1
|
Suganthan H, Le H, Elbassiouny A, Rajkumar A, Raveendran VA, Pressey JC, Woodin MA, Chang BSW, Buck LT. Increased GABA A receptor open probability: Adaptive mechanisms to cope with anoxia in the painted turtle. Neuroscience 2025; 579:10-23. [PMID: 40412545 DOI: 10.1016/j.neuroscience.2025.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/01/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
The western painted turtle is the most anoxia-tolerant tetrapod known, surviving ∼ 4 months at 3 °C without oxygen. In the mammalian brain, absence of oxygen leads to hyper-excitability and cell death within minutes. A major mechanism by which painted turtles survive anoxia is a large increase of γ-aminobutyric acid (GABA) in the brain leading to a dominating Cl- conductance that clamps membrane potential near the reversal potential of the GABAA receptor. Whole-cell GABAA receptor currents are known to increase with the onset of anoxia because of increased presynaptic GABA release, we hypothesized that GABAA receptor currents may also exhibit a large increase due to increased channel open time. To investigate this, we used cell-attached single-channel patch-clamp electrophysiological techniques to measure GABAA receptor open times (Popen) during a normoxic to anoxic transition in pyramidal neurons in turtle brain cortical sheets. GABAA receptor Popen significantly increased 13-fold with the onset of anoxia and was blocked by the inclusion of the protein kinase C (PKC) activator PMA phorbol-12-myristate-13-acetate. Indicating the receptor was regulated by covalent modification. To investigate the molecular evolutionary mechanisms underlying these adaptations, we used codon-based likelihood models to detect changes in selective pressure amongst the GABAA receptor subunit genes. We found positive selection in GABRB2 and GABRB3 at sites near their ligand binding interface, likely impacting channel kinetics associated with hypoxia-tolerance. The elucidation of the adaptations associated with increased hypoxia tolerance furthers our understanding of physiological adaptations to extreme low-oxygen environments.
Collapse
Affiliation(s)
- Haushe Suganthan
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| | - Han Le
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Ahmed Elbassiouny
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Anthony Rajkumar
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Vineeth A Raveendran
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Jessica C Pressey
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Belinda S W Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Leslie T Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
2
|
Boyette JL, Bell RC, Fujita MK, Thomas KN, Streicher JW, Gower DJ, Schott RK. Diversity and Molecular Evolution of Nonvisual Opsin Genes across Environmental, Developmental, and Morphological Adaptations in Frogs. Mol Biol Evol 2024; 41:msae090. [PMID: 38736374 PMCID: PMC11181710 DOI: 10.1093/molbev/msae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024] Open
Abstract
Nonvisual opsins are transmembrane proteins expressed in the eyes and other tissues of many animals. When paired with a light-sensitive chromophore, nonvisual opsins form photopigments involved in various nonvisual, light-detection functions including circadian rhythm regulation, light-seeking behaviors, and seasonal responses. Here, we investigate the molecular evolution of nonvisual opsin genes in anuran amphibians (frogs and toads). We test several evolutionary hypotheses including the predicted loss of nonvisual opsins due to nocturnal ancestry and potential functional differences in nonvisual opsins resulting from environmental light variation across diverse anuran ecologies. Using whole-eye transcriptomes of 81 species, combined with genomes, multitissue transcriptomes, and independently annotated genes from an additional 21 species, we identify which nonvisual opsins are present in anuran genomes and those that are also expressed in the eyes, compare selective constraint among genes, and test for potential adaptive evolution by comparing selection between discrete ecological classes. At the genomic level, we recovered all 18 ancestral vertebrate nonvisual opsins, indicating that anurans demonstrate the lowest documented amount of opsin gene loss among ancestrally nocturnal tetrapods. We consistently found expression of 14 nonvisual opsins in anuran eyes and detected positive selection in a subset of these genes. We also found shifts in selective constraint acting on nonvisual opsins in frogs with differing activity periods, habitats, distributions, life histories, and pupil shapes, which may reflect functional adaptation. Although many nonvisual opsins remain poorly understood, these findings provide insight into the diversity and evolution of these genes across anurans, filling an important gap in our understanding of vertebrate opsins and setting the stage for future research on their functional evolution across taxa.
Collapse
Affiliation(s)
- John L Boyette
- Department of Biological Sciences, The Pennsylvania State University, State College, PA, USA
- Department of Biology, Berry College, Rome, GA, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - Matthew K Fujita
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | - Kate N Thomas
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
- Natural History Museum, London, UK
| | | | | | - Ryan K Schott
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, USA
- Department of Biology & Centre for Vision Research, York University, Toronto, ON, Canada
| |
Collapse
|
3
|
Schott RK, Fujita MK, Streicher JW, Gower DJ, Thomas KN, Loew ER, Bamba Kaya AG, Bittencourt-Silva GB, Guillherme Becker C, Cisneros-Heredia D, Clulow S, Davila M, Firneno TJ, Haddad CFB, Janssenswillen S, Labisko J, Maddock ST, Mahony M, Martins RA, Michaels CJ, Mitchell NJ, Portik DM, Prates I, Roelants K, Roelke C, Tobi E, Woolfolk M, Bell RC. Diversity and Evolution of Frog Visual Opsins: Spectral Tuning and Adaptation to Distinct Light Environments. Mol Biol Evol 2024; 41:msae049. [PMID: 38573520 PMCID: PMC10994157 DOI: 10.1093/molbev/msae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Visual systems adapt to different light environments through several avenues including optical changes to the eye and neurological changes in how light signals are processed and interpreted. Spectral sensitivity can evolve via changes to visual pigments housed in the retinal photoreceptors through gene duplication and loss, differential and coexpression, and sequence evolution. Frogs provide an excellent, yet understudied, system for visual evolution research due to their diversity of ecologies (including biphasic aquatic-terrestrial life cycles) that we hypothesize imposed different selective pressures leading to adaptive evolution of the visual system, notably the opsins that encode the protein component of the visual pigments responsible for the first step in visual perception. Here, we analyze the diversity and evolution of visual opsin genes from 93 new eye transcriptomes plus published data for a combined dataset spanning 122 frog species and 34 families. We find that most species express the four visual opsins previously identified in frogs but show evidence for gene loss in two lineages. Further, we present evidence of positive selection in three opsins and shifts in selective pressures associated with differences in habitat and life history, but not activity pattern. We identify substantial novel variation in the visual opsins and, using microspectrophotometry, find highly variable spectral sensitivities, expanding known ranges for all frog visual pigments. Mutations at spectral-tuning sites only partially account for this variation, suggesting that frogs have used tuning pathways that are unique among vertebrates. These results support the hypothesis of adaptive evolution in photoreceptor physiology across the frog tree of life in response to varying environmental and ecological factors and further our growing understanding of vertebrate visual evolution.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Biology and Centre for Vision Research, York University, Toronto, Ontario, Canada
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Matthew K Fujita
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | | | | | - Kate N Thomas
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
- Natural History Museum, London, UK
| | - Ellis R Loew
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | | | | | - C Guillherme Becker
- Department of Biology and One Health Microbiome Center, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Diego Cisneros-Heredia
- Laboratorio de Zoología Terrestre, Instituto de Biodiversidad Tropical IBIOTROP, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Simon Clulow
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - Mateo Davila
- Laboratorio de Zoología Terrestre, Instituto de Biodiversidad Tropical IBIOTROP, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Thomas J Firneno
- Department of Biological Sciences, University of Denver, Denver, USA
| | - Célio F B Haddad
- Department of Biodiversity and Center of Aquaculture—CAUNESP, I.B., São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Sunita Janssenswillen
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jim Labisko
- Natural History Museum, London, UK
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Mahé, Seychelles
| | - Simon T Maddock
- Natural History Museum, London, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Mahé, Seychelles
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Michael Mahony
- Department of Biological Sciences, The University of Newcastle, Newcastle 2308, Australia
| | - Renato A Martins
- Programa de Pós-graduação em Conservação da Fauna, Universidade Federal de São Carlos, São Carlos, Brazil
| | | | - Nicola J Mitchell
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Daniel M Portik
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - Ivan Prates
- Department of Biology, Lund University, Lund, Sweden
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Corey Roelke
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | - Elie Tobi
- Gabon Biodiversity Program, Center for Conservation and Sustainability, Smithsonian National Zoo and Conservation Biology Institute, Gamba, Gabon
| | - Maya Woolfolk
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| |
Collapse
|
4
|
Wang Y, Yue Y, Li C, Chen Z, Cai Y, Hu C, Qu Y, Li H, Zhou K, Yan J, Li P. Insights into the adaptive evolution of chromosome and essential traits through chromosome-level genome assembly of Gekko japonicus. iScience 2024; 27:108445. [PMID: 38205241 PMCID: PMC10776941 DOI: 10.1016/j.isci.2023.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/05/2023] [Accepted: 11/09/2023] [Indexed: 01/12/2024] Open
Abstract
Gekko japonicus possesses flexible climbing and detoxification abilities under insectivorous habits. Still, the evolutionary mechanisms behind these traits remain unclarified. This study presents a chromosome-level G. japonicus genome, revealing that its evolutionary breakpoint regions were enriched with specific repetitive elements and defense response genes. Gene families unique to G. japonicus and positively selected genes are mainly enriched in immune, sensory, and nervous pathways. Expansion of bitter taste receptor type 2 primarily in insectivorous species could be associated with toxin clearance. Detox cytochrome P450 in G. japonicus has undergone more birth and death processes than biosynthesis-type P450 genes. Proline, cysteine, glycine, and serine in corneous beta proteins of G. japonicus might influence flexibility and setae adhesiveness. Certain thermosensitive transient receptor potential channels under relaxed purifying selection or positive selection in G. japonicus might enhance adaptation to climate change. This genome assembly offers insights into the adaptive evolution of gekkotans.
Collapse
Affiliation(s)
- Yinwei Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Youxia Yue
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Chao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Zhiyi Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Yao Cai
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, P.R. China
| | - Chaochao Hu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
- Analytical and Testing Center, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Yanfu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Kaiya Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Jie Yan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
5
|
Castiglione GM, Chiu YLI, Gutierrez EDA, Van Nynatten A, Hauser FE, Preston M, Bhattacharyya N, Schott RK, Chang BSW. Convergent evolution of dim light vision in owls and deep-diving whales. Curr Biol 2023; 33:4733-4740.e4. [PMID: 37776863 DOI: 10.1016/j.cub.2023.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023]
Abstract
Animals with enhanced dim-light sensitivity are at higher risk of light-induced retinal degeneration when exposed to bright light conditions.1,2,3,4 This trade-off is mediated by the rod photoreceptor sensory protein, rhodopsin (RHO), and its toxic vitamin A chromophore by-product, all-trans retinal.5,6,7,8 Rod arrestin (Arr-1) binds to RHO and promotes sequestration of excess all-trans retinal,9,10 which has recently been suggested as a protective mechanism against photoreceptor cell death.2,11 We investigated Arr-1 evolution in animals at high risk of retinal damage due to periodic bright-light exposure of rod-dominated retinas. Here, we find the convergent evolution of enhanced Arr-1/RHO all-trans-retinal sequestration in owls and deep-diving whales. Statistical analyses reveal a parallel acceleration of Arr-1 evolutionary rates in these lineages, which is associated with the introduction of a rare Arr-1 mutation (Q69R) into the RHO-Arr-1 binding interface. Using in vitro assays, we find that this single mutation significantly enhances RHO-all-trans-retinal sequestration by ∼30%. This functional convergence across 300 million years of evolutionary divergence suggests that Arr-1 and RHO may play an underappreciated role in the photoprotection of the eye, with potentially vast clinical significance.
Collapse
Affiliation(s)
- Gianni M Castiglione
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Ophthalmology & Visual Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; Evolutionary Studies, Vanderbilt University, Nashville, TN 37235, USA.
| | - Yan L I Chiu
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Eduardo de A Gutierrez
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Alexander Van Nynatten
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Frances E Hauser
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Matthew Preston
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Nihar Bhattacharyya
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Institute of Ophthalmology, University College London, London EC1V 2PD, UK
| | - Ryan K Schott
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; Department of Biology and Centre for Vision Research, York University, Toronto, ON M3J 1P3, Canada; Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Belinda S W Chang
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
6
|
Richardson R, Feigin CY, Bano-Otalora B, Johnson MR, Allen AE, Park J, McDowell RJ, Mereby SA, Lin IH, Lucas RJ, Mallarino R. The genomic basis of temporal niche evolution in a diurnal rodent. Curr Biol 2023; 33:3289-3298.e6. [PMID: 37480852 PMCID: PMC10529858 DOI: 10.1016/j.cub.2023.06.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/05/2023] [Accepted: 06/26/2023] [Indexed: 07/24/2023]
Abstract
Patterns of diel activity-how animals allocate their activity throughout the 24-h daily cycle-play key roles in shaping the internal physiology of an animal and its relationship with the external environment.1,2,3,4,5 Although shifts in diel activity patterns have occurred numerous times over the course of vertebrate evolution,6 the genomic correlates of such transitions remain unknown. Here, we use the African striped mouse (Rhabdomys pumilio), a species that transitioned from the ancestrally nocturnal diel niche of its close relatives to a diurnal one,7,8,9,10,11 to define patterns of naturally occurring molecular variation in diel niche traits. First, to facilitate genomic analyses, we generate a chromosome-level genome assembly of the striped mouse. Next, using transcriptomics, we show that the switch to daytime activity in this species is associated with a realignment of daily rhythms in peripheral tissues with respect to the light:dark cycle and the central circadian clock. To uncover selection pressures associated with this temporal niche shift, we perform comparative genomic analyses with closely related rodent species and find evidence of relaxation of purifying selection on striped mouse genes in the rod phototransduction pathway. In agreement with this, electroretinogram measurements demonstrate that striped mice have functional differences in dim-light visual responses compared with nocturnal rodents. Taken together, our results show that striped mice have undergone a drastic change in circadian organization and provide evidence that the visual system has been a major target of selection as this species transitioned to a novel temporal niche.
Collapse
Affiliation(s)
- Rose Richardson
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Neuroscience, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Charles Y Feigin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA; School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Beatriz Bano-Otalora
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Neuroscience, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Diabetes, Endocrinology, & Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Matthew R Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Annette E Allen
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Neuroscience, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jongbeom Park
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Richard J McDowell
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Neuroscience, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Sarah A Mereby
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - I-Hsuan Lin
- Bioinformatics Core Facility, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Robert J Lucas
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Neuroscience, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA.
| |
Collapse
|
7
|
Schott RK, Perez L, Kwiatkowski MA, Imhoff V, Gumm JM. Evolutionary analyses of visual opsin genes in frogs and toads: Diversity, duplication, and positive selection. Ecol Evol 2022; 12:e8595. [PMID: 35154658 PMCID: PMC8820127 DOI: 10.1002/ece3.8595] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 01/12/2023] Open
Abstract
Among major vertebrate groups, anurans (frogs and toads) are understudied with regard to their visual systems, and little is known about variation among species that differ in ecology. We sampled North American anurans representing diverse evolutionary and life histories that likely possess visual systems adapted to meet different ecological needs. Using standard molecular techniques, visual opsin genes, which encode the protein component of visual pigments, were obtained from anuran retinas. Additionally, we extracted the visual opsins from publicly available genome and transcriptome assemblies, further increasing the phylogenetic and ecological diversity of our dataset to 33 species in total. We found that anurans consistently express four visual opsin genes (RH1, LWS, SWS1, and SWS2, but not RH2) even though reported photoreceptor complements vary widely among species. The proteins encoded by these genes showed considerable sequence variation among species, including at sites known to shift the spectral sensitivity of visual pigments in other vertebrates and had conserved substitutions that may be related to dim-light adaptation. Using molecular evolutionary analyses of selection (dN/dS) we found significant evidence for positive selection at a subset of sites in the dim-light rod opsin gene RH1 and the long wavelength sensitive cone opsin LWS. The function of sites inferred to be under positive selection are largely unknown, but a few are likely to affect spectral sensitivity and other visual pigment functions based on proximity to previously identified sites in other vertebrates. We also found the first evidence of visual opsin duplication in an amphibian with the duplication of the LWS gene in the African bullfrog, which had distinct LWS copies on the sex chromosomes suggesting the possibility of sex-specific visual adaptation. Taken together, our results indicate that ecological factors, such as habitat and life history, as well as behavior, may be driving changes to anuran visual systems.
Collapse
Affiliation(s)
- Ryan K. Schott
- Department of BiologyYork UniversityTorontoOntarioCanada
- Department of Vertebrate ZoologyNational Museum of Natural HistorySmithsonian InstitutionWashingtonDistrict of ColumbiaUSA
| | - Leah Perez
- Department of BiologyStephen F. Austin State UniversityNacogdochesTexasUSA
| | | | - Vance Imhoff
- Southern Nevada Fish and Wildlife OfficeUS Fish and Wildlife ServiceLas VegasNevadaUSA
| | - Jennifer M. Gumm
- Department of BiologyStephen F. Austin State UniversityNacogdochesTexasUSA
- Ash Meadows Fish Conservation FacilityUS Fish and Wildlife ServiceAmargosa ValleyNevadaUSA
| |
Collapse
|
8
|
Gower DJ, Fleming JF, Pisani D, Vonk FJ, Kerkkamp HMI, Peichl L, Meimann S, Casewell NR, Henkel CV, Richardson MK, Sanders KL, Simões BF. Eye-Transcriptome and Genome-Wide Sequencing for Scolecophidia: Implications for Inferring the Visual System of the Ancestral Snake. Genome Biol Evol 2021; 13:6430116. [PMID: 34791190 PMCID: PMC8643396 DOI: 10.1093/gbe/evab253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 12/28/2022] Open
Abstract
Molecular genetic data have recently been incorporated in attempts to reconstruct the ecology of the ancestral snake, though this has been limited by a paucity of data for one of the two main extant snake taxa, the highly fossorial Scolecophidia. Here we present and analyze vision genes from the first eye-transcriptomic and genome-wide data for Scolecophidia, for Anilios bicolor, and A. bituberculatus, respectively. We also present immunohistochemistry data for retinal anatomy and visual opsin-gene expression in Anilios. Analyzed in the context of 19 lepidosaurian genomes and 12 eye transcriptomes, the new genome-wide and transcriptomic data provide evidence for a much more reduced visual system in Anilios than in non-scolecophidian (=alethinophidian) snakes and in lizards. In Anilios, there is no evidence of the presence of 7 of the 12 genes associated with alethinophidian photopic (cone) phototransduction. This indicates extensive gene loss and many of these candidate gene losses occur also in highly fossorial mammals with reduced vision. Although recent phylogenetic studies have found evidence for scolecophidian paraphyly, the loss in Anilios of visual genes that are present in alethinophidians implies that the ancestral snake had a better-developed visual system than is known for any extant scolecophidian.
Collapse
Affiliation(s)
- David J Gower
- Life Sciences, The Natural History Museum, London, United Kingdom
| | - James F Fleming
- School of Life Sciences, University of Bristol, Bristol, United Kingdom.,Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Davide Pisani
- School of Life Sciences, University of Bristol, Bristol, United Kingdom.,School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Freek J Vonk
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | | | - Leo Peichl
- Institute of Cellular and Molecular Anatomy, Dr. Senckenberg Anatomy, Goethe University Frankfurt, Frankfurt am Main, Germany.,Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sonja Meimann
- Institute of Cellular and Molecular Anatomy, Dr. Senckenberg Anatomy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Christiaan V Henkel
- Institute of Biology, University of Leiden, Leiden, The Netherlands.,Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Kate L Sanders
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Bruno F Simões
- School of Life Sciences, University of Bristol, Bristol, United Kingdom.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
9
|
Inside the head of snakes: influence of size, phylogeny, and sensory ecology on endocranium morphology. Brain Struct Funct 2021; 226:2401-2415. [PMID: 34287703 DOI: 10.1007/s00429-021-02340-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Environmental properties, and the behavioral habits of species impact sensory cues available for foraging, predator avoidance and inter/intraspecific communication. Consequently, relationships have been discovered between the sensory ecology and brain morphology in many groups of vertebrates. However, these types of studies have remained scare on snake. Here, we investigate the link between endocranial shape and the sensory-related ecology of snakes by comparing 36 species of snakes for which we gathered six sensory-ecology characteristics. We use µCT scanning and 3D geometric morphometrics to compare their endocranium in a phylogenetically informed context. Our results demonstrate that size is a major driver of endocranial shape, with smaller species tending to maximize endocranial volume using a more bulbous shape, while larger species share an elongate endocranial morphology. Phylogeny plays a secondary role with more derived snakes diverging the most in endocranial shape, compared to other species. The activity period influences the shape of the olfactory and optic tract, while the foraging habitat impacts the shape of the cerebellum and cranial nerve regions: structures involved in orientation, equilibrium, and sensory information. However, we found that endocranial morphology alone is not sufficient to predict the activity period of a species without prior knowledge of its phylogenetic relationship. Our results thus demonstrate the value of utilizing endocranial shape as complementary information to size and volume in neurobiological studies.
Collapse
|
10
|
Van Nynatten A, Castiglione GM, de A Gutierrez E, Lovejoy NR, Chang BSW. Recreated Ancestral Opsin Associated with Marine to Freshwater Croaker Invasion Reveals Kinetic and Spectral Adaptation. Mol Biol Evol 2021; 38:2076-2087. [PMID: 33481002 PMCID: PMC8097279 DOI: 10.1093/molbev/msab008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rhodopsin, the light-sensitive visual pigment expressed in rod photoreceptors, is specialized for vision in dim-light environments. Aquatic environments are particularly challenging for vision due to the spectrally dependent attenuation of light, which can differ greatly in marine and freshwater systems. Among fish lineages that have successfully colonized freshwater habitats from ancestrally marine environments, croakers are known as highly visual benthic predators. In this study, we isolate rhodopsins from a diversity of freshwater and marine croakers and find that strong positive selection in rhodopsin is associated with a marine to freshwater transition in South American croakers. In order to determine if this is accompanied by significant shifts in visual abilities, we resurrected ancestral rhodopsin sequences and tested the experimental properties of ancestral pigments bracketing this transition using in vitro spectroscopic assays. We found the ancestral freshwater croaker rhodopsin is redshifted relative to its marine ancestor, with mutations that recapitulate ancestral amino acid changes along this transitional branch resulting in faster kinetics that are likely to be associated with more rapid dark adaptation. This could be advantageous in freshwater due to the redshifted spectrum and relatively narrow interface and frequent transitions between bright and dim-light environments. This study is the first to experimentally demonstrate that positively selected substitutions in ancestral visual pigments alter protein function to freshwater visual environments following a transition from an ancestrally marine state and provides insight into the molecular mechanisms underlying some of the physiological changes associated with this major habitat transition.
Collapse
Affiliation(s)
- Alexander Van Nynatten
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.,Department of Biological Sciences, University of Toronto Scarborough, Scarborough, ON, Canada
| | - Gianni M Castiglione
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Eduardo de A Gutierrez
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Nathan R Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.,Department of Biological Sciences, University of Toronto Scarborough, Scarborough, ON, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Belinda S W Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Camp CD, Wooten JA, Pepper MK, Austin RM, Whitfield Gibbons J. Eye size in North American watersnakes (genus Nerodia) correlates with variation in feeding ecology. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Visual acuity and sensitivity positively correlate to eye size in vertebrates, and eye size relates to the ecology of colubrid snakes. We investigated whether eye morphology of North American colubrids of the genus Nerodia correlates with ecology as well. Although all members of the genus utilize aquatic habits, they differ widely in the proportion of anurans they eat. We specifically tested whether eye size and placement is associated with the proportion of frogs in the diet to determine whether these two aspects of eye morphology relate to feeding ecology. Using phylogenetic comparative methods, we found a significantly positive association between eye size and the proportion of anurans eaten by Nerodia species. Although the evidence is equivocal, the anterior placement of relatively small eyes in one species may also enhance anurophagy. Although eye size may improve a snake’s ability to feed on frogs, eye size must compete with other selective forces on head shape in trade-offs that may also influence eye size.
Collapse
Affiliation(s)
- Carlos D Camp
- Department of Biology, Piedmont College, Demorest, GA, USA
| | | | | | | | - J Whitfield Gibbons
- University of Georgia’s Savannah River Ecology Laboratory, Drawer E, Aiken, SC, USA
| |
Collapse
|
12
|
Baldwin MW, Ko MC. Functional evolution of vertebrate sensory receptors. Horm Behav 2020; 124:104771. [PMID: 32437717 DOI: 10.1016/j.yhbeh.2020.104771] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Sensory receptors enable animals to perceive their external world, and functional properties of receptors evolve to detect the specific cues relevant for an organism's survival. Changes in sensory receptor function or tuning can directly impact an organism's behavior. Functional tests of receptors from multiple species and the generation of chimeric receptors between orthologs with different properties allow for the dissection of the molecular basis of receptor function and identification of the key residues that impart functional changes in different species. Knowledge of these functionally important sites facilitates investigation into questions regarding the role of epistasis and the extent of convergence, as well as the timing of sensory shifts relative to other phenotypic changes. However, as receptors can also play roles in non-sensory tissues, and receptor responses can be modulated by numerous other factors including varying expression levels, alternative splicing, and morphological features of the sensory cell, behavioral validation can be instrumental in confirming that responses observed in heterologous systems play a sensory role. Expression profiling of sensory cells and comparative genomics approaches can shed light on cell-type specific modifications and identify other proteins that may affect receptor function and can provide insight into the correlated evolution of complex suites of traits. Here we review the evolutionary history and diversity of functional responses of the major classes of sensory receptors in vertebrates, including opsins, chemosensory receptors, and ion channels involved in temperature-sensing, mechanosensation and electroreception.
Collapse
Affiliation(s)
| | - Meng-Ching Ko
- Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
13
|
Hauzman E. Adaptations and evolutionary trajectories of the snake rod and cone photoreceptors. Semin Cell Dev Biol 2020; 106:86-93. [PMID: 32359892 DOI: 10.1016/j.semcdb.2020.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
Most vertebrates have duplex retinas, with two classes of photoreceptors, rods and cones. In the group of Snakes, however, distinct patterns of retinal morphology are associated with transitions between diurnal-nocturnal habits and reflect important adaptations of their visual system. Pure-cone, pure-rod and duplex retinas were described in different species, and this variability led Gordon Walls (1934) to formulate the transmutation theory, which suggests that rods and cones are not fixed entities, but can assume transitional states. Three opsin genes are expressed in retinas of most snake species, lws, rh1, and sws1, and recent studies have shown that the rhodopsin gene, rh1, is expressed in pure-cone retinas of diurnal snakes. This expression raised many questions about the nature of transmutation and functional aspects of the rhodopsin in a cone-like photoreceptor. Extreme differences in the retinal architecture of diurnal and nocturnal snakes also highlight the complexity of adaptations of their visual structures, which might have contributed to the adaptive radiation of this group and will be discussed in this review.
Collapse
Affiliation(s)
- Einat Hauzman
- Department of Experimental Psychology, Psychology Institute, University of São Paulo, Av. Professor Mello Moraes, 1721, Bloco A - D9. Butantã, São Paulo, CEP. 05508-030, Brazil.
| |
Collapse
|
14
|
Kolesnikov AV, Chrispell JD, Osawa S, Kefalov VJ, Weiss ER. Phosphorylation at Serine 21 in G protein-coupled receptor kinase 1 (GRK1) is required for normal kinetics of dark adaption in rod but not cone photoreceptors. FASEB J 2020; 34:2677-2690. [PMID: 31908030 PMCID: PMC7043924 DOI: 10.1096/fj.201902535r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022]
Abstract
Timely recovery of the light response in photoreceptors requires efficient inactivation of photoactivated rhodopsin. This process is initiated by phosphorylation of its carboxyl terminus by G protein-coupled receptor kinase 1 (GRK1). Previously, we showed that GRK1 is phosphorylated in the dark at Ser21 in a cAMP-dependent manner and dephosphorylated in the light. Results in vitro indicate that dephosphorylation of Ser21 increases GRK1 activity, leading to increased phosphorylation of rhodopsin. This creates the possibility of light-dependent regulation of GRK1 activity and its efficiency in inactivating the visual pigment. To address the functional role of GRK1 phosphorylation in rods and cones in vivo, we generated mutant mice in which Ser21 is substituted with alanine (GRK1-S21A), preventing dark-dependent phosphorylation of GRK1. GRK1-S21A mice had normal retinal morphology, without evidence of degeneration. The function of dark-adapted GRK1-S21A rods and cones was also unaffected, as demonstrated by the normal amplitude and kinetics of their responses obtained by ex vivo and in vivo ERG recordings. In contrast, rod dark adaptation following exposure to bright bleaching light was significantly delayed in GRK1-S21A mice, suggesting that the higher activity of this kinase results in enhanced rhodopsin phosphorylation and therefore delays its regeneration. In contrast, dark adaptation of cones was unaffected by the S21A mutation. Taken together, these data suggest that rhodopsin phosphorylation/dephosphorylation modulates the recovery of rhodopsin to the ground state and rod dark adaptation. They also reveal a novel role for cAMP-dependent phosphorylation of GRK1 in regulating the dark adaptation of rod but not cone photoreceptors.
Collapse
Affiliation(s)
- Alexander V. Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jared D. Chrispell
- Department of Cell Biology and Physiology, The University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Shoji Osawa
- Department of Cell Biology and Physiology, The University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Vladimir J. Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ellen R. Weiss
- Department of Cell Biology and Physiology, The University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| |
Collapse
|
15
|
Pinto BJ, Nielsen SV, Gamble T. Transcriptomic data support a nocturnal bottleneck in the ancestor of gecko lizards. Mol Phylogenet Evol 2019; 141:106639. [PMID: 31586687 DOI: 10.1016/j.ympev.2019.106639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 11/17/2022]
Abstract
Gecko lizards are a species-rich clade of primarily-nocturnal squamate reptiles. In geckos, adaptations to nocturnality have dramatically reshaped the eye. Perhaps the most notable change is the loss of rod cells in the retina and subsequent "transmutation" of cones into a rod-like morphology and physiology. While many studies have noted the absence of some rod-specific genes, such as the visual pigment Rhodopsin (RH1), these studies have focused on just a handful of species that are nested deep in the gecko phylogeny. Thus, it is not clear whether these changes arose through convergence, are homologous and ubiquitous across geckos, or restricted to a subset of species. Here, we used de novo eye transcriptomes from five gecko species, and genomes from two additional gecko species, representing the breadth of extant gecko diversity (i.e. 4 of the 7 gecko families, spanning the deepest divergence of crown Gekkota), to show that geckos lost expression of almost the entire suite of necessary rod-cell phototransduction genes in the eye, distinct from all other squamate reptiles. Geckos are the first vertebrate group to have lost their complete rod-cell expression pathway, not just the visual pigment. In addition, all sampled species have also lost expression of the cone-opsin SWS2 visual pigment. These results strongly suggest a single loss of rod cells and subsequent cone-to-rod transmutation that occurred prior to the diversification of extant geckos.
Collapse
Affiliation(s)
- Brendan J Pinto
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA; Milwaukee Public Museum, Milwaukee, WI, USA.
| | - Stuart V Nielsen
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA; Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA; Milwaukee Public Museum, Milwaukee, WI, USA; Bell Museum of Natural History, University of Minnesota, Saint Paul, MN, USA.
| |
Collapse
|
16
|
Katti C, Stacey-Solis M, Coronel-Rojas NA, Davies WIL. The Diversity and Adaptive Evolution of Visual Photopigments in Reptiles. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
17
|
Schott RK, Bhattacharyya N, Chang BS. Evolutionary signatures of photoreceptor transmutation in geckos reveal potential adaptation and convergence with snakes. Evolution 2019; 73:1958-1971. [DOI: 10.1111/evo.13810] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ryan K. Schott
- Department of Ecology and Evolutionary BiologyUniversity of Toronto Toronto Ontario M5S 3G5 Canada
- Current Address: Department of Vertebrate Zoology, National Museum of Natural HistorySmithsonian Institution 10th and Constitution Ave NW Washington DC 20560‐0162
| | - Nihar Bhattacharyya
- Department of Cell and Systems BiologyUniversity of Toronto Toronto Ontario M5S 3G5 Canada
- Current Address: UCL Institute of Ophthalmology 11–43 Bath Street London EC1V 9EL United Kingdom
| | - Belinda S.W. Chang
- Department of Ecology and Evolutionary BiologyUniversity of Toronto Toronto Ontario M5S 3G5 Canada
- Department of Cell and Systems BiologyUniversity of Toronto Toronto Ontario M5S 3G5 Canada
- Centre for the Analysis of Genome Evolution and FunctionUniversity of Toronto Toronto Ontario M5S 3B2 Canada
| |
Collapse
|
18
|
Hauzman E, Kalava V, Bonci DMO, Ventura DF. Characterization of the melanopsin gene (Opn4x) of diurnal and nocturnal snakes. BMC Evol Biol 2019; 19:174. [PMID: 31462236 PMCID: PMC6714106 DOI: 10.1186/s12862-019-1500-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A number of non-visual responses to light in vertebrates, such as circadian rhythm control and pupillary light reflex, are mediated by melanopsins, G-protein coupled membrane receptors, conjugated to a retinal chromophore. In non-mammalian vertebrates, melanopsin expression is variable within the retina and extra-ocular tissues. Two paralog melanopsin genes were classified in vertebrates, Opn4x and Opn4m. Snakes are highly diversified vertebrates with a wide range of daily activity patterns, which raises questions about differences in structure, function and expression pattern of their melanopsin genes. In this study, we analyzed the melanopsin genes expressed in the retinas of 18 snake species from three families (Viperidae, Elapidae, and Colubridae), and also investigated extra-retinal tissue expression. RESULTS Phylogenetic analysis revealed that the amplified gene belongs to the Opn4x group, and no expression of the Opn4m was found. The same paralog is expressed in the iris, but no extra-ocular expression was detected. Molecular evolutionary analysis indicated that melanopsins are evolving primarily under strong purifying selection, although lower evolutionary constraint was detected in snake lineages (ω = 0.2), compared to non-snake Opn4x and Opn4m (ω = 0.1). Statistical analysis of selective constraint suggests that snake phylogenetic relationships have driven stronger effects on melanopsin evolution, than the species activity pattern. In situ hybridization revealed the presence of melanopsin within cells in the outer and inner nuclear layers, in the ganglion cell layer, and intense labeling in the optic nerve. CONCLUSIONS The loss of the Opn4m gene and extra-ocular photosensitive tissues in snakes may be associated with a prolonged nocturnal/mesopic bottleneck in the early history of snake evolution. The presence of melanopsin-containing cells in all retinal nuclear layers indicates a globally photosensitive retina, and the expression in classic photoreceptor cells suggest a regionalized co-expression of melanopsin and visual opsins.
Collapse
Affiliation(s)
- Einat Hauzman
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, Av. Professor Mello Moraes, 1721, Bloco A - Sala D9. Butantã, São Paulo, SP, 05508-030, Brazil. .,Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil.
| | | | - Daniela Maria Oliveira Bonci
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, Av. Professor Mello Moraes, 1721, Bloco A - Sala D9. Butantã, São Paulo, SP, 05508-030, Brazil.,Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil
| | - Dora Fix Ventura
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, Av. Professor Mello Moraes, 1721, Bloco A - Sala D9. Butantã, São Paulo, SP, 05508-030, Brazil.,Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil
| |
Collapse
|
19
|
Gutierrez EDA, Castiglione GM, Morrow JM, Schott RK, Loureiro LO, Lim BK, Chang BSW. Functional Shifts in Bat Dim-Light Visual Pigment Are Associated with Differing Echolocation Abilities and Reveal Molecular Adaptation to Photic-Limited Environments. Mol Biol Evol 2019; 35:2422-2434. [PMID: 30010964 DOI: 10.1093/molbev/msy140] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Bats are excellent models for studying the molecular basis of sensory adaptation. In Chiroptera, a sensory trade-off has been proposed between the visual and auditory systems, though the extent of this association has yet to be fully examined. To investigate whether variation in visual performance is associated with echolocation, we experimentally assayed the dim-light visual pigment rhodopsin from bat species with differing echolocation abilities. While spectral tuning properties were similar among bats, we found that the rate of decay of their light-activated state was significantly slower in a nonecholocating bat relative to species that use distinct echolocation strategies, consistent with a sensory trade-off hypothesis. We also found that these rates of decay were remarkably slower compared with those of other mammals, likely indicating an adaptation to dim light. To examine whether functional changes in rhodopsin are associated with shifts in selection intensity upon bat Rh1 sequences, we implemented selection analyses using codon-based likelihood clade models. While no shifts in selection were identified in response to diverse echolocation abilities of bats, we detected a significant increase in the intensity of evolutionary constraint accompanying the diversification of Chiroptera. Taken together, this suggests that substitutions that modulate the stability of the light-activated rhodopsin state were likely maintained through intensified constraint after bats diversified, being finely tuned in response to novel sensory specializations. Our study demonstrates the power of combining experimental and computational approaches for investigating functional mechanisms underlying the evolution of complex sensory adaptations.
Collapse
Affiliation(s)
- Eduardo de A Gutierrez
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Gianni M Castiglione
- Department of Cell and Systems Biology, University of Toronto, ON, Canada.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James M Morrow
- Department of Cell and Systems Biology, University of Toronto, ON, Canada.,Centre of Forensic Sciences, Toronto, ON, Canada
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Livia O Loureiro
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Burton K Lim
- Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, ON, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Pinto BJ, Card DC, Castoe TA, Diaz RE, Nielsen SV, Trainor PA, Gamble T. The transcriptome of the veiled chameleon (Chamaeleo calyptratus): A resource for studying the evolution and development of vertebrates. Dev Dyn 2019; 248:702-708. [PMID: 30839129 DOI: 10.1002/dvdy.20] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The veiled chameleon (Chamaeleo calyptratus) is an emerging model system for studying functional morphology and evolutionary developmental biology (evo-devo). Chameleons possess body plans that are highly adapted to an arboreal life style, featuring laterally compressed bodies, split hands/ft for grasping, a projectile tongue, turreted independently moving eyes, and a prehensile tail. Despite being one of the most phenotypically divergent clades of tetrapods, genomic resources for chameleons are severely lacking. METHODS To address this lack of resources, we used RNAseq to generate 288 million raw Illumina sequence reads from four adult tissues (male and female eyes and gonads) and whole embryos at three distinct developmental stages. We used these data to assemble a largely complete de novo transcriptome consisting of only 82 952 transcripts. In addition, a majority of assembled transcripts (67%) were successfully annotated. RESULTS We then demonstrated the utility of these data in the context of studying visual system evolution by examining the content of veiled chameleon opsin genes to show that chameleons possess all five ancestral tetrapod opsins. CONCLUSION We present this de novo, annotated, multi-tissue transcriptome assembly for the Veiled Chameleon, Chamaeleo calyptratus, as a resource to address a range of evolutionary and developmental questions. The associated raw reads and final annotated transcriptome assembly are freely available for use on NCBI and Figshare, respectively.
Collapse
Affiliation(s)
- Brendan J Pinto
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | - Daren C Card
- Department of Biology, The University of Texas at Arlington, Arlington, Texas
| | - Todd A Castoe
- Department of Biology, The University of Texas at Arlington, Arlington, Texas
| | - Raul E Diaz
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana.,Natural History Museum of Los Angeles County, Los Angeles, California
| | - Stuart V Nielsen
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | - Paul A Trainor
- Department of Anatomy & Cell Biology, Stowers Institute for Medical Research, Kansas City, Missouri.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin.,Milwaukee Public Museum, Milwaukee, Wisconsin.,Bell Museum of Natural History, University of Minnesota, St Paul, Minnesota
| |
Collapse
|
21
|
Miralles A, Marin J, Markus D, Herrel A, Hedges SB, Vidal N. Molecular evidence for the paraphyly of Scolecophidia and its evolutionary implications. J Evol Biol 2018; 31:1782-1793. [DOI: 10.1111/jeb.13373] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/16/2018] [Accepted: 09/02/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Aurélien Miralles
- Institut de Systématique; Evolution, Biodiversité, Muséum national d'Histoire naturelle; CNRS UPMC EPHE; Sorbonne Universités; Paris France
| | - Julie Marin
- Institut de Systématique; Evolution, Biodiversité, Muséum national d'Histoire naturelle; CNRS UPMC EPHE; Sorbonne Universités; Paris France
| | - Damien Markus
- Institut de Systématique; Evolution, Biodiversité, Muséum national d'Histoire naturelle; CNRS UPMC EPHE; Sorbonne Universités; Paris France
| | - Anthony Herrel
- Département Adaptations du vivant; UMR 7179 C.N.R.S/M.N.H.N.; Paris France
| | - S. Blair Hedges
- Center for Biodiversity; Temple University; Philadelphia Pennsylvania
| | - Nicolas Vidal
- Institut de Systématique; Evolution, Biodiversité, Muséum national d'Histoire naturelle; CNRS UPMC EPHE; Sorbonne Universités; Paris France
| |
Collapse
|
22
|
Perry BW, Card DC, McGlothlin JW, Pasquesi GIM, Adams RH, Schield DR, Hales NR, Corbin AB, Demuth JP, Hoffmann FG, Vandewege MW, Schott RK, Bhattacharyya N, Chang BSW, Casewell NR, Whiteley G, Reyes-Velasco J, Mackessy SP, Gamble T, Storey KB, Biggar KK, Passow CN, Kuo CH, McGaugh SE, Bronikowski AM, de Koning APJ, Edwards SV, Pfrender ME, Minx P, Brodie ED, Brodie ED, Warren WC, Castoe TA. Molecular Adaptations for Sensing and Securing Prey and Insight into Amniote Genome Diversity from the Garter Snake Genome. Genome Biol Evol 2018; 10:2110-2129. [PMID: 30060036 PMCID: PMC6110522 DOI: 10.1093/gbe/evy157] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2018] [Indexed: 12/26/2022] Open
Abstract
Colubridae represents the most phenotypically diverse and speciose family of snakes, yet no well-assembled and annotated genome exists for this lineage. Here, we report and analyze the genome of the garter snake, Thamnophis sirtalis, a colubrid snake that is an important model species for research in evolutionary biology, physiology, genomics, behavior, and the evolution of toxin resistance. Using the garter snake genome, we show how snakes have evolved numerous adaptations for sensing and securing prey, and identify features of snake genome structure that provide insight into the evolution of amniote genomes. Analyses of the garter snake and other squamate reptile genomes highlight shifts in repeat element abundance and expansion within snakes, uncover evidence of genes under positive selection, and provide revised neutral substitution rate estimates for squamates. Our identification of Z and W sex chromosome-specific scaffolds provides evidence for multiple origins of sex chromosome systems in snakes and demonstrates the value of this genome for studying sex chromosome evolution. Analysis of gene duplication and loss in visual and olfactory gene families supports a dim-light ancestral condition in snakes and indicates that olfactory receptor repertoires underwent an expansion early in snake evolution. Additionally, we provide some of the first links between secreted venom proteins, the genes that encode them, and their evolutionary origins in a rear-fanged colubrid snake, together with new genomic insight into the coevolutionary arms race between garter snakes and highly toxic newt prey that led to toxin resistance in garter snakes.
Collapse
Affiliation(s)
- Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington
| | - Daren C Card
- Department of Biology, University of Texas at Arlington, Arlington
| | - Joel W McGlothlin
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia
| | | | - Richard H Adams
- Department of Biology, University of Texas at Arlington, Arlington
| | - Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington
| | - Nicole R Hales
- Department of Biology, University of Texas at Arlington, Arlington
| | - Andrew B Corbin
- Department of Biology, University of Texas at Arlington, Arlington
| | - Jeffery P Demuth
- Department of Biology, University of Texas at Arlington, Arlington
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville
| | - Michael W Vandewege
- Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution & Function, University of Toronto, Ontario, Canada.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia
| | - Nihar Bhattacharyya
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution & Function, University of Toronto, Ontario, Canada
| | - Nicholas R Casewell
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Gareth Whiteley
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Jacobo Reyes-Velasco
- Department of Biology, University of Texas at Arlington, Arlington.,Department of Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | | | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA.,Bell Museum of Natural History, University of Minnesota, Saint Paul, MN, USA
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Kyle K Biggar
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | | | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| | - A P Jason de Koning
- Department of Biochemistry and Molecular Biology, Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University
| | - Michael E Pfrender
- Department of Biological Sciences and Environmental Change Initiative, University of Notre Dame
| | - Patrick Minx
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis
| | | | | | - Wesley C Warren
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington
| |
Collapse
|