1
|
Wang Q, Li D, Zhang Z, Shen L, Xu H, Wang Z, Redshaw C, Zhang Q. Polarity-Sensitive fluorescent probes based on triphenylamine for fluorescence lifetime imaging of lipid droplets. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125694. [PMID: 39754836 DOI: 10.1016/j.saa.2024.125694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disease closely associated with metabolic abnormalities. Lipid droplets (LDs) serve as organelles that store intracellular neutral lipids and maintain cellular energy homeostasis. Their abnormalities can cause metabolic disorders and disease, which is also one of the distinctive characteristics of NAFLD patients. However, the correlation between the polarity of LDs and NAFLD is easily overlooked. To monitor the polarity changes in LDs in order to assess the progression of NAFLD, triphenylamine was used as the electron donor (D), pyridine as the electron acceptor (A) and thiazolo[5,4-d]thiazole (TTz) as π bridge in this study. The structure was modified by introducing different substituents at the triphenylamine to obtain a series of D-π-A structural polar-responsive asymmetric thiazolo[5,4-d]thiazole (aTTz) fluorescent probes with different push-pull electron effects and steric hindrance. The fluorescent probes, which exhibit distinct fluorescence emission spectra in solutions with varying polarities, demonstrate excellent polarity-sensitive properties, and the displacement of the maximum emission wavelength varies from 125 to 150 nm. Meanwhile, the fluorescent probes exhibited low dark toxicity of cells and can specifically image lipid droplets, with a localization coefficient of more than 0.84 when imaging, and can be applied to the fluorescence imaging of C. elegans. Furthermore, the polar response properties of the fluorescent probes were used to distinguish normal liver tissue and nonalcoholic fatty liver tissue by fluorescence lifetime microscopic imaging (FLIM), thus providing a molecular tool for the diagnosis of NAFLD.
Collapse
Affiliation(s)
- Qian Wang
- Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, PR China
| | - Dongmei Li
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, PR China
| | - Ze Zhang
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical, University, Guiyang 550025, China
| | - Lingyi Shen
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, PR China
| | - Hong Xu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, PR China.
| | - Zhiyong Wang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, PR China.
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull, Yorkshire HU6 7RX, UK
| | - Qilong Zhang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, PR China.
| |
Collapse
|
2
|
Ali RG, Bellchambers HM, Warr N, Ahmed JN, Barratt KS, Neill K, Diamand KEM, Arkell RM. WNT responsive SUMOylation of ZIC5 promotes murine neural crest cell development via multiple effects on transcription. J Cell Sci 2021; 134:jcs.256792. [PMID: 33771929 DOI: 10.1242/jcs.256792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/15/2021] [Indexed: 12/30/2022] Open
Abstract
Zinc finger of the cerebellum (Zic) proteins act as classical transcription factors to promote transcription of the Foxd3 gene during neural crest cell specification. Additionally, they can act as co-factors that bind TCF molecules to repress WNT/β-catenin-dependent transcription without contacting DNA. Here, we show ZIC activity at the neural plate border is influenced by WNT-dependent SUMOylation. In a high WNT environment, a lysine within the highly conserved ZF-NC domain of ZIC5 is SUMOylated, which decreases formation of the TCF/ZIC co-repressor complex and shifts the balance towards transcription factor function. The modification is critical in vivo, as a ZIC5 SUMO-incompetent mouse strain exhibits neural crest specification defects. This work reveals the function of the ZIC ZF-NC domain, provides in vivo validation of target protein SUMOylation, and demonstrates that WNT/β-catenin signaling directs transcription at non-TCF DNA binding sites. Furthermore, it can explain how WNT signals convert a broad domain of Zic ectodermal expression into a restricted domain of neural crest cell specification.
Collapse
Affiliation(s)
- Radiya G Ali
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Helen M Bellchambers
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Nicholas Warr
- Early Development, Mammalian Genetics Unit, MRC Harwell, Oxfordshire, OX110RD, UK
| | - Jehangir N Ahmed
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Kristen S Barratt
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Kieran Neill
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Koula E M Diamand
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Ruth M Arkell
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia .,Early Development, Mammalian Genetics Unit, MRC Harwell, Oxfordshire, OX110RD, UK
| |
Collapse
|
3
|
Ahmed JN, Diamand KEM, Bellchambers HM, Arkell RM. Systematized reporter assays reveal ZIC protein regulatory abilities are Subclass-specific and dependent upon transcription factor binding site context. Sci Rep 2020; 10:13130. [PMID: 32753700 PMCID: PMC7403390 DOI: 10.1038/s41598-020-69917-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/21/2020] [Indexed: 11/09/2022] Open
Abstract
The ZIC proteins are a family of transcription regulators with a well-defined zinc finger DNA-binding domain and there is evidence that they elicit functional DNA binding at a ZIC DNA binding site. Little is known, however, regarding domains within ZIC proteins that confer trans-activation or -repression. To address this question, a new cell-based trans-activation assay system suitable for ZIC proteins in HEK293T cells was constructed. This identified two previously unannotated evolutionarily conserved regions of ZIC3 that are necessary for trans-activation. These domains are found in all Subclass A ZIC proteins, but not in the Subclass B proteins. Additionally, the Subclass B proteins fail to elicit functional binding at a multimerised ZIC DNA binding site. All ZIC proteins, however, exhibit functional binding when the ZIC DNA binding site is embedded in a multiple transcription factor locus derived from ZIC target genes in the mouse genome. This ability is due to several domains, some of which are found in all ZIC proteins, that exhibit context dependent trans-activation or -repression activity. This knowledge is valuable for assessing the likely pathogenicity of variant ZIC proteins associated with human disorders and for determining factors that influence functional transcription factor binding.
Collapse
Affiliation(s)
- Jehangir N Ahmed
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Koula E M Diamand
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Helen M Bellchambers
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ruth M Arkell
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|