1,433 contemporary ni-Vanuatu from 29 different islands, including 287 couples. We find that ni-Vanuatu derive their East Asian- and Papuan-related ancestry from the same source populations and descend from relatively synchronous, sex-biased admixture events that occurred ∼1,700-2,300 years ago, indicating a peopling history common to the whole archipelago. However, East Asian-related ancestry proportions differ markedly across islands, suggesting that the Papuan-related population turnover was geographically uneven. Furthermore, we detect Polynesian ancestry arriving ∼600-1,000 years ago to Central and South Vanuatu in both Polynesian-speaking and non-Polynesian-speaking populations. Last, we provide evidence for a tendency of spouses to carry similar genetic ancestry, when accounting for relatedness avoidance. The signal is not driven by strong genetic effects of specific loci or trait-associated variants, suggesting that it results instead from social assortative mating. Altogether, our findings provide an insight into both the genetic history of ni-Vanuatu populations and how sociocultural processes have shaped the diversity of their genomes.
Collapse
Affiliation(s)
- Lara R Arauna
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris 75015, France.
| | - Jacob Bergstedt
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris 75015, France; Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Jeremy Choin
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris 75015, France; Chair Human Genomics and Evolution, Collège de France, Paris 75005, France
| | - Javier Mendoza-Revilla
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris 75015, France; Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Christine Harmant
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris 75015, France
| | - Maguelonne Roux
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris 75015, France; Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris 75015, France
| | - Alex Mas-Sandoval
- Department of Life Sciences, Imperial College London, Ascot SL5 7PY, UK
| | - Laure Lémée
- Institut Pasteur, Biomics Platform, Paris 75015, France
| | - Heidi Colleran
- BirthRites Independent Max Planck Research Group, Department of Human Behavior, Ecology, and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Alexandre François
- Langues, Textes, Traitements Informatiques, Cognition (LaTTiCe), UMR 8094, CNRS, Paris 75015, France
| | | | - Olivier Cassar
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Oncogenic Virus Epidemiology and Pathophysiology Unit, Paris 75015, France
| | - Antoine Gessain
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Oncogenic Virus Epidemiology and Pathophysiology Unit, Paris 75015, France
| | - Lluis Quintana-Murci
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris 75015, France; Chair Human Genomics and Evolution, Collège de France, Paris 75005, France.
| | - Etienne Patin
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris 75015, France.
| |
Collapse
|
6
|
McQuillan MA, Ranciaro A, Hansen MEB, Fan S, Beggs W, Belay G, Woldemeskel D, Tishkoff SA. Signatures of Convergent Evolution and Natural Selection at the Alcohol Dehydrogenase Gene Region are Correlated with Agriculture in Ethnically Diverse Africans. Mol Biol Evol 2022; 39:msac183. [PMID: 36026493 PMCID: PMC9547508 DOI: 10.1093/molbev/msac183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The alcohol dehydrogenase (ADH) family of genes encodes enzymes that catalyze the metabolism of ethanol into acetaldehyde. Nucleotide variation in ADH genes can affect the catalytic properties of these enzymes and is associated with a variety of traits, including alcoholism and cancer. Some ADH variants, including the ADH1B*48His (rs1229984) mutation in the ADH1B gene, reduce the risk of alcoholism and are under positive selection in multiple human populations. The advent of Neolithic agriculture and associated increase in fermented foods and beverages is hypothesized to have been a selective force acting on such variants. However, this hypothesis has not been tested in populations outside of Asia. Here, we use genome-wide selection scans to show that the ADH gene region is enriched for variants showing strong signals of positive selection in multiple Afroasiatic-speaking, agriculturalist populations from Ethiopia, and that this signal is unique among sub-Saharan Africans. We also observe strong selection signals at putatively functional variants in nearby lipid metabolism genes, which may influence evolutionary dynamics at the ADH region. Finally, we show that haplotypes carrying these selected variants were introduced into Northeast Africa from a West-Eurasian source within the last ∼2,000 years and experienced positive selection following admixture. These selection signals are not evident in nearby, genetically similar populations that practice hunting/gathering or pastoralist subsistence lifestyles, supporting the hypothesis that the emergence of agriculture shapes patterns of selection at ADH genes. Together, these results enhance our understanding of how adaptations to diverse environments and diets have influenced the African genomic landscape.
Collapse
Affiliation(s)
| | - Alessia Ranciaro
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
| | | | - Shaohua Fan
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - William Beggs
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
| | - Gurja Belay
- Department of Microbial Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Dawit Woldemeskel
- Department of Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sarah A Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
7
|
Liu D, Peter BM, Schiefenhövel W, Kayser M, Stoneking M. Assessing human genome-wide variation in the Massim region of Papua New Guinea and implications for the Kula trading tradition. Mol Biol Evol 2022; 39:6653776. [PMID: 35920169 PMCID: PMC9372566 DOI: 10.1093/molbev/msac165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Massim, a cultural region that includes the southeastern tip of mainland Papua New Guinea (PNG) and nearby PNG offshore islands, is renowned for a trading network called Kula, in which different valuable items circulate in different directions among some of the islands. Although the Massim has been a focus of anthropological investigation since the pioneering work of Malinowski in 1922, the genetic background of its inhabitants remains relatively unexplored. To characterize the Massim genomically, we generated genome-wide SNP data from 192 individuals from 15 groups spanning the entire region. Analyzing these together with comparative data, we found that all Massim individuals have variable Papuan-related (indigenous) and Austronesian-related (arriving ∼3,000 years ago) ancestries. Individuals from Rossel Island in southern Massim, speaking an isolate Papuan language, have the highest amount of a distinct Papuan ancestry. We also investigated the recent contact via sharing of identical by descent (IBD) genomic segments and found that Austronesian-related IBD tracts are widely distributed geographically, but Papuan-related tracts are shared exclusively between the PNG mainland and Massim, and between the Bismarck and Solomon Archipelagoes. Moreover, the Kula-practicing groups of the Massim show higher IBD sharing among themselves than do groups that do not participate in Kula. This higher sharing predates the formation of Kula, suggesting that extensive contact between these groups since the Austronesian settlement may have facilitated the formation of Kula. Our study provides the first comprehensive genome-wide assessment of Massim inhabitants and new insights into the fascinating Kula system.
Collapse
Affiliation(s)
- Dang Liu
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
| | - Benjamin M Peter
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Wulf Schiefenhövel
- Human Ethology Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
| |
Collapse
|
8
|
Ancient genomes from the last three millennia support multiple human dispersals into Wallacea. Nat Ecol Evol 2022; 6:1024-1034. [PMID: 35681000 PMCID: PMC9262713 DOI: 10.1038/s41559-022-01775-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/13/2022] [Indexed: 12/27/2022]
Abstract
Previous research indicates that human genetic diversity in Wallacea-islands in present-day Eastern Indonesia and Timor-Leste that were never part of the Sunda or Sahul continental shelves-has been shaped by complex interactions between migrating Austronesian farmers and indigenous hunter-gatherer communities. Yet, inferences based on present-day groups proved insufficient to disentangle this region's demographic movements and admixture timings. Here, we investigate the spatio-temporal patterns of variation in Wallacea based on genome-wide data from 16 ancient individuals (2600-250 years BP) from the North Moluccas, Sulawesi and East Nusa Tenggara. While ancestry in the northern islands primarily reflects contact between Austronesian- and Papuan-related groups, ancestry in the southern islands reveals additional contributions from Mainland Southeast Asia that seem to predate the arrival of Austronesians. Admixture time estimates further support multiple and/or continuous admixture involving Papuan- and Asian-related groups throughout Wallacea. Our results clarify previously debated times of admixture and suggest that the Neolithic dispersals into Island Southeast Asia are associated with the spread of multiple genetic ancestries.
Collapse
|
9
|
Iasi LNM, Ringbauer H, Peter BM. An Extended Admixture Pulse Model Reveals the Limitations to Human-Neandertal Introgression Dating. Mol Biol Evol 2021; 38:5156-5174. [PMID: 34254144 PMCID: PMC8557420 DOI: 10.1093/molbev/msab210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neandertal DNA makes up 2-3% of the genomes of all non-African individuals. The patterns of Neandertal ancestry in modern humans have been used to estimate that this is the result of gene flow that occurred during the expansion of modern humans into Eurasia, but the precise dates of this event remain largely unknown. Here, we introduce an extended admixture pulse model that allows joint estimation of the timing and duration of gene flow. This model leads to simple expressions for both the admixture segment distribution and the decay curve of ancestry linkage disequilibrium, and we show that these two statistics are closely related. In simulations, we find that estimates of the mean time of admixture are largely robust to details in gene flow models, but that the duration of the gene flow can only be recovered if gene flow is very recent and the exact recombination map is known. These results imply that gene flow from Neandertals into modern humans could have happened over hundreds of generations. Ancient genomes from the time around the admixture event are thus likely required to resolve the question when, where, and for how long humans and Neandertals interacted.
Collapse
Affiliation(s)
- Leonardo N M Iasi
- Department of Evloutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benjamin M Peter
- Department of Evloutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
10
|
Isshiki M, Naka I, Kimura R, Nishida N, Furusawa T, Natsuhara K, Yamauchi T, Nakazawa M, Ishida T, Inaoka T, Matsumura Y, Ohtsuka R, Ohashi J. Admixture with indigenous people helps local adaptation: admixture-enabled selection in Polynesians. BMC Ecol Evol 2021; 21:179. [PMID: 34551727 PMCID: PMC8456657 DOI: 10.1186/s12862-021-01900-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/25/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Homo sapiens have experienced admixture many times in the last few thousand years. To examine how admixture affects local adaptation, we investigated genomes of modern Polynesians, who are shaped through admixture between Austronesian-speaking people from Southeast Asia (Asian-related ancestors) and indigenous people in Near Oceania (Papuan-related ancestors). METHODS In this study local ancestry was estimated across the genome in Polynesians (23 Tongan subjects) to find the candidate regions of admixture-enabled selection contributed by Papuan-related ancestors. RESULTS The mean proportion of Papuan-related ancestry across the Polynesian genome was estimated as 24.6% (SD = 8.63%), and two genomic regions, the extended major histocompatibility complex (xMHC) region on chromosome 6 and the ATP-binding cassette transporter sub-family C member 11 (ABCC11) gene on chromosome 16, showed proportions of Papuan-related ancestry more than 5 SD greater than the mean (> 67.8%). The coalescent simulation under the assumption of selective neutrality suggested that such signals of Papuan-related ancestry enrichment were caused by positive selection after admixture (false discovery rate = 0.045). The ABCC11 harbors a nonsynonymous SNP, rs17822931, which affects apocrine secretory cell function. The approximate Bayesian computation indicated that, in Polynesian ancestors, a strong positive selection (s = 0.0217) acted on the ancestral allele of rs17822931 derived from Papuan-related ancestors. CONCLUSIONS Our results suggest that admixture with Papuan-related ancestors contributed to the rapid local adaptation of Polynesian ancestors. Considering frequent admixture events in human evolution history, the acceleration of local adaptation through admixture should be a common event in humans.
Collapse
Affiliation(s)
- Mariko Isshiki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Izumi Naka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0125 Japan
| | - Nao Nishida
- Genome Medical Science Project, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, 272-8516 Japan
| | - Takuro Furusawa
- Graduate School of Asian and African Area Studies, Kyoto University, Kyoto, 606-8501 Japan
| | - Kazumi Natsuhara
- Department of International Health and Nursing, Faculty of Nursing, Toho University, Tokyo, 143-0015 Japan
| | - Taro Yamauchi
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812 Japan
| | - Minato Nakazawa
- Graduate School of Health Sciences, Kobe University, Kobe, 654-0142 Japan
| | - Takafumi Ishida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Tsukasa Inaoka
- Department of Human Ecology, Faculty of Agriculture, Saga University, Saga, 840-8502 Japan
| | - Yasuhiro Matsumura
- Faculty of Health and Nutrition, Bunkyo University, Chigasaki, 253-8550 Japan
| | | | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
| |
Collapse
|
11
|
New insights into human immunity from ancient genomics. Curr Opin Immunol 2021; 72:116-125. [PMID: 33992907 PMCID: PMC8452260 DOI: 10.1016/j.coi.2021.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/20/2022]
Abstract
Population genetic studies have clearly indicated that immunity and host defense are among the functions most frequently subject to natural selection, and increased our understanding of the biological relevance of the corresponding genes and their contribution to variable immune traits and diseases. Herein, we will focus on some recently studied forms of human adaptation to infectious agents, including hybridization with now-extinct hominins, such as Neanderthals and Denisovans, and admixture between modern human populations. These studies, which are partly enabled by the technological advances in the sequencing of DNA from ancient remains, provide new insight into the sources of immune response variation in contemporary humans, such as the recently reported link between Neanderthal heritage and susceptibility to severe COVID-19 disease. Furthermore, ancient DNA analyses, in both humans and pathogens, allow to measure the action of natural selection on immune genes across time and to reconstruct the impact of past epidemics on the evolution of human immunity.
Collapse
|
12
|
Choin J, Mendoza-Revilla J, Arauna LR, Cuadros-Espinoza S, Cassar O, Larena M, Ko AMS, Harmant C, Laurent R, Verdu P, Laval G, Boland A, Olaso R, Deleuze JF, Valentin F, Ko YC, Jakobsson M, Gessain A, Excoffier L, Stoneking M, Patin E, Quintana-Murci L. Genomic insights into population history and biological adaptation in Oceania. Nature 2021; 592:583-589. [PMID: 33854233 DOI: 10.1038/s41586-021-03236-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/13/2021] [Indexed: 12/27/2022]
Abstract
The Pacific region is of major importance for addressing questions regarding human dispersals, interactions with archaic hominins and natural selection processes1. However, the demographic and adaptive history of Oceanian populations remains largely uncharacterized. Here we report high-coverage genomes of 317 individuals from 20 populations from the Pacific region. We find that the ancestors of Papuan-related ('Near Oceanian') groups underwent a strong bottleneck before the settlement of the region, and separated around 20,000-40,000 years ago. We infer that the East Asian ancestors of Pacific populations may have diverged from Taiwanese Indigenous peoples before the Neolithic expansion, which is thought to have started from Taiwan around 5,000 years ago2-4. Additionally, this dispersal was not followed by an immediate, single admixture event with Near Oceanian populations, but involved recurrent episodes of genetic interactions. Our analyses reveal marked differences in the proportion and nature of Denisovan heritage among Pacific groups, suggesting that independent interbreeding with highly structured archaic populations occurred. Furthermore, whereas introgression of Neanderthal genetic information facilitated the adaptation of modern humans related to multiple phenotypes (for example, metabolism, pigmentation and neuronal development), Denisovan introgression was primarily beneficial for immune-related functions. Finally, we report evidence of selective sweeps and polygenic adaptation associated with pathogen exposure and lipid metabolism in the Pacific region, increasing our understanding of the mechanisms of biological adaptation to island environments.
Collapse
Affiliation(s)
- Jeremy Choin
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Lara R Arauna
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
| | - Sebastian Cuadros-Espinoza
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Olivier Cassar
- Oncogenic Virus Epidemiology and Pathophysiology, Institut Pasteur, UMR 3569, CNRS, Paris, France
| | - Maximilian Larena
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Albert Min-Shan Ko
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Christine Harmant
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
| | - Romain Laurent
- Muséum National d'Histoire Naturelle, UMR7206, CNRS, Université de Paris, Paris, France
| | - Paul Verdu
- Muséum National d'Histoire Naturelle, UMR7206, CNRS, Université de Paris, Paris, France
| | - Guillaume Laval
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Frédérique Valentin
- Maison de l'Archéologie et de l'Ethnologie, UMR 7041, CNRS, Nanterre, France
| | - Ying-Chin Ko
- Environment-Omics-Disease Research Center, China Medical University and Hospital, Taichung, Taiwan
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Antoine Gessain
- Oncogenic Virus Epidemiology and Pathophysiology, Institut Pasteur, UMR 3569, CNRS, Paris, France
| | - Laurent Excoffier
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France.
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France.
- Collège de France, Paris, France.
| |
Collapse
|
13
|
Pugach I, Hübner A, Hung HC, Meyer M, Carson MT, Stoneking M. Ancient DNA from Guam and the peopling of the Pacific. Proc Natl Acad Sci U S A 2021; 118:e2022112118. [PMID: 33443177 PMCID: PMC7817125 DOI: 10.1073/pnas.2022112118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Humans reached the Mariana Islands in the western Pacific by ∼3,500 y ago, contemporaneous with or even earlier than the initial peopling of Polynesia. They crossed more than 2,000 km of open ocean to get there, whereas voyages of similar length did not occur anywhere else until more than 2,000 y later. Yet, the settlement of Polynesia has received far more attention than the settlement of the Marianas. There is uncertainty over both the origin of the first colonizers of the Marianas (with different lines of evidence suggesting variously the Philippines, Indonesia, New Guinea, or the Bismarck Archipelago) as well as what, if any, relationship they might have had with the first colonizers of Polynesia. To address these questions, we obtained ancient DNA data from two skeletons from the Ritidian Beach Cave Site in northern Guam, dating to ∼2,200 y ago. Analyses of complete mitochondrial DNA genome sequences and genome-wide SNP data strongly support ancestry from the Philippines, in agreement with some interpretations of the linguistic and archaeological evidence, but in contradiction to results based on computer simulations of sea voyaging. We also find a close link between the ancient Guam skeletons and early Lapita individuals from Vanuatu and Tonga, suggesting that the Marianas and Polynesia were colonized from the same source population, and raising the possibility that the Marianas played a role in the eventual settlement of Polynesia.
Collapse
Affiliation(s)
- Irina Pugach
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany
| | - Alexander Hübner
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany
| | - Hsiao-Chun Hung
- Department of Archaeology and Natural History, Australian National University, Canberra, ACT 2601, Australia
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany
| | - Mike T Carson
- Micronesian Area Research Center, University of Guam, 96923 Mangilao, Guam
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany;
| |
Collapse
|
14
|
Lipson M, Spriggs M, Valentin F, Bedford S, Shing R, Zinger W, Buckley H, Petchey F, Matanik R, Cheronet O, Rohland N, Pinhasi R, Reich D. Three Phases of Ancient Migration Shaped the Ancestry of Human Populations in Vanuatu. Curr Biol 2020; 30:4846-4856.e6. [PMID: 33065004 PMCID: PMC7755836 DOI: 10.1016/j.cub.2020.09.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/14/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
The archipelago of Vanuatu has been at the crossroads of human population movements in the Pacific for the past three millennia. To help address several open questions regarding the history of these movements, we generated genome-wide data for 11 ancient individuals from the island of Efate dating from its earliest settlement to the recent past, including five associated with the Chief Roi Mata's Domain World Heritage Area, and analyzed them in conjunction with 34 published ancient individuals from Vanuatu and elsewhere in Oceania, as well as present-day populations. Our results outline three distinct periods of population transformations. First, the four earliest individuals, from the Lapita-period site of Teouma, are concordant with eight previously described Lapita-associated individuals from Vanuatu and Tonga in having almost all of their ancestry from a "First Remote Oceanian" source related to East and Southeast Asians. Second, both the Papuan ancestry predominating in Vanuatu for the past 2,500 years and the smaller component of Papuan ancestry found in Polynesians can be modeled as deriving from a single source most likely originating in New Britain, suggesting that the movement of people carrying this ancestry to Remote Oceania closely followed that of the First Remote Oceanians in time and space. Third, the Chief Roi Mata's Domain individuals descend from a mixture of Vanuatu- and Polynesian-derived ancestry and are related to Polynesian-influenced communities today in central, but not southern, Vanuatu, demonstrating Polynesian genetic input in multiple groups with independent histories.
Collapse
Affiliation(s)
- Mark Lipson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Matthew Spriggs
- School of Archaeology and Anthropology, College of Arts and Social Sciences, The Australian National University, Canberra, ACT 2601, Australia; Vanuatu National Museum, Vanuatu Cultural Centre, Port Vila, Vanuatu.
| | | | - Stuart Bedford
- Vanuatu National Museum, Vanuatu Cultural Centre, Port Vila, Vanuatu; Department of Archaeology and Natural History, College of Asia-Pacific, The Australian National University, Canberra, ACT 2601, Australia; Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Richard Shing
- Vanuatu National Museum, Vanuatu Cultural Centre, Port Vila, Vanuatu
| | - Wanda Zinger
- Muséum national d'Histoire naturelle, UMR 7194 (HNHP), MNHN/CNRS/UPVD, Sorbonne Université, Musée de l'Homme, 75016 Paris, France
| | - Hallie Buckley
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Fiona Petchey
- Radiocarbon Dating Laboratory, Division of Health, Engineering, Computing and Science, University of Waikato, Hamilton 3240, New Zealand; ARC Centre of Excellence for Australian Biodiversity and Heritage, College of Arts, Society and Education, James Cook University, Cairns, QLD 4878, Australia
| | - Richard Matanik
- Lelema World Heritage Committee and Vanuatu Cultural Centre, Port Vila, Vanuatu
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria.
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Friedlaender JS, Tucci S. Human Migrations: Tales of the Pacific. Curr Biol 2020; 30:R1478-R1481. [DOI: 10.1016/j.cub.2020.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Sun J, Wei LH, Wang LX, Huang YZ, Yan S, Cheng HZ, Ong RTH, Saw WY, Fan ZQ, Deng XH, Lu Y, Zhang C, Xu SH, Jin L, Teo YY, Li H. Paternal gene pool of Malays in Southeast Asia and its applications for the early expansion of Austronesians. Am J Hum Biol 2020; 33:e23486. [PMID: 32851723 DOI: 10.1002/ajhb.23486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/16/2020] [Accepted: 07/10/2020] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES The origin and differentiation of Austronesian populations and their languages have long fascinated linguists, archeologists, and geneticists. However, the founding process of Austronesians and when they separated from their close relatives, such as the Daic and Austro-Asiatic populations in the mainland of Asia, remain unclear. In this study, we explored the paternal origin of Malays in Southeast Asia and the early differentiation of Austronesians. MATERIALS AND METHODS We generated whole Y-chromosome sequences of 50 Malays and co-analyzed 200 sequences from other Austronesians and related populations. We generated a revised phylogenetic tree with time estimation. RESULTS We identified six founding paternal lineages among the studied Malays samples. These founding lineages showed a surprisingly coincident expansion age at 5000 to 6000 years ago. We also found numerous mostly close related samples of the founding lineages of Malays among populations from Mainland of Asia. CONCLUSION Our analyses provided a refined phylogenetic resolution for the dominant paternal lineages of Austronesians found by previous studies. We suggested that the co-expansion of numerous founding paternal lineages corresponds to the initial differentiation of the most recent common ancestor of modern Austronesians. The splitting time and divergence pattern in perspective of paternal Y-chromosome evidence are highly consistent with the previous theories of ethnologists, linguists, and archeologists.
Collapse
Affiliation(s)
- Jin Sun
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China
| | - Lan-Hai Wei
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China.,B&R International Joint Laboratory for Eurasian Anthropology, Fudan University, Shanghai, China
| | | | - Yun-Zhi Huang
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shi Yan
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Hui-Zhen Cheng
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Woei-Yuh Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Zhi-Quan Fan
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China
| | - Xiao-Hua Deng
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China.,Center for collation and studies of Fujian local literature, Fujian University of Technology, Fuzhou, China
| | - Yan Lu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Chao Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Shu-Hua Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Li Jin
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.,NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore.,Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| | - Hui Li
- B&R International Joint Laboratory for Eurasian Anthropology, Fudan University, Shanghai, China.,MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Tsosie KS, Begay RL, Fox K, Garrison NA. Generations of genomes: advances in paleogenomics technology and engagement for Indigenous people of the Americas. Curr Opin Genet Dev 2020; 62:91-96. [PMID: 32721847 PMCID: PMC7484015 DOI: 10.1016/j.gde.2020.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
For decades, scientists have collected genomic information from Indigenous peoples and their ancestors with the goal of elucidating human migration events, understanding ancestral origins, and identifying ancestral variants contributing to disease. However, such studies may not have offered much benefit to the Indigenous groups who contributed DNA, and many have instead perpetuated stereotypes and other harms. With recent advances in genomic technology facilitating the study of both ancient and present-day DNA, researchers and Indigenous communities have new opportunities to begin collaboratively addressing important questions about human health and history. Yet, while there are increased efforts to ethically engage Indigenous communities, more work is still needed as the discipline struggles to absolve itself of the racialized science and extractive biocolonialism that defined its past.
Collapse
Affiliation(s)
- Krystal S Tsosie
- Vanderbilt University, Nashville, TN 37325, USA; Native BioData Consortium, Eagle Butte, SD 57625, USA
| | - Rene L Begay
- Centers for American Indian and Alaska Native Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Keolu Fox
- Department of Anthropology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Global Health, University of California, San Diego, La Jolla, CA 92093, USA; Indigenous Futures Lab, University of California, San Diego, La Jolla, CA 92093, USA; Native BioData Consortium, Eagle Butte, SD 57625, USA
| | - Nanibaa' A Garrison
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; General Internal Medicine and Health Services Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
18
|
Harris DN, Kessler MD, Shetty AC, Weeks DE, Minster RL, Browning S, Cochrane EE, Deka R, Hawley NL, Reupena MS, Naseri T, McGarvey ST, O'Connor TD. Evolutionary history of modern Samoans. Proc Natl Acad Sci U S A 2020; 117:9458-9465. [PMID: 32291332 PMCID: PMC7196816 DOI: 10.1073/pnas.1913157117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Archaeological studies estimate the initial settlement of Samoa at 2,750 to 2,880 y ago and identify only limited settlement and human modification to the landscape until about 1,000 to 1,500 y ago. At this point, a complex history of migration is thought to have begun with the arrival of people sharing ancestry with Near Oceanic groups (i.e., Austronesian-speaking and Papuan-speaking groups), and was then followed by the arrival of non-Oceanic groups during European colonialism. However, the specifics of this peopling are not entirely clear from the archaeological and anthropological records, and is therefore a focus of continued debate. To shed additional light on the Samoan population history that this peopling reflects, we employ a population genetic approach to analyze 1,197 Samoan high-coverage whole genomes. We identify population splits between the major Samoan islands and detect asymmetrical gene flow to the capital city. We also find an extreme bottleneck until about 1,000 y ago, which is followed by distinct expansions across the islands and subsequent bottlenecks consistent with European colonization. These results provide for an increased understanding of Samoan population history and the dynamics that inform it, and also demonstrate how rapid demographic processes can shape modern genomes.
Collapse
Affiliation(s)
- Daniel N Harris
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
- Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Michael D Kessler
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
- Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
- Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Daniel E Weeks
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261
| | - Ryan L Minster
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261
| | - Sharon Browning
- Department of Biostatistics, University of Washington, Seattle, WA 98195
| | - Ethan E Cochrane
- Anthropology, The University of Auckland, Auckland 1010, New Zealand
| | - Ranjan Deka
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Nicola L Hawley
- Department of Epidemiology (Chronic Disease), Yale University School of Public Health, New Haven, CT 06520
| | | | - Take Naseri
- Ministry of Health, Government of Samoa, Apia, Samoa 663030
| | - Stephen T McGarvey
- International Health Institute, Department of Epidemiology, Brown University School of Public Health, Providence, RI 02912
- Department of Anthropology, Brown University, Providence, RI 02912
| | - Timothy D O'Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201;
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
- Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
19
|
Isshiki M, Naka I, Watanabe Y, Nishida N, Kimura R, Furusawa T, Natsuhara K, Yamauchi T, Nakazawa M, Ishida T, Eddie R, Ohtsuka R, Ohashi J. Admixture and natural selection shaped genomes of an Austronesian-speaking population in the Solomon Islands. Sci Rep 2020; 10:6872. [PMID: 32327716 PMCID: PMC7181741 DOI: 10.1038/s41598-020-62866-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/16/2020] [Indexed: 11/24/2022] Open
Abstract
People in the Solomon Islands today are considered to have derived from Asian- and Papuan-related ancestors. Papuan-related ancestors colonized Near Oceania about 47,000 years ago, and Asian-related ancestors were Austronesian (AN)-speaking population, called Lapita, who migrated from Southeast Asia about 3,500 years ago. These two ancestral populations admixed in Near Oceania before the expansion of Lapita people into Remote Oceania. To understand the impact of the admixture on the adaptation of AN-speaking Melanesians in Near Oceania, we performed the genome-wide single nucleotide polymorphism (SNP) analysis of 21 individuals from Munda, the main town of the New Georgia Islands in the western Solomon Islands. Population samples from Munda were genetically similar to other Solomon Island population samples. The analysis of genetic contribution from the two different ancestries to the Munda genome revealed significantly higher proportions of Asian- and Papuan-related ancestries in the region containing the annexin A1 (ANXA1) gene (Asian component > 82.6%) and in the human leukocyte antigen (HLA) class II region (Papuan component > 85.4%), respectively. These regions were suspected to have undergone natural selection since the time of admixture. Our results suggest that admixture had affected adaptation of AN-speaking Melanesians in the Solomon Islands.
Collapse
Affiliation(s)
- Mariko Isshiki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Izumi Naka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yusuke Watanabe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Nao Nishida
- Genome Medical Science Project, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, 272-8516, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0125, Japan
| | - Takuro Furusawa
- Graduate School of Asian and African Area Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Kazumi Natsuhara
- Department of International Health and Nursing, Faculty of Nursing, Toho University, Tokyo, 143-8540, Japan
| | - Taro Yamauchi
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Minato Nakazawa
- Graduate School of Health Sciences, Kobe University, Kobe, 654-0142, Japan
| | - Takafumi Ishida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Ricky Eddie
- National Gizo Hospital, Ministry of Health and Medical Services, P.O. Box 36, Gizo, Solomon Islands
| | | | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
20
|
Abstract
Despite the efforts made to reconstruct the history of modern humans, there are still poorly explored regions that are key for understanding the phylogeography of our species. One of them is the Philippines, which is crucial to unravel the colonization of Southeast Asia and Oceania but where little is known about when and how the first humans arrived. In order to shed light into this settlement, we collected samples from 157 individuals of the Philippines with the four grandparents belonging to the same region and mitochondrial variants older than 20,000 years. Next, we analyzed the hypervariable I mtDNA region by approximate Bayesian computation based on extensive spatially explicit computer simulations to select among several migration routes towards the Philippines and to estimate population genetic parameters of this colonization. We found that the colonization of the Philippines occurred more than 60,000 years ago, with long-distance dispersal and from both north and south migration routes. Our results also suggest an environmental scenario especially optimal for humans, with large carrying capacity and population growth, in comparison to other regions of Asia. In all, our study suggests a rapid expansion of modern humans towards the Philippines that could be associated with the establisment of maritime technologies and favorable environmental conditions.
Collapse
|
21
|
Barbieri C, Barquera R, Arias L, Sandoval JR, Acosta O, Zurita C, Aguilar-Campos A, Tito-Álvarez AM, Serrano-Osuna R, Gray RD, Mafessoni F, Heggarty P, Shimizu KK, Fujita R, Stoneking M, Pugach I, Fehren-Schmitz L. The Current Genomic Landscape of Western South America: Andes, Amazonia, and Pacific Coast. Mol Biol Evol 2019; 36:2698-2713. [PMID: 31350885 PMCID: PMC6878948 DOI: 10.1093/molbev/msz174] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Studies of Native South American genetic diversity have helped to shed light on the peopling and differentiation of the continent, but available data are sparse for the major ecogeographic domains. These include the Pacific Coast, a potential early migration route; the Andes, home to the most expansive complex societies and to one of the most widely spoken indigenous language families of the continent (Quechua); and Amazonia, with its understudied population structure and rich cultural diversity. Here, we explore the genetic structure of 176 individuals from these three domains, genotyped with the Affymetrix Human Origins array. We infer multiple sources of ancestry within the Native American ancestry component; one with clear predominance on the Coast and in the Andes, and at least two distinct substrates in neighboring Amazonia, including a previously undetected ancestry characteristic of northern Ecuador and Colombia. Amazonian populations are also involved in recent gene-flow with each other and across ecogeographic domains, which does not accord with the traditional view of small, isolated groups. Long-distance genetic connections between speakers of the same language family suggest that indigenous languages here were spread not by cultural contact alone. Finally, Native American populations admixed with post-Columbian European and African sources at different times, with few cases of prolonged isolation. With our results we emphasize the importance of including understudied regions of the continent in high-resolution genetic studies, and we illustrate the potential of SNP chip arrays for informative regional-scale analysis.
Collapse
Affiliation(s)
- Chiara Barbieri
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Leonardo Arias
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - José R Sandoval
- Centro de Investigación de Genética y Biología Molecular (CIGBM), Universidad de San Martín de Porres, Lima, Peru
| | - Oscar Acosta
- Centro de Investigación de Genética y Biología Molecular (CIGBM), Universidad de San Martín de Porres, Lima, Peru
| | - Camilo Zurita
- Cátedra de Inmunología, Facultad de Medicina, Universidad Central del Ecuador, Quito, Ecuador
- Zurita & Zurita Laboratorios, Unidad de Investigaciones en Biomedicina, Quito, Ecuador
| | - Abraham Aguilar-Campos
- Clinical Laboratory, Unidad Médica de Alta Especialidad (UMAE) # 2, Instituto Mexicano del Seguro Social (IMSS), Ciudad Obregón, Sonora, Mexico
| | - Ana M Tito-Álvarez
- Carrera de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito, Ecuador
| | - Ricardo Serrano-Osuna
- Clinical Laboratory, Unidad Médica de Alta Especialidad (UMAE) # 2, Instituto Mexicano del Seguro Social (IMSS), Ciudad Obregón, Sonora, Mexico
| | - Russell D Gray
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Fabrizio Mafessoni
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Paul Heggarty
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Ricardo Fujita
- Centro de Investigación de Genética y Biología Molecular (CIGBM), Universidad de San Martín de Porres, Lima, Peru
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Irina Pugach
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Lars Fehren-Schmitz
- UCSC Paleogenomics, Department of Anthropology, University of California, Santa Cruz, CA
- Genomics Institute, University of California, Santa Cruz, CA
| |
Collapse
|
22
|
Matisoo-Smith E, Gosling AL. Walking backwards into the future: the need for a holistic evolutionary approach in Pacific health research. Ann Hum Biol 2018; 45:175-187. [PMID: 29877149 DOI: 10.1080/03014460.2018.1448889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT The Pacific region has had a complex human history. It has been subject to multiple major human dispersal and colonisation events, including some of the earliest Out-of-Africa migrations, the so-called Austronesian expansion of people out of Island Southeast Asia, and the more recent arrival of Europeans. Despite models of island isolation, evidence suggests significant levels of interconnectedness that vary in direction and frequency over time. The Pacific Ocean covers a vast area and its islands provide an array of different physical environments with variable pathogen loads and subsistence opportunities. These diverse environments likely caused Pacific peoples to adapt (both genetically and culturally) in unique ways. Differences in genetic background, in combination with adaptation, likely affect their susceptibility to non-communicable diseases. OBJECTIVES Here we provide an overview of some of the key issues in the natural and human history of the Pacific region which are likely to impact human health. We argue that understanding the evolutionary and cultural history of Pacific peoples is essential for the generation of testable hypotheses surrounding potential causes of elevated disease susceptibility among Pacific peoples.
Collapse
Affiliation(s)
| | - Anna L Gosling
- a Department of Anatomy , University of Otago , Dunedin , New Zealand.,b Department of Biochemistry , University of Otago , Dunedin , New Zealand
| |
Collapse
|
23
|
The evolutionary history and human settlement of Australia and the Pacific. Curr Opin Genet Dev 2018; 53:53-59. [PMID: 30029008 DOI: 10.1016/j.gde.2018.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/09/2018] [Accepted: 06/26/2018] [Indexed: 11/21/2022]
Abstract
Understanding the timing and processes involved in the human settlement of Australia and the Pacific has significance for addressing some key debates relating to human origins and population expansions worldwide. Despite this, for many years, Pacific populations were seriously under-represented in genetic studies of human origins. The last 15 years, however, have seen some major genetic studies involving Australian and Pacific populations which have shed light on their origins and interactions, and the last five years have seen some major developments that are challenging long-held concepts of Pacific settlement.
Collapse
|
24
|
Bergström A, Tyler-Smith C. Human Genetics: Busy Subway Networks in Remote Oceania? Curr Biol 2018; 28:R549-R551. [PMID: 29738726 DOI: 10.1016/j.cub.2018.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ancient human DNA from the Oceanian islands of Vanuatu reveals a surprisingly complex history of human settlement, featuring almost complete replacement shortly after initial colonisation, followed by mixing and a puzzling disconnect between genetic ancestry and language.
Collapse
Affiliation(s)
- Anders Bergström
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Chris Tyler-Smith
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| |
Collapse
|
25
|
Lipson M, Skoglund P, Spriggs M, Valentin F, Bedford S, Shing R, Buckley H, Phillip I, Ward GK, Mallick S, Rohland N, Broomandkhoshbacht N, Cheronet O, Ferry M, Harper TK, Michel M, Oppenheimer J, Sirak K, Stewardson K, Auckland K, Hill AVS, Maitland K, Oppenheimer SJ, Parks T, Robson K, Williams TN, Kennett DJ, Mentzer AJ, Pinhasi R, Reich D. Population Turnover in Remote Oceania Shortly after Initial Settlement. Curr Biol 2018; 28:1157-1165.e7. [PMID: 29501328 PMCID: PMC5882562 DOI: 10.1016/j.cub.2018.02.051] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 01/08/2023]
Abstract
Ancient DNA from Vanuatu and Tonga dating to about 2,900-2,600 years ago (before present, BP) has revealed that the "First Remote Oceanians" associated with the Lapita archaeological culture were directly descended from the population that, beginning around 5000 BP, spread Austronesian languages from Taiwan to the Philippines, western Melanesia, and eventually Remote Oceania. Thus, ancestors of the First Remote Oceanians must have passed by the Papuan-ancestry populations they encountered in New Guinea, the Bismarck Archipelago, and the Solomon Islands with minimal admixture [1]. However, all present-day populations in Near and Remote Oceania harbor >25% Papuan ancestry, implying that additional eastward migration must have occurred. We generated genome-wide data for 14 ancient individuals from Efate and Epi Islands in Vanuatu from 2900-150 BP, as well as 185 present-day individuals from 18 islands. We find that people of almost entirely Papuan ancestry arrived in Vanuatu by around 2300 BP, most likely reflecting migrations a few hundred years earlier at the end of the Lapita period, when there is also evidence of changes in skeletal morphology and cessation of long-distance trade between Near and Remote Oceania [2, 3]. Papuan ancestry was subsequently diluted through admixture but remains at least 80%-90% in most islands. Through a fine-grained analysis of ancestry profiles, we show that the Papuan ancestry in Vanuatu derives from the Bismarck Archipelago rather than the geographically closer Solomon Islands. However, the Papuan ancestry in Polynesia-the most remote Pacific islands-derives from different sources, documenting a third stream of migration from Near to Remote Oceania.
Collapse
Affiliation(s)
- Mark Lipson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Pontus Skoglund
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; The Francis Crick Institute, London NW1 1AT, UK
| | - Matthew Spriggs
- School of Archaeology and Anthropology, College of Arts and Social Sciences, The Australian National University, Canberra, ACT 2601, Australia; Vanuatu National Museum, Vanuatu Cultural Centre, P.O. Box 184, Port Vila, Vanuatu
| | - Frederique Valentin
- Maison de l'Archéologie et de l'Ethnologie, CNRS, UMR 7041, 92023 Nanterre, France
| | - Stuart Bedford
- Vanuatu National Museum, Vanuatu Cultural Centre, P.O. Box 184, Port Vila, Vanuatu; Department of Archaeology and Natural History, College of Asia-Pacific, The Australian National University, Canberra, ACT 2601, Australia
| | - Richard Shing
- Vanuatu National Museum, Vanuatu Cultural Centre, P.O. Box 184, Port Vila, Vanuatu
| | - Hallie Buckley
- Department of Anatomy, Otago Global Health Institute, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Iarawai Phillip
- Vanuatu National Museum, Vanuatu Cultural Centre, P.O. Box 184, Port Vila, Vanuatu
| | - Graeme K Ward
- Department of Archaeology and Natural History, College of Asia-Pacific, The Australian National University, Canberra, ACT 2601, Australia
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Nasreen Broomandkhoshbacht
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Olivia Cheronet
- Department of Anthropology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Earth Institute, University College Dublin, Dublin 4, Ireland
| | - Matthew Ferry
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Thomas K Harper
- Department of Anthropology and Institute for Energy and the Environment, The Pennsylvania State University, University Park, PA 16802, USA
| | - Megan Michel
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Kendra Sirak
- Earth Institute, University College Dublin, Dublin 4, Ireland; Department of Anthropology, Emory University, Atlanta, GA, USA
| | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Kathryn Auckland
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Adrian V S Hill
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Kathryn Maitland
- Department of Paediatrics, Faculty of Medicine, Imperial College, St Mary's Hospital, Norfolk Place, Paddington, London W2 1PG, UK
| | - Stephen J Oppenheimer
- School of Anthropology and Museum Ethnography, University of Oxford, Oxford OX2 6PE, UK
| | - Tom Parks
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Kathryn Robson
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Thomas N Williams
- Department of Paediatrics, Faculty of Medicine, Imperial College, St Mary's Hospital, Norfolk Place, Paddington, London W2 1PG, UK
| | - Douglas J Kennett
- Department of Anthropology and Institute for Energy and the Environment, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Ron Pinhasi
- Department of Anthropology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Earth Institute, University College Dublin, Dublin 4, Ireland
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, Cambridge, MA 02138, USA.
| |
Collapse
|
26
|
Posth C, Nägele K, Colleran H, Valentin F, Bedford S, Kami KW, Shing R, Buckley H, Kinaston R, Walworth M, Clark GR, Reepmeyer C, Flexner J, Maric T, Moser J, Gresky J, Kiko L, Robson KJ, Auckland K, Oppenheimer SJ, Hill AVS, Mentzer AJ, Zech J, Petchey F, Roberts P, Jeong C, Gray RD, Krause J, Powell A. Language continuity despite population replacement in Remote Oceania. Nat Ecol Evol 2018; 2:731-740. [PMID: 29487365 PMCID: PMC5868730 DOI: 10.1038/s41559-018-0498-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/12/2018] [Indexed: 01/01/2023]
Abstract
Recent genomic analyses show that the earliest peoples reaching Remote Oceania-associated with Austronesian-speaking Lapita culture-were almost completely East Asian, without detectable Papuan ancestry. However, Papuan-related genetic ancestry is found across present-day Pacific populations, indicating that peoples from Near Oceania have played a significant, but largely unknown, ancestral role. Here, new genome-wide data from 19 ancient South Pacific individuals provide direct evidence of a so-far undescribed Papuan expansion into Remote Oceania starting ~2,500 yr BP, far earlier than previously estimated and supporting a model from historical linguistics. New genome-wide data from 27 contemporary ni-Vanuatu demonstrate a subsequent and almost complete replacement of Lapita-Austronesian by Near Oceanian ancestry. Despite this massive demographic change, incoming Papuan languages did not replace Austronesian languages. Population replacement with language continuity is extremely rare-if not unprecedented-in human history. Our analyses show that rather than one large-scale event, the process was incremental and complex, with repeated migrations and sex-biased admixture with peoples from the Bismarck Archipelago.
Collapse
Affiliation(s)
- Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
| | - Kathrin Nägele
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Heidi Colleran
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena, Germany.
| | - Frédérique Valentin
- Maison de l'Archéologie et de l'Ethnologie, CNRS, UMR 7041, Nanterre, France
| | - Stuart Bedford
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena, Germany
- School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kaitip W Kami
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena, Germany
- Vanuatu Cultural Centre, Port-Vila, Vanuatu
| | | | - Hallie Buckley
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rebecca Kinaston
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Mary Walworth
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Geoffrey R Clark
- Archaeology and Natural History, College of Asia and the Pacific, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Christian Reepmeyer
- College of Arts, Society and Education, James Cook University, Cairns, Queensland, Australia
| | - James Flexner
- Department of Archaeology, University of Sydney, Sydney, New South Wales, Australia
| | - Tamara Maric
- Service de la Culture et du Patrimoine, Punaauia, Tahiti, French Polynesia
| | - Johannes Moser
- Commission for Archaeology of Non-European Cultures, German Archaeological Institute, Bonn, Germany
| | - Julia Gresky
- Department of Natural Sciences, German Archaeological Institute, Berlin, Germany
| | - Lawrence Kiko
- Solomon Islands National Museum, Honiara, Solomon Islands
| | - Kathryn J Robson
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Kathryn Auckland
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Adrian V S Hill
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Jana Zech
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Fiona Petchey
- Waikato Radiocarbon Dating Laboratory, The University of Waikato , Hamilton, New Zealand
| | - Patrick Roberts
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Choongwon Jeong
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Russell D Gray
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
| | - Adam Powell
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena, Germany.
| |
Collapse
|