1
|
Zhang M, Lu Z. tRNA modifications: greasing the wheels of translation and beyond. RNA Biol 2025; 22:1-25. [PMID: 39723662 DOI: 10.1080/15476286.2024.2442856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Transfer RNA (tRNA) is one of the most abundant RNA types in cells, acting as an adaptor to bridge the genetic information in mRNAs with the amino acid sequence in proteins. Both tRNAs and small fragments processed from them play many nonconventional roles in addition to translation. tRNA molecules undergo various types of chemical modifications to ensure the accuracy and efficiency of translation and regulate their diverse functions beyond translation. In this review, we discuss the biogenesis and molecular mechanisms of tRNA modifications, including major tRNA modifications, writer enzymes, and their dynamic regulation. We also summarize the state-of-the-art technologies for measuring tRNA modification, with a particular focus on 2'-O-methylation (Nm), and discuss their limitations and remaining challenges. Finally, we highlight recent discoveries linking dysregulation of tRNA modifications with genetic diseases.
Collapse
Affiliation(s)
- Minjie Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Medical Epigenetics, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
van der Gulik PTS, Hoff WD. The Evolution and Implications of the Inosine tRNA Modification. J Mol Biol 2025:169187. [PMID: 40383699 DOI: 10.1016/j.jmb.2025.169187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/20/2025]
Abstract
Ever since the legendary publication by Francis Crick in JMB introducing the wobble hypothesis in 1966, inosine has been a permanent part of molecular biology. This review aims to integrate the rich array of novel insights emerging from subsequent research on the adenine-to-inosine modification of tRNA, with an emphasis on the results obtained during the last 5 years. Both the grand panorama of 4 billion years of evolution of life and the medical implications of defects in inosine modification will be reviewed. The most salient insights are that: (1) inosine at position 34 (the first position in the anticodon) is not universally present in the tree of life; (2) in many bacteria just a single homodimeric enzyme (TadA) is responsible for both tRNA inosine modification and mRNA inosine modification; (3) rapid progress is currently being made both in the molecular understanding of the heterodimeric ADAT2/ADAT3 enzyme responsible for inosine modifications in eukaryotes and in experimental capabilities for monitoring both the cytoplasmic tRNA pool and their modifications; (4) for selected tRNAs, inosine modification at position 37 has been demonstrated but this modification remains under-studied; (5) modification of tRNAs known to contain inosine can be incomplete; (6) the GC content of the T-stem is of great importance for wobble behavior, including wobbling behavior of inosine; and (7) the tRNA inosine modification is of direct relevance to human disease. In summary, research on inosine continues to yield important novel insights.
Collapse
Affiliation(s)
- Peter T S van der Gulik
- Algorithms and Complexity Group, Centrum Wiskunde & Informatica, P.O. Box 94079, 1090 GB Amsterdam, the Netherlands.
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
3
|
Guinto F, Robinson SC, Alexander RW. Distal Domains of the Bacterial-Exclusive Wobble-Modifying Enzyme TilS Contribute to Catalysis. ACS OMEGA 2025; 10:11618-11626. [PMID: 40160746 PMCID: PMC11947777 DOI: 10.1021/acsomega.5c00897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/23/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025]
Abstract
tRNAIle2 lysidine synthetase (TilS) is a bacterial-specific wobble-modifying enzyme that acts on the isoleucine-accepting tRNAIle2 CAU. TilS installs a lysine at the C34 position of the anticodon, generating the lysidine modification. The resulting LAU anticodon enables exclusive decoding of infrequently used AUA isoleucine codons, rejecting AUG methionine codons. Compared to other wobble-modifying enzymes that contact only the anticodon arm of their cognate tRNAs, TilS is distinct in containing additional domains outside of the N-terminal active site. For type I TilS enzymes such as the B. cenocepacia TilS (BcTilS) investigated here, appended domains contact the tRNAIle2 substrate along the body and through the acceptor stem, up to 60 Å away from the target C34. Among bacterial tRNAs, only unmodified tRNAIle2 and tRNAMet share an anticodon, suggesting that the appended domains of TilS provide substrate recognition strategies that other wobble-modifying enzymes do not need. Here, we investigate both protein and tRNA elements to understand the strategy by which TilS accepts its cognate tRNAIle2 substrate and rejects the near-cognate tRNAMet.
Collapse
Affiliation(s)
- Ferdiemar
C. Guinto
- Department of Chemistry and
Center for Molecular Signaling, Wake Forest
University, Winston-Salem, North Carolina 27109, United States
| | | | - Rebecca W. Alexander
- Department of Chemistry and
Center for Molecular Signaling, Wake Forest
University, Winston-Salem, North Carolina 27109, United States
| |
Collapse
|
4
|
Nakano Y, Gamper H, McGuigan H, Maharjan S, Li J, Sun Z, Yigit E, Grünberg S, Krishnan K, Li NS, Piccirilli JA, Kleiner R, Nichols N, Gregory BD, Hou YM. Genome-wide profiling of tRNA modifications by Induro-tRNAseq reveals coordinated changes. Nat Commun 2025; 16:1047. [PMID: 39865096 PMCID: PMC11770116 DOI: 10.1038/s41467-025-56348-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
While all native tRNAs undergo extensive post-transcriptional modifications as a mechanism to regulate gene expression, mapping these modifications remains challenging. The critical barrier is the difficulty of readthrough of modifications by reverse transcriptases (RTs). Here we use Induro-a new group-II intron-encoded RT-to map and quantify genome-wide tRNA modifications in Induro-tRNAseq. We show that Induro progressively increases readthrough over time by selectively overcoming RT stops without altering the misincorporation frequency. In a parallel analysis of Induro vs. a related RT, we provide comparative datasets to facilitate the prediction of each modification. We assess tRNA modifications across five human cell lines and three mouse tissues and show that, while the landscape of modifications is highly variable throughout the tRNA sequence framework, it is stabilized for modifications that are required for reading of the genetic code. The coordinated changes have fundamental importance for development of tRNA modifications in protein homeostasis.
Collapse
Affiliation(s)
- Yuko Nakano
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Henri McGuigan
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sunita Maharjan
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jiatong Li
- Department of Biology, University of Pennsylvania, Pennsylvania, PA, USA
| | - Zhiyi Sun
- New England Biolabs, Ipswich, MA, USA
| | | | | | | | - Nan-Sheng Li
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Joseph A Piccirilli
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Ralph Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | | | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Pennsylvania, PA, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Delgado S, Armijo Á, Bravo V, Orellana O, Salazar JC, Katz A. Impact of the chemical modification of tRNAs anticodon loop on the variability and evolution of codon usage in proteobacteria. Front Microbiol 2024; 15:1412318. [PMID: 39161601 PMCID: PMC11332805 DOI: 10.3389/fmicb.2024.1412318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/27/2024] [Indexed: 08/21/2024] Open
Abstract
Despite the highly conserved nature of the genetic code, the frequency of usage of each codon can vary significantly. The evolution of codon usage is shaped by two main evolutionary forces: mutational bias and selection pressures. These pressures can be driven by environmental factors, but also by the need for efficient translation, which depends heavily on the concentration of transfer RNAs (tRNAs) within the cell. The data presented here supports the proposal that tRNA modifications play a key role in shaping the overall preference of codon usage in proteobacteria. Interestingly, some codons, such as CGA and AGG (encoding arginine), exhibit a surprisingly low level of variation in their frequency of usage, even across genomes with differing GC content. These findings suggest that the evolution of GC content in proteobacterial genomes might be primarily driven by changes in the usage of a specific subset of codons, whose usage is itself influenced by tRNA modifications.
Collapse
Affiliation(s)
| | - Álvaro Armijo
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Verónica Bravo
- Programa Centro de Investigacion Biomédica y Aplicada, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Omar Orellana
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan Carlos Salazar
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Assaf Katz
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Masuda I, Hou YM. A tRNA modification pattern that facilitates interpretation of the genetic code. Front Microbiol 2024; 15:1415100. [PMID: 38933027 PMCID: PMC11199890 DOI: 10.3389/fmicb.2024.1415100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Interpretation of the genetic code from triplets of nucleotides to amino acids is fundamental to life. This interpretation is achieved by cellular tRNAs, each reading a triplet codon through its complementary anticodon (positions 34-36) while delivering the amino acid charged to its 3'-end. This amino acid is then incorporated into the growing polypeptide chain during protein synthesis on the ribosome. The quality and versatility of the interpretation is ensured not only by the codon-anticodon pairing, but also by the post-transcriptional modifications at positions 34 and 37 of each tRNA, corresponding to the wobble nucleotide at the first position of the anticodon and the nucleotide on the 3'-side of the anticodon, respectively. How each codon is read by the matching anticodon, and which modifications are required, cannot be readily predicted from the codon-anticodon pairing alone. Here we provide an easily accessible modification pattern that is integrated into the genetic code table. We focus on the Gram-negative bacterium Escherichia coli as a model, which is one of the few organisms whose entire set of tRNA modifications and modification genes is identified and mapped. This work provides an important reference tool that will facilitate research in protein synthesis, which is at the core of the cellular life.
Collapse
|
7
|
Jain V, Cope AL. Examining the Effects of Temperature on the Evolution of Bacterial tRNA Pools. Genome Biol Evol 2024; 16:evae116. [PMID: 38805023 PMCID: PMC11166485 DOI: 10.1093/gbe/evae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
The genetic code consists of 61 codons coding for 20 amino acids. These codons are recognized by transfer RNAs (tRNAs) that bind to specific codons during protein synthesis. All organisms utilize less than all 61 possible anticodons due to base pair wobble: the ability to have a mismatch with a codon at its third nucleotide. Previous studies observed a correlation between the tRNA pool of bacteria and the temperature of their respective environments. However, it is unclear if these patterns represent biological adaptations to maintain the efficiency and accuracy of protein synthesis in different environments. A mechanistic mathematical model of mRNA translation is used to quantify the expected elongation rates and error rate for each codon based on an organism's tRNA pool. A comparative analysis across a range of bacteria that accounts for covariance due to shared ancestry is performed to quantify the impact of environmental temperature on the evolution of the tRNA pool. We find that thermophiles generally have more anticodons represented in their tRNA pool than mesophiles or psychrophiles. Based on our model, this increased diversity is expected to lead to increased missense errors. The implications of this for protein evolution in thermophiles are discussed.
Collapse
Affiliation(s)
- Vatsal Jain
- Biotechnology High School, Freehold, NJ, USA
| | - Alexander L Cope
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
8
|
Khomarbaghi Z, Ngan WY, Ayan GB, Lim S, Dechow-Seligmann G, Nandy P, Gallie J. Large-scale duplication events underpin population-level flexibility in tRNA gene copy number in Pseudomonas fluorescens SBW25. Nucleic Acids Res 2024; 52:2446-2462. [PMID: 38296823 PMCID: PMC10954465 DOI: 10.1093/nar/gkae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
The complement of tRNA genes within a genome is typically considered to be a (relatively) stable characteristic of an organism. Here, we demonstrate that bacterial tRNA gene set composition can be more flexible than previously appreciated, particularly regarding tRNA gene copy number. We report the high-rate occurrence of spontaneous, large-scale, tandem duplication events in laboratory populations of the bacterium Pseudomonas fluorescens SBW25. The identified duplications are up to ∼1 Mb in size (∼15% of the wildtype genome) and are predicted to change the copy number of up to 917 genes, including several tRNA genes. The observed duplications are inherently unstable: they occur, and are subsequently lost, at extremely high rates. We propose that this unusually plastic type of mutation provides a mechanism by which tRNA gene set diversity can be rapidly generated, while simultaneously preserving the underlying tRNA gene set in the absence of continued selection. That is, if a tRNA set variant provides no fitness advantage, then high-rate segregation of the duplication ensures the maintenance of the original tRNA gene set. However, if a tRNA gene set variant is beneficial, the underlying duplication fragment(s) may persist for longer and provide raw material for further, more stable, evolutionary change.
Collapse
Affiliation(s)
- Zahra Khomarbaghi
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Wing Y Ngan
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Gökçe B Ayan
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Sungbin Lim
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Gunda Dechow-Seligmann
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Pabitra Nandy
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Jenna Gallie
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| |
Collapse
|
9
|
Jain V, Cope AL. Determining the effects of temperature on the evolution of bacterial tRNA pools. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559538. [PMID: 37873246 PMCID: PMC10592612 DOI: 10.1101/2023.09.26.559538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The genetic code consists of 61 codon coding for 20 amino acids. These codons are recognized by transfer RNAs (tRNA) that bind to specific codons during protein synthesis. Most organisms utilize less than all 61 possible anticodons due to base pair wobble: the ability to have a mismatch with a codon at its third nucleotide. Previous studies observed a correlation between the tRNA pool of bacteria and the temperature of their respective environments. However, it is unclear if these patterns represent biological adaptations to maintain the efficiency and accuracy of protein synthesis in different environments. A mechanistic mathematical model of mRNA translation is used to quantify the expected elongation rates and error rate for each codon based on an organism's tRNA pool. A comparative analysis across a range of bacteria that accounts for covariance due to shared ancestry is performed to quantify the impact of environmental temperature on the evolution of the tRNA pool. We find that thermophiles generally have more anticodons represented in their tRNA pool than mesophiles or psychrophiles. Based on our model, this increased diversity is expected to lead to increased missense errors. The implications of this for protein evolution in thermophiles are discussed.
Collapse
Affiliation(s)
- Vatsal Jain
- Biotechnology High School, Freehold, New Jersey
| | - Alexander L. Cope
- Department of Genetics, Rutgers University, Piscataway, New Jersey
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
10
|
Sane M, Diwan GD, Bhat BA, Wahl LM, Agashe D. Shifts in mutation spectra enhance access to beneficial mutations. Proc Natl Acad Sci U S A 2023; 120:e2207355120. [PMID: 37216547 PMCID: PMC10235995 DOI: 10.1073/pnas.2207355120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/27/2023] [Indexed: 05/24/2023] Open
Abstract
Biased mutation spectra are pervasive, with wide variation in the magnitude of mutational biases that influence genome evolution and adaptation. How do such diverse biases evolve? Our experiments show that changing the mutation spectrum allows populations to sample previously undersampled mutational space, including beneficial mutations. The resulting shift in the distribution of fitness effects is advantageous: Beneficial mutation supply and beneficial pleiotropy both increase, while deleterious load reduces. More broadly, simulations indicate that reducing or reversing the direction of a long-term bias is always selectively favored. Such changes in mutation bias can occur easily via altered function of DNA repair genes. A phylogenetic analysis shows that these genes are repeatedly gained and lost in bacterial lineages, leading to frequent bias shifts in opposite directions. Thus, shifts in mutation spectra may evolve under selection and can directly alter the outcome of adaptive evolution by facilitating access to beneficial mutations.
Collapse
Affiliation(s)
- Mrudula Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
| | - Gaurav D. Diwan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
- Bioquant, University of Heidelberg,69120Heidelberg, Germany
- Heidelberg University Biochemistry Center (BZH), 69120Heidelberg, Germany
| | - Bhoomika A. Bhat
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
- Undergraduate Programme, Indian Institute of Science, Bengaluru 560012, India
| | - Lindi M. Wahl
- Mathematics, Western University, London, ON, N6A 5B7, Canada
| | - Deepa Agashe
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
| |
Collapse
|
11
|
Raval PK, Ngan WY, Gallie J, Agashe D. The layered costs and benefits of translational redundancy. eLife 2023; 12:81005. [PMID: 36862572 PMCID: PMC9981150 DOI: 10.7554/elife.81005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 01/25/2023] [Indexed: 03/03/2023] Open
Abstract
The rate and accuracy of translation hinges upon multiple components - including transfer RNA (tRNA) pools, tRNA modifying enzymes, and rRNA molecules - many of which are redundant in terms of gene copy number or function. It has been hypothesized that the redundancy evolves under selection, driven by its impacts on growth rate. However, we lack empirical measurements of the fitness costs and benefits of redundancy, and we have poor a understanding of how this redundancy is organized across components. We manipulated redundancy in multiple translation components of Escherichia coli by deleting 28 tRNA genes, 3 tRNA modifying systems, and 4 rRNA operons in various combinations. We find that redundancy in tRNA pools is beneficial when nutrients are plentiful and costly under nutrient limitation. This nutrient-dependent cost of redundant tRNA genes stems from upper limits to translation capacity and growth rate, and therefore varies as a function of the maximum growth rate attainable in a given nutrient niche. The loss of redundancy in rRNA genes and tRNA modifying enzymes had similar nutrient-dependent fitness consequences. Importantly, these effects are also contingent upon interactions across translation components, indicating a layered hierarchy from copy number of tRNA and rRNA genes to their expression and downstream processing. Overall, our results indicate both positive and negative selection on redundancy in translation components, depending on a species' evolutionary history with feasts and famines.
Collapse
Affiliation(s)
- Parth K Raval
- National Centre for Biological Sciences (NCBS-TIFR)BengaluruIndia
| | - Wing Yui Ngan
- Max Plank Institute for Evolutionary BiologyPlönGermany
| | - Jenna Gallie
- Max Plank Institute for Evolutionary BiologyPlönGermany
| | - Deepa Agashe
- National Centre for Biological Sciences (NCBS-TIFR)BengaluruIndia
| |
Collapse
|
12
|
Zhang S, Yuan B, Cao J, Song L, Chen J, Qiu J, Qiu Z, Zhao XM, Chen J, Cheng TL. TadA orthologs enable both cytosine and adenine editing of base editors. Nat Commun 2023; 14:414. [PMID: 36702837 PMCID: PMC9880001 DOI: 10.1038/s41467-023-36003-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Cytidine and adenosine deaminases are required for cytosine and adenine editing of base editors respectively, and no single deaminase could enable concurrent and comparable cytosine and adenine editing. Additionally, distinct properties of cytidine and adenosine deaminases lead to various types of off-target effects, including Cas9-indendepent DNA off-target effects for cytosine base editors (CBEs) and RNA off-target effects particularly severe for adenine base editors (ABEs). Here we demonstrate that 25 TadA orthologs could be engineered to generate functional ABEs, CBEs or ACBEs via single or double mutations, which display minimized Cas9-independent DNA off-target effects and genotoxicity, with orthologs B5ZCW4, Q57LE3, E8WVH3, Q13XZ4 and B3PCY2 as promising candidates for further engineering. Furthermore, RNA off-target effects of TadA ortholog-derived base editors could be further reduced or even eliminated by additional single mutation. Taken together, our work expands the base editing toolkits, and also provides important clues for the potential evolutionary process of deaminases.
Collapse
Affiliation(s)
- Shuqian Zhang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
- Department of Pediatrics, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Bo Yuan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jixin Cao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Liting Song
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jinlong Chen
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Jiayi Qiu
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Zilong Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- National Clinical Research Center for Aging and Medicine, Huashan Hopsital, Fudan University, Shanghai, 200032, China
- Songjiang Hospital, Songjiang Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jingqi Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Tian-Lin Cheng
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
van der Gulik PT, Egas M, Kraaijeveld K, Dombrowski N, Groot AT, Spang A, Hoff WD, Gallie J. On distinguishing between canonical tRNA genes and tRNA gene fragments in prokaryotes. RNA Biol 2023; 20:48-58. [PMID: 36727270 PMCID: PMC9897764 DOI: 10.1080/15476286.2023.2172370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Automated genome annotation is essential for extracting biological information from sequence data. The identification and annotation of tRNA genes is frequently performed by the software package tRNAscan-SE, the output of which is listed for selected genomes in the Genomic tRNA database (GtRNAdb). Here, we highlight a pervasive error in prokaryotic tRNA gene sets on GtRNAdb: the mis-categorization of partial, non-canonical tRNA genes as standard, canonical tRNA genes. Firstly, we demonstrate the issue using the tRNA gene sets of 20 organisms from the archaeal taxon Thermococcaceae. According to GtRNAdb, these organisms collectively deviate from the expected set of tRNA genes in 15 instances, including the listing of eleven putative canonical tRNA genes. However, after detailed manual annotation, only one of these eleven remains; the others are either partial, non-canonical tRNA genes resulting from the integration of genetic elements or CRISPR-Cas activity (seven instances), or attributable to ambiguities in input sequences (three instances). Secondly, we show that similar examples of the mis-categorization of predicted tRNA sequences occur throughout the prokaryotic sections of GtRNAdb. While both canonical and non-canonical prokaryotic tRNA gene sequences identified by tRNAscan-SE are biologically interesting, the challenge of reliably distinguishing between them remains. We recommend employing a combination of (i) screening input sequences for the genetic elements typically associated with non-canonical tRNA genes, and ambiguities, (ii) activating the tRNAscan-SE automated pseudogene detection function, and (iii) scrutinizing predicted tRNA genes with low isotype scores. These measures greatly reduce manual annotation efforts, and lead to improved prokaryotic tRNA gene set predictions.
Collapse
Affiliation(s)
- Peter T.S. van der Gulik
- Department of Algorithms and Complexity, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands,CONTACT Peter T.S. van der Gulik Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
| | - Martijn Egas
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Ken Kraaijeveld
- Leiden Centre for Applied Bioscience, University of Applied Sciences Leiden, Leiden, The Netherlands
| | - Nina Dombrowski
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Astrid T. Groot
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Anja Spang
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands,Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Wouter D. Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA,Wouter Hoff
| | - Jenna Gallie
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany,Jenna Gallie
| |
Collapse
|
14
|
Masłowska-Górnicz A, van den Bosch MRM, Saccenti E, Suarez-Diez M. A large-scale analysis of codon usage bias in 4868 bacterial genomes shows association of codon adaptation index with GC content, protein functional domains and bacterial phenotypes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194826. [PMID: 35605953 DOI: 10.1016/j.bbagrm.2022.194826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Multiple synonymous codons code for the same amino acid, resulting in the degeneracy of the genetic code and in the preferred used of some codons called codon bias usage (CBU). We performed a large-scale analysis of codon usage bias analysing the distribution of the codon adaptation index (CAI) and the codon relative adaptiveness index (RA) in 4868 bacterial genomes. We found that CAI values differ significantly between protein functional domains and part of the protein outside domains and show how CAI, GC content and preferred usage of polymerase III alpha subunits are related. Additionally, we give evidence of the association between CAI and bacterial phenotypes.
Collapse
Affiliation(s)
- Anna Masłowska-Górnicz
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Melanie R M van den Bosch
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
15
|
Mahajan S, Agashe D. Evolutionary jumps in bacterial GC content. G3 (BETHESDA, MD.) 2022; 12:jkac108. [PMID: 35579351 PMCID: PMC9339322 DOI: 10.1093/g3journal/jkac108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022]
Abstract
Genomic GC (Guanine-Cytosine) content is a fundamental molecular trait linked with many key genomic features such as codon and amino acid use. Across bacteria, GC content is surprisingly diverse and has been studied for many decades; yet its evolution remains incompletely understood. Since it is difficult to observe GC content evolve on laboratory time scales, phylogenetic comparative approaches are instrumental; but this dimension is rarely studied systematically in the case of bacterial GC content. We applied phylogenetic comparative models to analyze GC content evolution in multiple bacterial groups across 2 major bacterial phyla. We find that GC content diversifies via a combination of gradual evolution and evolutionary "jumps." Surprisingly, unlike prior reports that solely focused on reductions in GC, we found a comparable number of jumps with both increased and decreased GC content. Overall, many of the identified jumps occur in lineages beyond the well-studied peculiar examples of endosymbiotic and AT-rich marine bacteria and do not support the predicted role of oxygen dependence. Our analysis of rapid and large shifts in GC content thus identifies new clades and novel contexts to further understand the ecological and evolutionary drivers of this important genomic trait.
Collapse
Affiliation(s)
- Saurabh Mahajan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
- Atria University, Bengaluru 560024, India
| | - Deepa Agashe
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
16
|
Torres AG, Rodríguez-Escribà M, Marcet-Houben M, Santos Vieira H, Camacho N, Catena H, Murillo Recio M, Rafels-Ybern À, Reina O, Torres F, Pardo-Saganta A, Gabaldón T, Novoa E, Ribas de Pouplana L. Human tRNAs with inosine 34 are essential to efficiently translate eukarya-specific low-complexity proteins. Nucleic Acids Res 2021; 49:7011-7034. [PMID: 34125917 PMCID: PMC8266599 DOI: 10.1093/nar/gkab461] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
The modification of adenosine to inosine at the wobble position (I34) of tRNA anticodons is an abundant and essential feature of eukaryotic tRNAs. The expansion of inosine-containing tRNAs in eukaryotes followed the transformation of the homodimeric bacterial enzyme TadA, which generates I34 in tRNAArg and tRNALeu, into the heterodimeric eukaryotic enzyme ADAT, which modifies up to eight different tRNAs. The emergence of ADAT and its larger set of substrates, strongly influenced the tRNA composition and codon usage of eukaryotic genomes. However, the selective advantages that drove the expansion of I34-tRNAs remain unknown. Here we investigate the functional relevance of I34-tRNAs in human cells and show that a full complement of these tRNAs is necessary for the translation of low-complexity protein domains enriched in amino acids cognate for I34-tRNAs. The coding sequences for these domains require codons translated by I34-tRNAs, in detriment of synonymous codons that use other tRNAs. I34-tRNA-dependent low-complexity proteins are enriched in functional categories related to cell adhesion, and depletion in I34-tRNAs leads to cellular phenotypes consistent with these roles. We show that the distribution of these low-complexity proteins mirrors the distribution of I34-tRNAs in the phylogenetic tree.
Collapse
Affiliation(s)
- Adrian Gabriel Torres
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
| | - Marta Rodríguez-Escribà
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
| | - Marina Marcet-Houben
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Catalonia 08034, Spain
| | | | - Noelia Camacho
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
| | - Helena Catena
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
| | - Marina Murillo Recio
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
| | - Àlbert Rafels-Ybern
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
| | - Oscar Reina
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
| | - Francisco Miguel Torres
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
| | - Ana Pardo-Saganta
- Centre for Applied Medical Research (CIMA Universidad de Navarra), Pamplona 31008, Spain
| | - Toni Gabaldón
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Catalonia 08034, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Catalonia 08010, Spain
| | - Eva Maria Novoa
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain
- University Pompeu Fabra, Barcelona, Catalonia 08003, Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Catalonia 08010, Spain
| |
Collapse
|
17
|
Srinivasan S, Torres AG, Ribas de Pouplana L. Inosine in Biology and Disease. Genes (Basel) 2021; 12:600. [PMID: 33921764 PMCID: PMC8072771 DOI: 10.3390/genes12040600] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
The nucleoside inosine plays an important role in purine biosynthesis, gene translation, and modulation of the fate of RNAs. The editing of adenosine to inosine is a widespread post-transcriptional modification in transfer RNAs (tRNAs) and messenger RNAs (mRNAs). At the wobble position of tRNA anticodons, inosine profoundly modifies codon recognition, while in mRNA, inosines can modify the sequence of the translated polypeptide or modulate the stability, localization, and splicing of transcripts. Inosine is also found in non-coding and exogenous RNAs, where it plays key structural and functional roles. In addition, molecular inosine is an important secondary metabolite in purine metabolism that also acts as a molecular messenger in cell signaling pathways. Here, we review the functional roles of inosine in biology and their connections to human health.
Collapse
Affiliation(s)
- Sundaramoorthy Srinivasan
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain; (S.S.); (A.G.T.)
| | - Adrian Gabriel Torres
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain; (S.S.); (A.G.T.)
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain; (S.S.); (A.G.T.)
- Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
18
|
Ehrlich R, Davyt M, López I, Chalar C, Marín M. On the Track of the Missing tRNA Genes: A Source of Non-Canonical Functions? Front Mol Biosci 2021; 8:643701. [PMID: 33796548 PMCID: PMC8007984 DOI: 10.3389/fmolb.2021.643701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
Cellular tRNAs appear today as a diverse population of informative macromolecules with conserved general elements ensuring essential common functions and different and distinctive features securing specific interactions and activities. Their differential expression and the variety of post-transcriptional modifications they are subject to, lead to the existence of complex repertoires of tRNA populations adjusted to defined cellular states. Despite the tRNA-coding genes redundancy in prokaryote and eukaryote genomes, it is surprising to note the absence of genes coding specific translational-active isoacceptors throughout the phylogeny. Through the analysis of different releases of tRNA databases, this review aims to provide a general summary about those “missing tRNA genes.” This absence refers to both tRNAs that are not encoded in the genome, as well as others that show critical sequence variations that would prevent their activity as canonical translation adaptor molecules. Notably, while a group of genes are universally missing, others are absent in particular kingdoms. Functional information available allows to hypothesize that the exclusion of isodecoding molecules would be linked to: 1) reduce ambiguities of signals that define the specificity of the interactions in which the tRNAs are involved; 2) ensure the adaptation of the translational apparatus to the cellular state; 3) divert particular tRNA variants from ribosomal protein synthesis to other cellular functions. This leads to consider the “missing tRNA genes” as a source of putative non-canonical tRNA functions and to broaden the concept of adapter molecules in ribosomal-dependent protein synthesis.
Collapse
Affiliation(s)
- Ricardo Ehrlich
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay.,Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marcos Davyt
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Ignacio López
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Cora Chalar
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Mónica Marín
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
19
|
Ayan GB, Park HJ, Gallie J. The birth of a bacterial tRNA gene by large-scale, tandem duplication events. eLife 2020; 9:57947. [PMID: 33124983 PMCID: PMC7661048 DOI: 10.7554/elife.57947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Organisms differ in the types and numbers of tRNA genes that they carry. While the evolutionary mechanisms behind tRNA gene set evolution have been investigated theoretically and computationally, direct observations of tRNA gene set evolution remain rare. Here, we report the evolution of a tRNA gene set in laboratory populations of the bacterium Pseudomonas fluorescens SBW25. The growth defect caused by deleting the single-copy tRNA gene, serCGA, is rapidly compensated by large-scale (45–290 kb) duplications in the chromosome. Each duplication encompasses a second, compensatory tRNA gene (serTGA) and is associated with a rise in tRNA-Ser(UGA) in the mature tRNA pool. We postulate that tRNA-Ser(CGA) elimination increases the translational demand for tRNA-Ser(UGA), a pressure relieved by increasing serTGA copy number. This work demonstrates that tRNA gene sets can evolve through duplication of existing tRNA genes, a phenomenon that may contribute to the presence of multiple, identical tRNA gene copies within genomes.
Collapse
Affiliation(s)
- Gökçe B Ayan
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Hye Jin Park
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Asia Pacific Center for Theoretical Physics, Pohang, Republic of Korea
| | - Jenna Gallie
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
20
|
de Crécy-Lagard V, Jaroch M. Functions of Bacterial tRNA Modifications: From Ubiquity to Diversity. Trends Microbiol 2020; 29:41-53. [PMID: 32718697 DOI: 10.1016/j.tim.2020.06.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/21/2023]
Abstract
Modified nucleotides in tRNA are critical components of the translation apparatus, but their importance in the process of translational regulation had until recently been greatly overlooked. Two breakthroughs have recently allowed a fuller understanding of the importance of tRNA modifications in bacterial physiology. One is the identification of the full set of tRNA modification genes in model organisms such as Escherichia coli K12. The second is the improvement of available analytical tools to monitor tRNA modification patterns. The role of tRNA modifications varies greatly with the specific modification within a given tRNA and with the organism studied. The absence of these modifications or reductions can lead to cell death or pleiotropic phenotypes or may have no apparent visible effect. By linking translation through their decoding functions to metabolism through their biosynthetic pathways, tRNA modifications are emerging as important components of the bacterial regulatory toolbox.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32611, USA.
| | - Marshall Jaroch
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
21
|
Davis LK. Intelligent Design of 14-3-3 Docking Proteins Utilizing Synthetic Evolution Artificial Intelligence (SYN-AI). ACS OMEGA 2019; 4:18948-18960. [PMID: 31763516 PMCID: PMC6868599 DOI: 10.1021/acsomega.8b03100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/10/2019] [Indexed: 05/13/2023]
Abstract
The ability to write DNA code from scratch will allow for the discovery of new and interesting chemistries as well as allowing the rewiring of cell signal pathways. Herein, we have utilized synthetic evolution artificial intelligence (SYN-AI) to intelligently design a set of 14-3-3 docking genes. SYN-AI engineers synthetic genes utilizing a parental gene as an evolution template. Wherein, evolution is fast-forwarded by transforming template gene sequences to DNA secondary and tertiary codes based upon gene hierarchical structural levels. The DNA secondary code allows identification of genomic building blocks across an orthologous sequence space comprising multiple genomes. Where, the DNA tertiary code allows engineering of supersecondary structures. SYN-AI constructed a library of 10 million genes that was reduced to three structurally functional 14-3-3 docking genes by applying natural selection protocols. Synthetic protein identity was verified utilizing Clustal Omega sequence alignments and Phylogeny.fr phylogenetic analysis. Wherein, we were able to confirm the three-dimensional structure utilizing I-TASSER and protein-ligand interactions utilizing COACH and Cofactor. The conservation of allosteric communications was confirmed utilizing elastic and anisotropic network models. Whereby, we utilized elNemo and ANM2.1 to confirm conservation of the 14-3-3 ζ amphipathic groove. Notably, to the best of our knowledge, we report the first 14-3-3 docking genes to be written from scratch.
Collapse
Affiliation(s)
- Leroy K. Davis
- Prairie
View A&M University, Cooperative Agricultural Research Center (CARC), 700 University Drive, Prairie
View, Texas 77446-0518, United States
- Gene
Evolution Project, LLC, Baton Rouge, Louisiana 70835, United States
| |
Collapse
|
22
|
Nilsson EM, Alexander RW. Bacterial wobble modifications of NNA-decoding tRNAs. IUBMB Life 2019; 71:1158-1166. [PMID: 31283100 DOI: 10.1002/iub.2120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/21/2019] [Indexed: 01/18/2023]
Abstract
Nucleotides of transfer RNAs (tRNAs) are highly modified, particularly at the anticodon. Bacterial tRNAs that read A-ending codons are especially notable. The U34 nucleotide canonically present in these tRNAs is modified by a wide range of complex chemical constituents. An additional two A-ending codons are not read by U34-containing tRNAs but are accommodated by either inosine or lysidine at the wobble position (I34 or L34). The structural basis for many N34 modifications in both tRNA aminoacylation and ribosome decoding has been elucidated, and evolutionary conservation of modifying enzymes is also becoming clearer. Here we present a brief review of the structure, function, and conservation of wobble modifications in tRNAs that translate A-ending codons. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1158-1166, 2019.
Collapse
Affiliation(s)
- Emil M Nilsson
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina
| | - Rebecca W Alexander
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina
| |
Collapse
|
23
|
Rafels-Ybern À, Torres AG, Camacho N, Herencia-Ropero A, Roura Frigolé H, Wulff TF, Raboteg M, Bordons A, Grau-Bove X, Ruiz-Trillo I, Ribas de Pouplana L. The Expansion of Inosine at the Wobble Position of tRNAs, and Its Role in the Evolution of Proteomes. Mol Biol Evol 2019; 36:650-662. [PMID: 30590541 DOI: 10.1093/molbev/msy245] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The modification of adenosine to inosine at the first position of transfer RNA (tRNA) anticodons (I34) is widespread among bacteria and eukaryotes. In bacteria, the modification is found in tRNAArg and is catalyzed by tRNA adenosine deaminase A, a homodimeric enzyme. In eukaryotes, I34 is introduced in up to eight different tRNAs by the heterodimeric adenosine deaminase acting on tRNA. This substrate expansion significantly influenced the evolution of eukaryotic genomes in terms of codon usage and tRNA gene composition. However, the selective advantages driving this process remain unclear. Here, we have studied the evolution of I34, tRNA adenosine deaminase A, adenosine deaminase acting on tRNA, and their relevant codons in a large set of bacterial and eukaryotic species. We show that a functional expansion of I34 to tRNAs other than tRNAArg also occurred within bacteria, in a process likely initiated by the emergence of unmodified A34-containing tRNAs. In eukaryotes, we report on a large variability in the use of I34 in protists, in contrast to a more uniform presence in fungi, plans, and animals. Our data support that the eukaryotic expansion of I34-tRNAs was driven by the improvement brought by these tRNAs to the synthesis of proteins highly enriched in certain amino acids.
Collapse
Affiliation(s)
- Àlbert Rafels-Ybern
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Adrian Gabriel Torres
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Noelia Camacho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Andrea Herencia-Ropero
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Helena Roura Frigolé
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Thomas F Wulff
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Marina Raboteg
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Albert Bordons
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Xavier Grau-Bove
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain.,Departament de Genètica, Microbiología i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain.,Departament de Genètica, Microbiología i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain.,ICREA, Barcelona, Catalonia, Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain.,ICREA, Barcelona, Catalonia, Spain
| |
Collapse
|
24
|
Pollo-Oliveira L, de Crécy-Lagard V. Can Protein Expression Be Regulated by Modulation of tRNA Modification Profiles? Biochemistry 2018; 58:355-362. [PMID: 30511849 DOI: 10.1021/acs.biochem.8b01035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
tRNAs are the central adaptor molecules in translation. Their decoding properties are influenced by post-transcriptional modifications, particularly in the critical anticodon-stem-loop (ASL) region. Synonymous codon choice, also called codon usage bias, affects both translation efficiency and accuracy, and ASL modifications play key roles in both of these processes. In combination with a handful of historical examples, recent studies integrating ribosome profiling, proteomics, codon-usage analyses, and modification quantifications show that levels of tRNA modifications can change under stress, during development, or under specific metabolic conditions and can modulate the expression of specific genes. Deconvoluting the different responses (global or specific) to tRNA modification deficiencies can be difficult because of pleiotropic effects, but, as more cases emerge, it does seem that tRNA modification changes could add another layer of regulation in the transfer of information from DNA to protein.
Collapse
Affiliation(s)
- Leticia Pollo-Oliveira
- Department of Microbiology and Cell Science , University of Florida , Gainesville , Florida 32603 , United States
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science , University of Florida , Gainesville , Florida 32603 , United States.,University of Florida Genetics Institute , Gainesville , Florida 32608 , United States
| |
Collapse
|