1
|
Zhou R, Li G, Feng T, Liu Z, Fu J, Zhang D, Wang H, Wang R, Yu T, Bian Y, Gong L, Zhang H, Liu B, Zhang Z. Genetic effect of the Ph1 locus on transcriptome atlas of anther development-related genes, meiotic chromosome behavior and agronomic traits in bread wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70203. [PMID: 40353704 DOI: 10.1111/tpj.70203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025]
Abstract
Proper spatiotemporal expression of meiosis-related genes (MRGs) and other male-microsporogenesis/microgametogenesis-related genes (MMRGs) is crucial for normal anther development, yet their expression patterns remain largely unknown in wheat. The Ph1 locus in wheat is known to contain the Ph1 gene that plays a dual role in promoting pairing between homologous chromosomes but repressing pairing between homoeologous chromosomes, but its genetic function is still unclear. Here, we investigated these issues by conducting a comprehensive transcriptome analysis during wheat anther development in Chinese Spring (CS) and its ph1b deletion mutant under greenhouse and field conditions. Our results revealed that MRGs and MMRGs are predominantly expressed during pre-meiosis stages, with MMRGs also being highly expressed in meiotic-II. Gene co-expression analysis showed that C2H2 and B3 transcriptional factors (TFs) are associated with MRGs, and MYB regulators interacted mainly with MMRGs during microgametogenesis. Deletion of genes within the Ph1 locus failed to induce compensatory transcriptional activation of their homoeologous counterparts, while genes outside the Ph1 locus showed environmental-specific responses, especially during meiotic-II and mature pollen stages. Notably, early disjunction of bivalent chromosomes is a primary factor leading to defective meiocytes during metaphase I. Furthermore, the ph1b deletion mutant exhibited a substantially delayed heading date, potentially contributing to environment-stable and environment-specific alterations in fertility and grain-related traits. Our study highlights the significant impact of the Ph1 locus on the transcriptome during anther development, and a previously unheeded effect on meiotic chromosome pairing and agronomic traits, suggesting potential for genetic manipulations within the Ph1 locus for wheat improvement.
Collapse
Affiliation(s)
- Rongguang Zhou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Tong Feng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zesheng Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Junzhi Fu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Deshi Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Han Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ruisi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Tingting Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yao Bian
- School of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
2
|
Prost-Boxoen L, Bafort Q, Van de Vloet A, Almeida-Silva F, Paing YT, Casteleyn G, D’hondt S, De Clerck O, de Peer YV. Asymmetric genome merging leads to gene expression novelty through nucleo-cytoplasmic disruptions and transcriptomic shock in Chlamydomonas triploids. THE NEW PHYTOLOGIST 2025; 245:869-884. [PMID: 39501615 PMCID: PMC7616817 DOI: 10.1111/nph.20249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/21/2024] [Indexed: 11/18/2024]
Abstract
Genome merging is a common phenomenon causing a wide range of consequences on phenotype, adaptation, and gene expression, yet its broader implications are not well-understood. Two consequences of genome merging on gene expression remain particularly poorly understood: dosage effects and evolution of expression. We employed Chlamydomonas reinhardtii as a model to investigate the effects of asymmetric genome merging by crossing a diploid with a haploid strain to create a novel triploid line. Five independent clonal lineages derived from this triploid line were evolved for 425 asexual generations in a laboratory natural selection experiment. Utilizing fitness assays, flow cytometry, and RNA-Seq, we assessed the immediate consequences of genome merging and subsequent evolution. Our findings reveal substantial alterations in genome size, gene expression, protein homeostasis, and cytonuclear stoichiometry. Gene expression exhibited expression-level dominance and transgressivity (i.e. expression level higher or lower than either parent). Ongoing expression-level dominance and a pattern of 'functional dominance' from the haploid parent was observed. Despite major genomic and nucleo-cytoplasmic disruptions, enhanced fitness was detected in the triploid strain. By comparing gene expression across generations, our results indicate that proteostasis restoration is a critical component of rapid adaptation following genome merging in Chlamydomonas reinhardtii and possibly other systems.
Collapse
Affiliation(s)
- Lucas Prost-Boxoen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, Ghent, Belgium
| | - Quinten Bafort
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, Ghent, Belgium
| | - Antoine Van de Vloet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Yunn Thet Paing
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Griet Casteleyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, Ghent, Belgium
| | - Sofie D’hondt
- Department of Biology, Ghent University, Ghent, Belgium
| | | | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, Ghent, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Ezoe A, Todaka D, Utsumi Y, Takahashi S, Kawaura K, Seki M. Decrease in purifying selection pressures on wheat homoeologous genes: tetraploidization versus hexaploidization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1190-1205. [PMID: 39428689 DOI: 10.1111/tpj.17047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024]
Abstract
A series of polyploidizations in higher-order polyploids is the main event affecting gene content in a genome. Each polyploidization event can lead to massive functional divergence because of the subsequent decrease in selection pressure on duplicated genes; however, the causal relationship between multiple rounds of polyploidization and the functional divergence of duplicated genes is poorly understood. We focused on the Triticum-Aegilops complex lineage and compared selection pressure before and after tetraploidization and hexaploidization events. Although both events led to decreased selection pressure on homoeologous gene pairs (compared with diploids and tetraploids), the initial tetraploidization had a greater impact on selection pressure on homoeologous gene pairs than did subsequent hexaploidization. Consistent with this, selection pressure on expression patterns for the initial event relaxed more than those for the subsequent event. Surprisingly, the decreased selection pressure on these homoeologous genes was independent of the existence of in-paralogs within the same subgenome. Wheat homoeologous pairs had different evolutionary consequences compared with orthologs related to other mechanisms (ancient allopolyploidization, ancient autopolyploidization, and small-scale duplication). Furthermore, tetraploidization and hexaploidization also seemed to have different evolutionary consequences. This suggests that homoeologous genes retain unique functions, including functions that are unlikely to be preserved in genes generated by the other duplication mechanisms. We found that their unique functions differed between tetraploidization and hexaploidization (e.g., reproductive and chromosome segregation processes). These findings imply that the substantial number of gene pairs resulting from multiple allopolyploidization events, especially initial tetraploidization, may have been a unique source of functional divergence.
Collapse
Affiliation(s)
- Akihiro Ezoe
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Daisuke Todaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Satoshi Takahashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| |
Collapse
|
4
|
Abugammie B, Wang R, Hu Y, Pang J, Luan Y, Liu B, Jiang L, Lv R. Spontaneous chromosome instability and tissue culture-induced karyotypic alteration in wheat-Thinopyrum intermedium alien addition lines. PLANTA 2024; 260:17. [PMID: 38834908 DOI: 10.1007/s00425-024-04450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
MAIN CONCLUSION Wheat lines harboring wild-relative chromosomes can be karyotypically unstable during long-term maintenance. Tissue culture exacerbates chromosomal instability but appears inefficient to induce somatic homoeologous exchange between alien and wheat chromosomes. We assessed if long-term refrigerator storage with regular renewal via self-fertilization, a widely used practice for crop germplasm maintenance, would ensure genetic fidelity of alien addition lines, and explored the possibility of inducing somatic homoeologues exchange by tissue culture. We cytogenetically characterized sampled stock seeds of originally confirmed 12 distinct wheat-Thinopyrum intermedium alien addition lines (dubbed TAI lines), and subjected immature embryos of the TAI lines to tissue culture. We find eight of the 12 TAI lines were karyotypically departed from their original identity as bona fide disomic alien addition lines due to extensive loss of whole-chromosomes of both Th. intermedium and wheat origins during the ca. 3-decade storage. Rampant numerical chromosome variations (NCVs) involving both alien and wheat chromosomes were detected in regenerated plants of all 12 studied TAI lines, but at variable rates among the wheat sub-genomes and chromosomes. Compared with NCVs, structural chromosome variations (SCVs) occurred at substantially lower rates, and no SCV involving the added alien chromosomes was observed. The NCVs manifested only moderate effects on phenotypes of the regenerated plants under field conditions.
Collapse
Affiliation(s)
- Bahaa Abugammie
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Genetics, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Ruisi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yue Hu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jinsong Pang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lily Jiang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
5
|
Chen L, Li C, Li B, Zhou X, Bai Y, Zou X, Zhou Z, He Q, Chen B, Wang M, Xue Y, Jiang Z, Feng J, Zhou T, Liu Z, Xu P. Evolutionary divergence of subgenomes in common carp provides insights into speciation and allopolyploid success. FUNDAMENTAL RESEARCH 2024; 4:589-602. [PMID: 38933191 PMCID: PMC11197550 DOI: 10.1016/j.fmre.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 06/28/2024] Open
Abstract
Hybridization and polyploidization have made great contributions to speciation, heterosis, and agricultural production within plants, but there is still limited understanding and utilization in animals. Subgenome structure and expression reorganization and cooperation post hybridization and polyploidization are essential for speciation and allopolyploid success. However, the mechanisms have not yet been comprehensively assessed in animals. Here, we produced a high-fidelity reference genome sequence for common carp, a typical allotetraploid fish species cultured worldwide. This genome enabled in-depth analysis of the evolution of subgenome architecture and expression responses. Most genes were expressed with subgenome biases, with a trend of transition from the expression of subgenome A during the early stages to that of subgenome B during the late stages of embryonic development. While subgenome A evolved more rapidly, subgenome B contributed to a greater level of expression during development and under stressful conditions. Stable dominant patterns for homoeologous gene pairs both during development and under thermal stress suggest a potential fixed heterosis in the allotetraploid genome. Preferentially expressing either copy of a homoeologous gene at higher levels to confer development and response to stress indicates the dominant effect of heterosis. The plasticity of subgenomes and their shifting of dominant expression during early development, and in response to stressful conditions, provide novel insights into the molecular basis of the successful speciation, evolution, and heterosis of the allotetraploid common carp.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Chengyu Li
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Bijun Li
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaofan Zhou
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yulin Bai
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaoqing Zou
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Zhixiong Zhou
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Qian He
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Baohua Chen
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Mei Wang
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yaguo Xue
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Zhou Jiang
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jianxin Feng
- Henan Academy of Fishery Science, Zhengzhou 450044, China
| | - Tao Zhou
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse 13244, USA
| | - Peng Xu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
6
|
Li Y, Yan X, Cheng M, Wu Z, Zhang Q, Duan S, Zhou Y, Li H, Yang S, Cheng Y, Li W, Xu L, Li X, He R, Zhou Y, Yang C, Iqbal MZ, He J, Rong T, Tang Q. Genome dosage alteration caused by chromosome pyramiding and shuffling effects on karyotypic heterogeneity, reproductive diversity, and phenotypic variation in Zea-Tripsacum allopolyploids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:28. [PMID: 38252297 DOI: 10.1007/s00122-023-04540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
KEY MESSAGE We developed an array of Zea-Tripsacum tri-hybrid allopolyploids with multiple ploidies. We unveiled that changes in genome dosage due to the chromosomes pyramiding and shuffling of three species effects karyotypic heterogeneity, reproductive diversity, and phenotypic variation in Zea-Tripsacum allopolyploids. Polyploidy, or whole genome duplication, has played a major role in evolution and speciation. The genomic consequences of polyploidy have been extensively studied in many plants; however, the extent of chromosomal variation, genome dosage, phenotypic diversity, and heterosis in allopolyploids derived from multiple species remains largely unknown. To address this question, we synthesized an allohexaploid involving Zea mays, Tripsacum dactyloides, and Z. perennis by chromosomal pyramiding. Subsequently, an allooctoploid and an allopentaploid were obtained by hybridization of the allohexaploid with Z. perennis. Moreover, we constructed three populations with different ploidy by chromosomal shuffling (allopentaploid × Z. perennis, allohexaploid × Z. perennis, and allooctoploid × Z. perennis). We have observed 3 types of sexual reproductive modes and 2 types of asexual reproduction modes in the tri-species hybrids, including 2n gamete fusion (2n + n), haploid gamete fusion (n + n), polyspermy fertilization (n + n + n) or 2n gamete fusion (n + 2n), haploid gametophyte apomixis, and asexual reproduction. The tri-hybrids library presents extremely rich karyotype heterogeneity. Chromosomal compensation appears to exist between maize and Z. perennis. A rise in the ploidy of the trihybrids was linked to a higher frequency of chromosomal translocation. Variation in the degree of phenotypic diversity observed in different segregating populations suggested that genome dosage effects phenotypic manifestation. These findings not only broaden our understanding of the mechanisms of polyploid formation and reproductive diversity but also provide a novel insight into genome pyramiding and shuffling driven genome dosage effects and phenotypic diversity.
Collapse
Affiliation(s)
- Yingzheng Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xu Yan
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Sericulture Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, 637000, China
| | - Mingjun Cheng
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610041, China
| | - Zizhou Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Sericulture Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, 637000, China
| | - Qiyuan Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Saifei Duan
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong Zhou
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huaxiong Li
- Neijiang Municipal Bureau of Agriculture and Rural Affairs, Neijiang, 641000, China
| | - Shipeng Yang
- Zigong Academy of Agricultural Sciences, Zigong, 643000, China
| | - Yulin Cheng
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wansong Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lulu Xu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaofeng Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ruyu He
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Zhou
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chunyan Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Guizhou Prataculture Institute, Guiyang, Guizhou, China
| | - Muhammad Zafar Iqbal
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianmei He
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tingzhao Rong
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qilin Tang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
7
|
Lyu ZY, Zhou XL, Wang SQ, Yang GM, Sun WG, Zhang JY, Zhang R, Shen SK. The first high-altitude autotetraploid haplotype-resolved genome assembled (Rhododendron nivale subsp. boreale) provides new insights into mountaintop adaptation. Gigascience 2024; 13:giae052. [PMID: 39110622 PMCID: PMC11304948 DOI: 10.1093/gigascience/giae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/26/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Rhododendron nivale subsp. boreale Philipson et M. N. Philipson is an alpine woody species with ornamental qualities that serve as the predominant species in mountainous scrub habitats found at an altitude of ∼4,200 m. As a high-altitude woody polyploid, this species may serve as a model to understand how plants adapt to alpine environments. Despite its ecological significance, the lack of genomic resources has hindered a comprehensive understanding of its evolutionary and adaptive characteristics in high-altitude mountainous environments. FINDINGS We sequenced and assembled the genome of R. nivale subsp. boreale, an assembly of the first subgenus Rhododendron and the first high-altitude woody flowering tetraploid, contributing an important genomic resource for alpine woody flora. The assembly included 52 pseudochromosomes (scaffold N50 = 42.93 Mb; BUSCO = 98.8%; QV = 45.51; S-AQI = 98.69), which belonged to 4 haplotypes, harboring 127,810 predicted protein-coding genes. Conjoint k-mer analysis, collinearity assessment, and phylogenetic investigation corroborated autotetraploid identity. Comparative genomic analysis revealed that R. nivale subsp. boreale originated as a neopolyploid of R. nivale and underwent 2 rounds of ancient polyploidy events. Transcriptional expression analysis showed that differences in expression between alleles were common and randomly distributed in the genome. We identified extended gene families and signatures of positive selection that are involved not only in adaptation to the mountaintop ecosystem (response to stress and developmental regulation) but also in autotetraploid reproduction (meiotic stabilization). Additionally, the expression levels of the (group VII ethylene response factor transcription factors) ERF VIIs were significantly higher than the mean global gene expression. We suspect that these changes have enabled the success of this species at high altitudes. CONCLUSIONS We assembled the first high-altitude autopolyploid genome and achieved chromosome-level assembly within the subgenus Rhododendron. In addition, a high-altitude adaptation strategy of R. nivale subsp. boreale was reasonably speculated. This study provides valuable data for the exploration of alpine mountaintop adaptations and the correlation between extreme environments and species polyploidization.
Collapse
Affiliation(s)
- Zhen-Yu Lyu
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504 Yunnan, China
| | - Xiong-Li Zhou
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504 Yunnan, China
| | - Si-Qi Wang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504 Yunnan, China
| | - Gao-Ming Yang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504 Yunnan, China
| | - Wen-Guang Sun
- School of Life Sciences, Yunnan Normal University, Kunming 650500 Yunnan, China
| | - Jie-Yu Zhang
- School of Life Sciences, Yunnan Normal University, Kunming 650500 Yunnan, China
| | - Rui Zhang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504 Yunnan, China
| | - Shi-Kang Shen
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504 Yunnan, China
| |
Collapse
|
8
|
Zhang J, Fan C, Liu Y, Shi Q, Sun Y, Huang Y, Yuan J, Han F. Cytological analysis of the diploid-like inheritance of newly synthesized allotetraploid wheat. Chromosome Res 2023; 32:1. [PMID: 38108925 DOI: 10.1007/s10577-023-09745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Polyploidization is a process which is related to species hybridization and whole genome duplication. It is widespread among angiosperm evolution and is essential for speciation and diversification. Allopolyploidization is mainly derived from interspecific hybridization and is believed to pose chromosome imbalances and genome instability caused by meiotic irregularity. However, the self-compatible allopolyploid in wild nature is cytogenetically and genetically stable. Whether this stabilization form was achieved in initial generation or a consequence of long term of evolution was largely unknown. Here, we synthesized a series of nascent allotetraploid wheat derived from three diploid genomes of A, S*, and D. The chromosome numbers of the majority of the progeny derived from these newly formed allotetraploid wheat plants were found to be relatively consistent, with each genome containing 14 chromosomes. In meiosis, bivalent was the majority of the chromosome configuration in metaphase I which supports the stable chromosome number inheritance in the nascent allotetraploid. These findings suggest that diploidization occurred in the newly formed synthetic allotetraploid wheat. However, we still detected aneuploids in a proportion of newly formed allotetraploid wheat, and meiosis of these materials present more irregular chromosome behavior than the euploid. We found that centromere pairing and centromere clustering in meiosis was affected in the aneuploids, which suggest that aneuploidy may trigger the irregular interactions of centromere in early meiosis which may take participate in promoting meiosis stabilization in newly formed allotetraploid wheat.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chaolan Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qinghua Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yishuang Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Yuan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Sha Y, Li Y, Zhang D, Lv R, Wang H, Wang R, Ji H, Li S, Gong L, Li N, Liu B. Genome shock in a synthetic allotetraploid wheat invokes subgenome-partitioned gene regulation, meiotic instability, and karyotype variation. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5547-5563. [PMID: 37379452 DOI: 10.1093/jxb/erad247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
It is becoming increasingly evident that interspecific hybridization at the homoploid level or coupled with whole-genome duplication (i.e. allopolyploidization) has played a major role in biological evolution. However, the direct impacts of hybridization and allopolyploidization on genome structure and function, phenotype, and fitness remains to be fully understood. Synthetic hybrids and allopolyploids are trackable experimental systems that can be used to address this issue. In this study, we resynthesized a pair of reciprocal F1 hybrids and corresponding reciprocal allotetraploids using the two diploid progenitor species of bread wheat (Triticum aestivum, BBAADD), namely T. urartu (AA) and Aegilops tauschii (DD). By comparing phenotypes related to growth, development, and fitness, and by analysing genome expression in both hybrids and allotetraploids in relation to the parents, we found that the types and trends of karyotype variation in the immediately formed allotetraploids were correlated with both instability of meiosis and chromosome- and subgenome-biased expression. We determined clear advantages of allotetraploids over diploid F1 hybrids in several morphological traits including fitness that mirrored the tissue- and developmental stage-dependent subgenome-partitioning of the allotetraploids. The allotetraploids were meiotically unstable primarily due to homoeologous pairing that varied dramatically among the chromosomes. Nonetheless, the manifestation of organismal karyotype variation and the occurrence of meiotic irregularity were not concordant, suggesting a role of functional constraints probably imposed by subgenome- and chromosome-biased gene expression. Our results provide new insights into the direct impacts and consequences of hybridization and allopolyploidization that are relevant to evolution and likely to be informative for future crop improvement approaches using synthetic polyploids.
Collapse
Affiliation(s)
- Yan Sha
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yang Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Deshi Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Han Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ruisi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Heyu Ji
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Shuhang Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
10
|
Lv R, Gou X, Li N, Zhang Z, Wang C, Wang R, Wang B, Yang C, Gong L, Zhang H, Liu B. Chromosome translocation affects multiple phenotypes, causes genome-wide dysregulation of gene expression, and remodels metabolome in hexaploid wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1564-1582. [PMID: 37265000 DOI: 10.1111/tpj.16338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Chromosomal rearrangements (CRs) may occur in newly formed polyploids due to compromised meiotic fidelity. Moreover, CRs can be more readily tolerated in polyploids allowing their longer-term retention and hence potential spreading/fixation within a lineage. The direct functional consequences of CRs in plant polyploids remain unexplored. Here, we identified a heterozygous individual from a synthetic allohexaploid wheat in which the terminal parts of the long-arms of chromosomes 2D (approximately 193 Mb) and 4A (approximately 167 Mb) were reciprocally translocated. Five homogeneous translocation lines including both unbalanced and balanced types were developed by selfing fertilization of the founder mutant (RT [2DL; 4AL]-ter/1, reciprocal translocation). We investigated impacts of these translocations on phenotype, genome-wide gene expression and metabolome. We find that, compared with sibling wild-type, CRs in the form of both unbalanced and balanced translocations induced substantial changes of gene expression primarily via trans-regulation in the nascent allopolyploid wheat. The CRs also manifested clear phenotypic and metabolic consequences. In particular, the genetically balanced, stable reciprocal translocations lines showed immediate enhanced reproductive fitness relative to wild type. Our results underscore the profound impact of CRs on gene expression in nascent allopolyploids with wide-ranging phenotypic and metabolic consequences, suggesting CRs are an important source of genetic variation that can be exploited for crop breeding.
Collapse
Affiliation(s)
- Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaowan Gou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Changyi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ruisi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
11
|
Zhang Z, Lv R, Wang B, Xun H, Liu B, Xu C. Effects of Allopolyploidization and Homoeologous Chromosomal Segment Exchange on Homoeolog Expression in a Synthetic Allotetraploid Wheat under Variable Environmental Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3111. [PMID: 37687357 PMCID: PMC10490264 DOI: 10.3390/plants12173111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
Allopolyploidy through the combination of divergent genomes into a common nucleus at doubled dosage is known as a potent genetic and evolutionary force. As a macromutation, a striking feature of allopolyploidy in comparison with other mutational processes is that 'genome shock' can be evoked, thereby generating rapid and saltational biological consequences. A major manifestation of genome shock is genome-wide gene expression rewiring, which previously remained to be fully elucidated. Here, using a large set of RNAseq-based transcriptomic data of a synthetic allotetraploid wheat (genome AADD) and its parental species, we performed in-depth analyses of changes in the genome-wide gene expression under diverse environmental conditions at the subgenome (homoeolog) level and investigated the additional effects of homoeologous chromosomal segment exchanges (abbreviated HEs). We show that allopolyploidy caused large-scale changes in gene expression that were variable across the conditions and exacerbated by both stresses and HEs. Moreover, although both subgenomes (A and D) showed clear commonality in the changes, they responded differentially under variable conditions. The subgenome- and condition-dependent differentially expressed genes were enriched for different gene ontology terms implicating different biological functions. Our results provide new insights into the direct impacts of allopolyploidy on condition-dependent changes in subgenome expression and the additional effects of HEs in nascent allopolyploidy.
Collapse
Affiliation(s)
- Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences (CAS), Changchun 130102, China
| | - Hongwei Xun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
12
|
Deb SK, Edger PP, Pires JC, McKain MR. Patterns, mechanisms, and consequences of homoeologous exchange in allopolyploid angiosperms: a genomic and epigenomic perspective. THE NEW PHYTOLOGIST 2023; 238:2284-2304. [PMID: 37010081 DOI: 10.1111/nph.18927] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/16/2023] [Indexed: 05/19/2023]
Abstract
Allopolyploids result from hybridization between different evolutionary lineages coupled with genome doubling. Homoeologous chromosomes (chromosomes with common shared ancestry) may undergo recombination immediately after allopolyploid formation and continue over successive generations. The outcome of this meiotic pairing behavior is dynamic and complex. Homoeologous exchanges (HEs) may lead to the formation of unbalanced gametes, reduced fertility, and selective disadvantage. By contrast, HEs could act as sources of novel evolutionary substrates, shifting the relative dosage of parental gene copies, generating novel phenotypic diversity, and helping the establishment of neo-allopolyploids. However, HE patterns vary among lineages, across generations, and even within individual genomes and chromosomes. The causes and consequences of this variation are not fully understood, though interest in this evolutionary phenomenon has increased in the last decade. Recent technological advances show promise in uncovering the mechanistic basis of HEs. Here, we describe recent observations of the common patterns among allopolyploid angiosperm lineages, underlying genomic and epigenomic features, and consequences of HEs. We identify critical research gaps and discuss future directions with far-reaching implications in understanding allopolyploid evolution and applying them to the development of important phenotypic traits of polyploid crops.
Collapse
Affiliation(s)
- Sontosh K Deb
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48823, USA
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, 48823, USA
| | - J Chris Pires
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Michael R McKain
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| |
Collapse
|
13
|
Li G, Wu Y, Bai Y, Zhao N, Jiang Y, Li N, Lin X, Liu B, Xu C. Patterns of Chromosomal Variation, Homoeologous Exchange, and Their Relationship with Genomic Features in Early Generations of a Synthetic Rice Segmental Allotetraploid. Int J Mol Sci 2023; 24:ijms24076065. [PMID: 37047036 PMCID: PMC10094486 DOI: 10.3390/ijms24076065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Polyploidization is a driving force in plant evolution. Chromosomal variation often occurs at early generations following polyploid formation due to meiotic pairing irregularity that may compromise segregation fidelity and cause homoeologous exchange (HE). The trends of chromosomal variation and especially factors affecting HE remain to be fully deciphered. Here, by whole-genome resequencing, we performed nuanced analyses of patterns of chromosomal number variation and explored genomic features that affect HE in two early generations of a synthetic rice segmental allotetraploid. We found a wide occurrence of whole-chromosome aneuploidy and, to a lesser extent, also large segment gains/losses in both generations (S2 and S4) of the tetraploids. However, while the number of chromosome gains was similar between S2 and S4, that of losses in S4 was lower than in S2. HEs were abundant across all chromosomes in both generations and showed variable correlations with different genomic features at chromosomal and/or local scales. Contents of genes and transposable elements (TEs) were positively and negatively correlated with HE frequencies, respectively. By dissecting TEs into different classes, retrotransposons were found to be negatively correlated with HE frequency to a stronger extent than DNA transposons, whereas miniature terminal inverted elements (MITEs) showed a strong positive correlation. Local HE frequencies in the tetraploids and homologous recombination (HR) rates in diploids within 1 Mb sliding windows were significantly correlated with each other and showed similar overall distribution profiles. Nonetheless, non-concordant trends between HE and HR rates were found at distal regions in some chromosomes. At local scale, both shared and polymorphic retrotransposons between parents were negatively correlated with HE frequency; in contrast, both shared and polymorphic MITEs showed positive correlations with HE frequency. Our results shed new light on the patterns of chromosomal number variation and reveal genomic features influencing HE frequency in early generations following plant polyploidization.
Collapse
Affiliation(s)
- Guo Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yan Bai
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Na Zhao
- Department of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Yuhui Jiang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Xiuyun Lin
- Jilin Academy of Agriculture, Changchun 130033, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
14
|
Bomblies K. Learning to tango with four (or more): the molecular basis of adaptation to polyploid meiosis. PLANT REPRODUCTION 2023; 36:107-124. [PMID: 36149479 PMCID: PMC9957869 DOI: 10.1007/s00497-022-00448-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/10/2022] [Indexed: 05/29/2023]
Abstract
Polyploidy, which arises from genome duplication, has occurred throughout the history of eukaryotes, though it is especially common in plants. The resulting increased size, heterozygosity, and complexity of the genome can be an evolutionary opportunity, facilitating diversification, adaptation and the evolution of functional novelty. On the other hand, when they first arise, polyploids face a number of challenges, one of the biggest being the meiotic pairing, recombination and segregation of the suddenly more than two copies of each chromosome, which can limit their fertility. Both for developing polyploidy as a crop improvement tool (which holds great promise due to the high and lasting multi-stress resilience of polyploids), as well as for our basic understanding of meiosis and plant evolution, we need to know both the specific nature of the challenges polyploids face, as well as how they can be overcome in evolution. In recent years there has been a dramatic uptick in our understanding of the molecular basis of polyploid adaptations to meiotic challenges, and that is the focus of this review.
Collapse
Affiliation(s)
- Kirsten Bomblies
- Plant Evolutionary Genetics, Institute of Plant Molecular Biology, Department of Biology, ETH Zürich, Zurich, Switzerland.
| |
Collapse
|
15
|
Wang B, Lv R, Zhang Z, Yang C, Xun H, Liu B, Gong L. Homoeologous exchange enables rapid evolution of tolerance to salinity and hyper-osmotic stresses in a synthetic allotetraploid wheat. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7488-7502. [PMID: 36055762 DOI: 10.1093/jxb/erac355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The link between polyploidy and enhanced adaptation to environmental stresses could be a result of polyploidy itself harbouring higher tolerance to adverse conditions, or polyploidy possessing higher evolvability than diploids under stress conditions. Natural polyploids are inherently unsuitable to disentangle these two possibilities. Using selfed progenies of a synthetic allotetraploid wheat AT3 (AADD) along with its diploid parents, Triticum urartu TMU38 (AA) and Aegilops tauschii TQ27 (DD), we addressed the foregoing issue under abiotic salinity and hyper-osmotic (drought-like) stress. Under short duration of both stresses, euploid plants of AT3 showed intermediate tolerance of diploid parents; under life-long duration of both stresses, tolerant individuals to either stress emerged from selfed progenies of AT3, but not from comparable-sized diploid parent populations. Tolerance to both stresses were conditioned by the same two homoeologous exchanges (HEs; 2DS/2AS and 3DL/3AL), and at least one HE needed to be at the homozygous state. Transcriptomic analyses revealed that hyper-up-regulation of within-HE stress responsive genes of the A sub-genome origin is likely responsible for the dual-stress tolerant phenotypes. Our results suggest that HE-mediated inter-sub-genome rearrangements can be an important mechanism leading to adaptive evolution in allopolyploids as well as a promising target for genetic manipulation in crop improvement.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Hongwei Xun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
16
|
Scarlett VT, Lovell JT, Shao M, Phillips J, Shu S, Lusinska J, Goodstein DM, Jenkins J, Grimwood J, Barry K, Chalhoub B, Schmutz J, Hasterok R, Catalán P, Vogel JP. Multiple origins, one evolutionary trajectory: gradual evolution characterizes distinct lineages of allotetraploid Brachypodium. Genetics 2022; 223:6758249. [PMID: 36218464 PMCID: PMC9910409 DOI: 10.1093/genetics/iyac146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
The "genomic shock" hypothesis posits that unusual challenges to genome integrity such as whole genome duplication may induce chaotic genome restructuring. Decades of research on polyploid genomes have revealed that this is often, but not always the case. While some polyploids show major chromosomal rearrangements and derepression of transposable elements in the immediate aftermath of whole genome duplication, others do not. Nonetheless, all polyploids show gradual diploidization over evolutionary time. To evaluate these hypotheses, we produced a chromosome-scale reference genome for the natural allotetraploid grass Brachypodium hybridum, accession "Bhyb26." We compared 2 independently derived accessions of B. hybridum and their deeply diverged diploid progenitor species Brachypodium stacei and Brachypodium distachyon. The 2 B. hybridum lineages provide a natural timecourse in genome evolution because one formed 1.4 million years ago, and the other formed 140 thousand years ago. The genome of the older lineage reveals signs of gradual post-whole genome duplication genome evolution including minor gene loss and genome rearrangement that are missing from the younger lineage. In neither B. hybridum lineage do we find signs of homeologous recombination or pronounced transposable element activation, though we find evidence supporting steady post-whole genome duplication transposable element activity in the older lineage. Gene loss in the older lineage was slightly biased toward 1 subgenome, but genome dominance was not observed at the transcriptomic level. We propose that relaxed selection, rather than an abrupt genomic shock, drives evolutionary novelty in B. hybridum, and that the progenitor species' similarity in transposable element load may account for the subtlety of the observed genome dominance.
Collapse
Affiliation(s)
- Virginia T Scarlett
- U.S. Dept. of Energy Joint Genome Institute, Berkeley, CA 94720, USA,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Mingqin Shao
- U.S. Dept. of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Jeremy Phillips
- U.S. Dept. of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Shengqiang Shu
- U.S. Dept. of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | | | - David M Goodstein
- U.S. Dept. of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Kerrie Barry
- U.S. Dept. of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | | | - Jeremy Schmutz
- U.S. Dept. of Energy Joint Genome Institute, Berkeley, CA 94720, USA,Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | | | - John P Vogel
- Corresponding author: U.S. Dept. of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| |
Collapse
|
17
|
Zhang Z, Xun H, Lv R, Gou X, Ma X, Li J, Zhao J, Li N, Gong L, Liu B. Effects of homoeologous exchange on gene expression and alternative splicing in a newly formed allotetraploid wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1267-1282. [PMID: 35763523 DOI: 10.1111/tpj.15886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Homoeologous exchange (HE) is a major mechanism generating post-polyploidization genetic variation with important evolutionary consequences. However, the direct impacts of HE on gene expression and transcript diversity in allopolyploids without the intertwined evolutionary processes remain to be fully understood. Here, we analyzed high-throughput RNA-seq data of young leaves from plant groups of a synthetic allotetraploid wheat (AADD), which contained variable numbers of HEs. We aimed to investigate if and to which extent HE directly impacts gene expression and alternative splicing (AS). We found that HE impacts expression of genes located within HE regions primarily via a cis-acting dosage effect, which led to significant changes in the total expression level of homoeologous gene pairs, especially for homoeologs whose original expression was biased. In parallel, HE also influences expression of a large number of genes residing in non-HE regions by trans-regulation leading to convergent expression of homoeologs. Intriguingly, when taking the original relative homoeolog expression states into account, homoeolog pairs under trans-effect are more prone to manifesting a convergent response to the HEs whereas those under cis-regulation tended to show further exacerbated subgenome-biased expression. Moreover, HE-induced quantitative, largely individual-specific, changes of AS events were detected. Similar to homoeologous expression, homoeo-AS events under trans-effect were more responsive to HE. HE therefore exerts multifaceted immediate effects on gene expression and, to a less extent, on individualized transcript diversity in nascent allopolyploidy.
Collapse
Affiliation(s)
- Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Hongwei Xun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaowan Gou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xintong Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Juzuo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jing Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
18
|
Lv R, Wang C, Wang R, Wang X, Zhao J, Wang B, Aslam T, Han F, Liu B. Chromosomal instability and phenotypic variation in a specific lineage derived from a synthetic allotetraploid wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:981234. [PMID: 36072314 PMCID: PMC9441941 DOI: 10.3389/fpls.2022.981234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Newly formed plant allopolyploids usually have meiosis defect, resulting in chromosomal instability manifested as variation in chromosome number and/or structure. However, not all nascent allopolyploids are equally unstable. The wheat group (Aegilops/Triticum) contains 13 diploid species with distinct genome types. Many of these species can be artificially hybridized to produce viable but sterile inter-specific/intergeneric F1 hybrids, which can generate fertile synthetic allotetraploid wheats after whole genome doubling. Compared with synthetic allotetraploid wheats that contain genome combinations of AADD and S*S*DD (S* refers to related S genomes of a different species), those containing an S*S*AA genome are significantly more stable. However, robustness of the relative stability of S*S*AA genomes is unknown, nor are the phenotypic and fitness consequences during occurrences of secondary chromosomal instability. Here, we report a specific lineage originated from a single individual plant of a relatively stable synthetic allotetraploid wheat with genomes S l S l AA (S l and A subgenomes were from Ae. longissima and T. urartu, respectively) that showed a high degree of transgenerational chromosomal instability. Both numerical chromosome variation (NCV) and structural chromosome variation (SCV) occurred widely. While substantial differences in frequencies of both NCV and SCV were detected across the different chromosomes, only NCV frequencies were significantly different between the two subgenomes. We found that NCVs and SCVs occurred primarily due to perturbed meiosis, allowing formation of multivalents and univalents as well as homoeologous exchanges. Thus, the combination of NCVs and SCVs affected multiple phenotypic traits, particularly those related to reproductive fitness.
Collapse
Affiliation(s)
- Ruili Lv
- School of Life Sciences, Linyi University, Linyi, China
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Changyi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ruisi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiaofei Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Jing Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Tariq Aslam
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Fangpu Han
- School of Life Sciences, Linyi University, Linyi, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| |
Collapse
|
19
|
Zhong YH, Zheng YF, Xue YX, Wang LJ, Zhang JW, Li DL, Wang J. Variation of Chromosome Composition in a Full-Sib Population Derived From 2x × 3x Interploidy Cross of Populus. FRONTIERS IN PLANT SCIENCE 2022; 12:816946. [PMID: 35154214 PMCID: PMC8825477 DOI: 10.3389/fpls.2021.816946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Interploidy cross commonly results in complex chromosome number and structural variations. In our previous study, a progeny with segregated ploidy levels was produced by an interploidy cross between diploid female parent Populus tomentosa × Populus bolleana clone TB03 and triploid male parent Populus alba × Populus berolinensis 'Yinzhong'. However, the chromosome compositions of aneuploid genotypes in the progeny were still unclear. In the present study, a microsatellite DNA allele counting-peak ratios (MAC-PR) method was employed to analyze allelic configurations of each genotype to clarify their chromosome compositions, while 45S rDNA fluorescence in situ hybridization (FISH) analysis was used to reveal the mechanism of chromosome number variation. Based on the MAC-PR analysis of 47 polymorphic simple sequence repeat (SSR) markers distributed across all 19 chromosomes of Populus, both chromosomal number and structural variations were detected for the progeny. In the progeny, 26 hypo-triploids, 1 hyper-triploid, 16 hypo-tetraploids, 10 tetraploids, and 5 hyper-tetraploids were found. A total of 13 putative structural variation events (duplications and/or deletions) were detected in 12 genotypes, involved in chromosomes 3, 6, 7, 14, 15, 16, and 18. The 46.2% (six events) structural variation events occurred on chromosome 6, suggesting that there probably is a chromosome breakpoint near the SSR loci of chromosome 6. Based on calculation of the allelic information, the transmission of paternal heterozygosity in the hypo-triploids, hyper-triploid, hypo-tetraploids, tetraploids, and hyper-tetraploids were 0.748, 0.887, 0.830, 0.833, and 0.836, respectively, indicating that the viable pollen gains of the male parent 'Yinzhong' were able to transmit high heterozygosity to progeny. Furthermore, 45S rDNA-FISH analysis showed that specific-chromosome segregation feature during meiosis and chromosome appointment in normal and fused daughter nuclei of telophase II of 'Yinzhong,' which explained that the formation of aneuploids and tetraploids in the progeny could be attributed to imbalanced meiotic chromosomal segregation and division restitution of 'Yinzhong,' The data of chromosomal composition and structural variation of each aneuploid in the full-sib progeny of TB03 × 'Yinzhong' lays a foundation for analyzing mechanisms of trait variation relying on chromosome or gene dosages in Populus.
Collapse
Affiliation(s)
- Yu-Hang Zhong
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yun-Fei Zheng
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yin-Xuan Xue
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Lv-Ji Wang
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jin-Wang Zhang
- Forestry and Grassland Research Institute of Tongliao City, Tongliao, China
| | - Dai-Li Li
- Beijing Institute of Landscape Architecture, Beijing, China
| | - Jun Wang
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
20
|
Ma X, Zhang Z, Li G, Gou X, Bian Y, Zhao Y, Wang B, Lang M, Wang T, Xie K, Liu X, Liu B, Gong L. Spatial and Temporal Transcriptomic Heredity and Asymmetry in an Artificially Constructed Allotetraploid Wheat (AADD). FRONTIERS IN PLANT SCIENCE 2022; 13:887133. [PMID: 35651770 PMCID: PMC9150853 DOI: 10.3389/fpls.2022.887133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/08/2022] [Indexed: 05/15/2023]
Abstract
Polyploidy, or whole-genome duplication (WGD), often induces dramatic changes in gene expression due to "transcriptome shock. " However, questions remain about how allopolyploidy (the merging of multiple nuclear genomes in the same nucleus) affects gene expression within and across multiple tissues and developmental stages during the initial foundation of allopolyploid plants. Here, we systematically investigated the immediate effect of allopolyploidy on gene expression variation in an artificial allopolyploidy system consisting of a constructed allotetraploid wheat (AADD genome, accession AT2) and its diploid progenitors Triticum urartu and Aegilops tauschii. We performed comprehensive RNA sequencing of 81 samples from different genotypes, tissues, and developmental stages. First, we found that intrinsic interspecific differences between the diploid parents played a major role in establishing the expression architecture of the allopolyploid. Nonetheless, allopolyploidy per se also induced dramatic and asymmetric patterns of differential gene expression between the subgenomes, and genes from the D subgenome exhibited a more drastic response. Second, analysis of homoeolog expression bias (HEB) revealed that the D subgenome exhibited significant expression bias and that de novo-generated HEB was attributed mainly to asymmetrical differential gene expression. Homoeolog-specific expression (HSE) analyses showed that the cis-only regulatory pattern was predominant in AT2, reflecting significant divergence between the parents. Co-expression network analysis revealed that homoeolog expression connectivity (HEC) was significantly correlated with sequence divergence in cis elements between subgenomes. Interestingly, allopolyploidy-induced reconstruction of network modules was also associated with different HSE patterns. Finally, a transcriptome atlas of spike development demonstrated that the phenotypic similarity of AT2 to T. urartu may be attributed to the combination of relatively stable expression of A-subgenome genes and drastic downregulation of their D-subgenome homoeologs. These findings provide a broad, multidimensional characterization of allopolyploidy-induced transcriptomic responses and suggest that allopolyploidy can have immediate and complex regulatory effects on the expression of nuclear genes.
Collapse
Affiliation(s)
- Xintong Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiaowan Gou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yao Bian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- School of Life Sciences, Liaoning Normal University, Dalian, China
| | - Yue Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Man Lang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Kun Xie
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiaoming Liu
- Jia Sixie College of Agriculture, Weifang University of Science and Technology, Shouguang, China
- *Correspondence: Xiaoming Liu
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- Bao Liu
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- Lei Gong
| |
Collapse
|
21
|
Zhang S, Du P, Lu X, Fang J, Wang J, Chen X, Chen J, Wu H, Yang Y, Tsujimoto H, Chu C, Qi Z. Frequent numerical and structural chromosome changes in early generations of synthetic hexaploid wheat. Genome 2021; 65:205-217. [PMID: 34914567 DOI: 10.1139/gen-2021-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modern hexaploid wheat (Triticum aestivum L.; AABBDD) evolved from a hybrid of tetraploid wheat (closely related to Triticum turgidum L. ssp. durum (Desf.) Husn., AABB) and goatgrass (Aegilops tauschii Coss., DD). Variations in chromosome structure and ploidy played important roles in wheat evolution. How these variations occurred and their role in expanding the genetic diversity in modern wheat is mostly unknown. Synthetic hexaploid wheat (SHW) can be used to investigate chromosome variation that occurs during the early generations of existence. SHW lines derived by crossing durum wheat 'Langdon' with twelve Ae. tauschii accessions were analyzed using oligonucelotide probe multiplex fluorescence in situ hybridization (FISH) to metaphase chromosomes and SNP markers. Cluster analysis based on SNP markers categorized them into three groups. Among 702 plants from the S8 and S9 generations, 415 (59.12%) carried chromosome variations involving all 21 chromosomes but with different frequencies for each chromosome and sub-genome. Total chromosome variation frequencies varied between lines, but there was no significant difference among the three groups. The non-random chromosome variations in SHW lines detected in this research may be an indication that similar variations occurred in the early stages of wheat polyploidization and played important roles in wheat evolution.
Collapse
Affiliation(s)
- Siyu Zhang
- Nanjing Agricultural University, 70578, Nanjing, Jiangsu, China;
| | - Pei Du
- Henan Academy of Agricultural Sciences, 74728, Henan Academy of Crop Molecular Breeding, Zhengzhou, Henan, China;
| | - Xueying Lu
- Nanjing Agricultural University, 70578, Nanjing, Jiangsu, China;
| | - Jiaxin Fang
- Nanjing Agricultural University, 70578, Nanjing, Jiangsu, China;
| | - Jiaqi Wang
- Nanjing Agricultural University, 70578, Weigang No.1, Nanjing, Jiangsu, China, 210095;
| | - Xuejun Chen
- Nanjing Agricultural University, 70578, Nanjing, Jiangsu, China;
| | - Jianyong Chen
- Nanjing Agricultural University, 70578, Nanjing, Jiangsu, China;
| | - Hao Wu
- Nanjing Agricultural University, 70578, Nanjing, Jiangsu, China;
| | - Yang Yang
- Zaozhuang University, 372543, Zaozhuang, Shandong, China;
| | - Hisashi Tsujimoto
- Tottori University, 13114, Arid Land Research Center, Hamasaka, Tottori, Japan;
| | - Chenggen Chu
- USDA ARS, 17123, Fargo, North Dakota, United States;
| | - Zengjun Qi
- Nanjing Agricultural University, 70578, Weigang 1,Nanjing, Nanjing, China, 210095;
| |
Collapse
|
22
|
Katche E, Gaebelein R, Idris Z, Vasquez-Teuber P, Lo YT, Nugent D, Batley J, Mason AS. Stable, fertile lines produced by hybridization between allotetraploids Brassica juncea (AABB) and Brassica carinata (BBCC) have merged the A and C genomes. THE NEW PHYTOLOGIST 2021; 230:1242-1257. [PMID: 33476056 DOI: 10.1111/nph.17225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Many flowering plant taxa contain allopolyploids that share one or more genomes in common. In the Brassica genus, crop species Brassica juncea and Brassica carinata share the B genome, with 2n = AABB and 2n = BBCC genome complements, respectively. Hybridization results in 2n = BBAC hybrids, but the fate of these hybrids over generations of self-pollination has never been reported. We produced and characterized B. juncea × B. carinata (2n = BBAC) interspecific hybrids over six generations of self-pollination under selection for high fertility using a combination of genotyping, fertility phenotyping, and cytogenetics techniques. Meiotic pairing behaviour improved from 68% bivalents in the F1 to 98% in the S5 /S6 generations, and initially low hybrid fertility also increased to parent species levels. The S5 /S6 hybrids contained an intact B genome (16 chromosomes) plus a new, stable A/C genome (18-20 chromosomes) resulting from recombination and restructuring of A and C-genome chromosomes. Our results provide the first experimental evidence that two genomes can come together to form a new, restructured genome in hybridization events between two allotetraploid species that share a common genome. This mechanism should be considered in interpreting phylogenies in taxa with multiple allopolyploid species.
Collapse
Affiliation(s)
- Elvis Katche
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Roman Gaebelein
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Zurianti Idris
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Paula Vasquez-Teuber
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Plant Production, Faculty of Agronomy, University of Concepción, Av. Vicente Méndez 595, Chillán, Chile
| | - Yu-Tzu Lo
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David Nugent
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jacqueline Batley
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA, 6009, Australia
| | - Annaliese S Mason
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, Bonn, 53115, Germany
| |
Collapse
|
23
|
Liu S, Zhao J, Liu Y, Li N, Wang Z, Wang X, Liu X, Jiang L, Liu B, Fu X, Li X, Li L. High Chromosomal Stability and Immortalized Totipotency Characterize Long-Term Tissue Cultures of Chinese Ginseng ( Panax Ginseng). Genes (Basel) 2021; 12:genes12040514. [PMID: 33807422 PMCID: PMC8067114 DOI: 10.3390/genes12040514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 01/21/2023] Open
Abstract
Chinese ginseng (Panax ginseng C. A. Meyer) is a highly cherished traditional Chinese medicine, with several confirmed medical effects and many more asserted health-boosting functions. Somatic chromosomal instability (CIN) is a hallmark of many types of human cancers and also related to other pathogenic conditions such as miscarriages and intellectual disabilities, hence, the study of this phenomenon is of wide scientific and translational medical significance. CIN also ubiquitously occurs in cultured plant cells, and is implicated as a major cause of the rapid decline/loss of totipotency with culture duration, which represents a major hindrance to the application of transgenic technologies in crop improvement. Here, we report two salient features of long-term cultured callus cells of ginseng, i.e., high chromosomal stability and virtually immortalized totipotency. Specifically, we document that our callus of ginseng, which has been subcultured for 12 consecutive years, remained highly stable at the chromosomal level and showed little decline in totipotency. We show that these remarkable features of cultured ginseng cells are likely relevant to the robust homeostasis of the transcriptional expression of specific genes (i.e., genes related to tissue totipotency and chromosomal stability) implicated in the manifestation of these two complex phenotypes. To our knowledge, these two properties of ginseng have not been observed in any animals (with respect to somatic chromosomal stability) and other plants. We posit that further exploration of the molecular mechanisms underlying these unique properties of ginseng, especially somatic chromosomal stability in protracted culture duration, may provide novel clues to the mechanistic understanding of the occurrence of CIN in human disease.
Collapse
Affiliation(s)
- Sitong Liu
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Jing Zhao
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (J.Z.); (Y.L.); (N.L.); (X.L.); (L.J.); (B.L.)
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (J.Z.); (Y.L.); (N.L.); (X.L.); (L.J.); (B.L.)
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (J.Z.); (Y.L.); (N.L.); (X.L.); (L.J.); (B.L.)
| | - Zhenhui Wang
- Department of Agronomy, Jilin Agricultural University, Changchun 130118, China;
| | - Xinfeng Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China;
| | - Xiaodong Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (J.Z.); (Y.L.); (N.L.); (X.L.); (L.J.); (B.L.)
- Jilin Academy of Agricultural Science, Changchun 130118, China
| | - Lili Jiang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (J.Z.); (Y.L.); (N.L.); (X.L.); (L.J.); (B.L.)
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (J.Z.); (Y.L.); (N.L.); (X.L.); (L.J.); (B.L.)
| | - Xueqi Fu
- School of Life Sciences, Jilin University, Changchun 130012, China;
- Correspondence: (X.F.); (X.L.); (L.L.)
| | - Xiaomeng Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (J.Z.); (Y.L.); (N.L.); (X.L.); (L.J.); (B.L.)
- Correspondence: (X.F.); (X.L.); (L.L.)
| | - Linfeng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China;
- Correspondence: (X.F.); (X.L.); (L.L.)
| |
Collapse
|
24
|
Production of synthetic wheat lines to exploit the genetic diversity of emmer wheat and D genome containing Aegilops species in wheat breeding. Sci Rep 2020; 10:19698. [PMID: 33184344 PMCID: PMC7661528 DOI: 10.1038/s41598-020-76475-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Due to the accumulation of various useful traits over evolutionary time, emmer wheat (Triticum turgidum subsp. dicoccum and dicoccoides, 2n = 4x = 28; AABB), durum wheat (T. turgidum subsp. durum, 2n = 4x = 28; AABB), T. timopheevii (2n = 4x = 28; AAGG) and D genome containing Aegilops species offer excellent sources of novel variation for the improvement of bread wheat (T. aestivum L., AABBDD). Here, we made 192 different cross combinations between diverse genotypes of wheat and Aegilops species including emmer wheat × Ae. tauschii (2n = DD or DDDD), durum wheat × Ae. tauschii, T. timopheevii × Ae. tauschii, Ae. crassa × durum wheat, Ae. cylindrica × durum wheat and Ae. ventricosa × durum wheat in the field over three successive years. We successfully recovered 56 different synthetic hexaploid and octaploid F2 lines with AABBDD, AABBDDDD, AAGGDD, D1D1XcrXcrAABB, DcDcCcCcAABB and DvDvNvNvAABB genomes via in vitro rescue of F1 embryos and spontaneous production of F2 seeds on the Fl plants. Cytogenetic analysis of F2 lines showed that the produced synthetic wheat lines were generally promising stable amphiploids. Contribution of D genome bearing Aegilops and the less-investigated emmer wheat genotypes as parents in the crosses resulted in synthetic amphiploids which are a valuable resource for bread wheat breeding.
Collapse
|
25
|
Qiu T, Liu Z, Liu B. The effects of hybridization and genome doubling in plant evolution via allopolyploidy. Mol Biol Rep 2020; 47:5549-5558. [PMID: 32572735 DOI: 10.1007/s11033-020-05597-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
Polyploidy is a pervasive and recurring phenomenon across the tree of life, which occurred at variable time scales, ecological amplitudes and cell types, and is especially prominent in the evolutionary histories of plants. Importantly, many of the world's most important crops and noxious invasive weeds are recent polyploids. Polyploidy includes two major types, autopolyploidy, referring to doubling of a single species genome, and allopolyploidy referring to doubling of two or more merged genomes via biological hybridization of distinct but related species. The prevalence of both types of polyploidy implies that both genome doubling alone and doubling coupled with hybridization confer selective advantages over their diploid progenitors under specific circumstances. In cases of allopolyploidy, the two events, genome doubling and hybridization, have both advantages and disadvantages. Accumulated studies have established that, in allopolyploidy, some advantage(s) of doubling may compensate for the disadvantage(s) of hybridity and vice versa, although further study is required to validate generality of this trend. Some studies have also revealed a variety of non-Mendelian genetic and genomic consequences induced by doubling and hybridization separately or concertedly in nascent allopolyploidy; however, the significance of which to the immediate establishment and longer-term evolutionary success of allopolyploid species remain to be empirically demonstrated and ecologically investigated. This review aims to summarize recent advances in our understanding of the roles of hybridization and genome doubling, in separation and combination, in the evolution of allopolyploid genomes, as well as fruitful future research directions that are emerging from these studies.
Collapse
Affiliation(s)
- Tian Qiu
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China.,Key Laboratory of Molecular Epigenetics, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Zhiyuan Liu
- College of Computer Science and Technology, Changchun University, Changchun, 130022, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
26
|
Homoeologous exchanges occur through intragenic recombination generating novel transcripts and proteins in wheat and other polyploids. Proc Natl Acad Sci U S A 2020; 117:14561-14571. [PMID: 32518116 DOI: 10.1073/pnas.2003505117] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recombination between homeologous chromosomes, also known as homeologous exchange (HE), plays a significant role in shaping genome structure and gene expression in interspecific hybrids and allopolyploids of several plant species. However, the molecular mechanisms that govern HEs are not well understood. Here, we studied HE events in the progeny of a nascent allotetraploid (genome AADD) derived from two diploid progenitors of hexaploid bread wheat using cytological and whole-genome sequence analyses. In total, 37 HEs were identified and HE junctions were mapped precisely. HEs exhibit typical patterns of homologous recombination hotspots, being biased toward low-copy, subtelomeric regions of chromosome arms and showing association with known recombination hotspot motifs. But, strikingly, while homologous recombination preferentially takes place upstream and downstream of coding regions, HEs are highly enriched within gene bodies, giving rise to novel recombinant transcripts, which in turn are predicted to generate new protein fusion variants. To test whether this is a widespread phenomenon, a dataset of high-resolution HE junctions was analyzed for allopolyploid Brassica, rice, Arabidopsis suecica, banana, and peanut. Intragenic recombination and formation of chimeric genes was detected in HEs of all species and was prominent in most of them. HE thus provides a mechanism for evolutionary novelty in transcript and protein sequences in nascent allopolyploids.
Collapse
|
27
|
Zhang J, Yang F, Jiang Y, Guo Y, Wang Y, Zhu X, Li J, Wan H, Wang Q, Deng Z, Xuan P, Yang W. Preferential Subgenome Elimination and Chromosomal Structural Changes Occurring in Newly Formed Tetraploid Wheat- Aegilops ventricosa Amphiploid (AABBD vD vN vN v). Front Genet 2020; 11:330. [PMID: 32477398 PMCID: PMC7235383 DOI: 10.3389/fgene.2020.00330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/20/2020] [Indexed: 11/15/2022] Open
Abstract
Artificial allopolyploids derived from the genera Triticum and Aegilops have been used as genetic resources for wheat improvement and are a classic example of evolution via allopolyploidization. In this study, we investigated chromosomes and subgenome transmission behavior in the newly formed allopolyploid of wheat group via multicolor Fluorescence in situ hybridization (mc-FISH), using pSc119.2, pTa535, and (GAA)7 as probe combinations, to enabled us to precisely identify individual chromosomes in 381 S3 and S4 generations plants derived from reciprocal crosses between Ae. ventricosa (DvDvNvNv) and T. turgidum (AABB). A higher rate of aneuploidy, constituting 66.04–86.41% individuals, was observed in these two early generations. Of the four constituent subgenomes, Dv showed the highest frequency of elimination, followed by Nv and B, while A was the most stable. In addition, structural chromosomal changes occurred ubiquitously in the selfed progenies of allopolyploids. Among the constituent subgenomes, B showed the highest number of aberrations. In terms of chromosomal dynamics, there was no significant association between the chromosomal behavior model and the cytoplasm, with the exception of chromosomal loss in the Dv subgenome. The chromosome loss frequency in the Dv subgenome was significantly higher in the T. turgidum × Ae. ventricosa cross than in the Ae. ventricosa × T. turgidum cross. This result indicates that, although the D subgenome showed great instability, allopolyploids containing D subgenome could probably be maintained after a certain hybridization in which the D subgenome donor was used as the maternal parent at its onset stage. Our findings provide valuable information pertaining to the behavior patterns of subgenomes during allopolyploidization. Moreover, the allopolyploids developed here could be used as potential resources for the genetic improvement of wheat.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture), Chengdu, China
| | - Fan Yang
- Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yun Jiang
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yuanlin Guo
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Ying Wang
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - XinGuo Zhu
- Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jun Li
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture), Chengdu, China.,Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Hongshen Wan
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture), Chengdu, China.,Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qin Wang
- Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Ziyuan Deng
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Pu Xuan
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - WuYun Yang
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture), Chengdu, China.,Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
28
|
Zhao Q, Wang Y, Bi Y, Zhai Y, Yu X, Cheng C, Wang P, Li J, Lou Q, Chen J. Oligo-painting and GISH reveal meiotic chromosome biases and increased meiotic stability in synthetic allotetraploid Cucumis ×hytivus with dysploid parental karyotypes. BMC PLANT BIOLOGY 2019; 19:471. [PMID: 31694540 PMCID: PMC6833230 DOI: 10.1186/s12870-019-2060-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/27/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Meiosis of newly formed allopolyploids frequently encounter perturbations induced by the merging of divergent and hybridizable genomes. However, to date, the meiotic properties of allopolyploids with dysploid parental karyotypes have not been studied in detail. The allotetraploid Cucumis ×hytivus (HHCC, 2n = 38) was obtained from interspecific hybridization between C. sativus (CC, 2n = 14) and C. hystrix (HH, 2n = 24) followed by chromosome doubling. The results of this study thus offer an excellent opportunity to explore the meiotic properties of allopolyploids with dysploid parental karyotypes. RESULTS In this report, we describe the meiotic properties of five chromosomes (C5, C7, H1, H9 and H10) and two genomes in interspecific hybrids and C. ×hytivus (the 4th and 14th inbred family) through oligo-painting and genomic in situ hybridization (GISH). We show that 1) only two translocations carrying C5-oligo signals were detected on the chromosomes C2 and C4 of one 14th individual by the karyotyping of eight 4th and 36 14th plants based on C5- and C7-oligo painting, and possible cytological evidence was observed in meiosis of the 4th generation; 2) individual chromosome have biases for homoeologous pairing and univalent formation in F1 hybrids and allotetraploids; 3) extensive H-chromosome autosyndetic pairings (e.g., H-H, 25.5% PMCs) were observed in interspecific F1 hybrid, whereas no C-chromosome autosyndetic pairings were observed (e.g. C-C); 4) the meiotic properties of two subgenomes have significant biases in allotetraploids: H-subgenome exhibits higher univalent and chromosome lagging frequencies than C-subgenome; and 5) increased meiotic stability in the S14 generation compared with the S4 generation, including synchronous meiosis behavior, reduced incidents of univalent and chromosome lagging. CONCLUSIONS These results suggest that the meiotic behavior of two subgenomes has dramatic biases in response to interspecific hybridization and allopolyploidization, and the meiotic behavior harmony of subgenomes is a key subject of meiosis evolution in C. ×hytivus. This study helps to elucidate the meiotic properties and evolution of nascent allopolyploids with the dysploid parental karyotypes.
Collapse
Affiliation(s)
- Qinzheng Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Yunzhu Wang
- Institue of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China
| | - Yunfei Bi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Yufei Zhai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Panqiao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China.
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China.
| |
Collapse
|
29
|
Li N, Xu C, Zhang A, Lv R, Meng X, Lin X, Gong L, Wendel JF, Liu B. DNA methylation repatterning accompanying hybridization, whole genome doubling and homoeolog exchange in nascent segmental rice allotetraploids. THE NEW PHYTOLOGIST 2019; 223:979-992. [PMID: 30919978 DOI: 10.1111/nph.15820] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/21/2019] [Indexed: 05/18/2023]
Abstract
Allopolyploidization, which entails interspecific hybridization and whole genome duplication (WGD), is associated with emergent genetic and epigenetic instabilities that are thought to contribute to adaptation and evolution. One frequent genomic consequence of nascent allopolyploidization is homoeologous exchange (HE), which arises from compromised meiotic fidelity and generates genetically and phenotypically variable progenies. Here, we used a genetically tractable synthetic rice segmental allotetraploid system to interrogate genome-wide DNA methylation and gene expression responses and outcomes to the separate and combined effects of hybridization, WGD and HEs. Progenies of the tetraploid rice were genomically diverse due to genome-wide HEs that affected all chromosomes, yet they exhibited overall methylome stability. Nonetheless, regional variation of cytosine methylation states was widespread in the tetraploids. Transcriptome profiling revealed genome-wide alteration of gene expression, which at least in part associates with changes in DNA methylation. Intriguingly, changes of DNA methylation and gene expression could be decoupled from hybridity and sustained and amplified by HEs. Our results suggest that HEs, a prominent genetic consequence of nascent allopolyploidy, can exacerbate, diversify and perpetuate the effects of allopolyploidization on epigenetic and gene expression variation, and hence may contribute to allopolyploid evolution.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xinchao Meng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiuyun Lin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Ecology, Evolution & Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution & Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
30
|
Pont C, Wagner S, Kremer A, Orlando L, Plomion C, Salse J. Paleogenomics: reconstruction of plant evolutionary trajectories from modern and ancient DNA. Genome Biol 2019; 20:29. [PMID: 30744646 PMCID: PMC6369560 DOI: 10.1186/s13059-019-1627-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
How contemporary plant genomes originated and evolved is a fascinating question. One approach uses reference genomes from extant species to reconstruct the sequence and structure of their common ancestors over deep timescales. A second approach focuses on the direct identification of genomic changes at a shorter timescale by sequencing ancient DNA preserved in subfossil remains. Merged within the nascent field of paleogenomics, these complementary approaches provide insights into the evolutionary forces that shaped the organization and regulation of modern genomes and open novel perspectives in fostering genetic gain in breeding programs and establishing tools to predict future population changes in response to anthropogenic pressure and global warming.
Collapse
Affiliation(s)
- Caroline Pont
- INRA-UCA UMR 1095 Génétique Diversité et Ecophysiologie des Céréales, 63100, Clermont-Ferrand, France
| | - Stefanie Wagner
- Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, allées Jules Guesde, Bâtiment A, 31000, Toulouse, France.,INRA-Université Bordeaux UMR1202, Biodiversité Gènes et Communautés, 33610, Cestas, France
| | - Antoine Kremer
- INRA-Université Bordeaux UMR1202, Biodiversité Gènes et Communautés, 33610, Cestas, France
| | - Ludovic Orlando
- Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, allées Jules Guesde, Bâtiment A, 31000, Toulouse, France.,Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade, 1350K, Copenhagen, Denmark
| | - Christophe Plomion
- INRA-Université Bordeaux UMR1202, Biodiversité Gènes et Communautés, 33610, Cestas, France
| | - Jerome Salse
- INRA-UCA UMR 1095 Génétique Diversité et Ecophysiologie des Céréales, 63100, Clermont-Ferrand, France.
| |
Collapse
|
31
|
Bird KA, VanBuren R, Puzey JR, Edger PP. The causes and consequences of subgenome dominance in hybrids and recent polyploids. THE NEW PHYTOLOGIST 2018; 220:87-93. [PMID: 29882360 DOI: 10.1111/nph.15256] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/02/2018] [Indexed: 05/22/2023]
Abstract
Contents Summary 87 I. Introduction 87 II. Evolution in action: subgenome dominance within newly formed hybrids and polyploids 88 III. Summary and future directions 90 Acknowledgements 92 References 92 SUMMARY: The merger of divergent genomes, via hybridization or allopolyploidization, frequently results in a 'genomic shock' that induces a series of rapid genetic and epigenetic modifications as a result of conflicts between parental genomes. This conflict among the subgenomes routinely leads one subgenome to become dominant over the other subgenome(s), resulting in subgenome biases in gene content and expression. Recent advances in methods to analyze hybrid and polyploid genomes with comparisons to extant parental progenitors have allowed for major strides in understanding the mechanistic basis for subgenome dominance. In particular, our understanding of the role that homoeologous exchange might play in subgenome dominance and genome evolution is quickly growing. Here we describe recent discoveries uncovering the underlying mechanisms and provide a framework to predict subgenome dominance in hybrids and allopolyploids with far-reaching implications for agricultural, ecological, and evolutionary research.
Collapse
Affiliation(s)
- Kevin A Bird
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Joshua R Puzey
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|