1
|
Cote-L'Heureux AE, Sterner EG, Maurer-Alcalá XX, Katz LA. Lost in translation: conserved amino acid usage despite extreme codon bias in foraminifera. mBio 2025; 16:e0391624. [PMID: 40042280 PMCID: PMC11980380 DOI: 10.1128/mbio.03916-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 04/10/2025] Open
Abstract
Analyses of codon usage in eukaryotes suggest that amino acid usage responds to GC pressure so AT-biased substitutions drive higher usage of amino acids with AT-ending codons. Here, we combine single-cell transcriptomics and phylogenomics to explore codon usage patterns in foraminifera, a diverse and ancient clade of predominantly uncultivable microeukaryotes. We curate data from 1,044 gene families in 49 individuals representing 28 genera, generating perhaps the largest existing dataset of data from a predominantly uncultivable clade of protists, to analyze compositional bias and codon usage. We find extreme variation in composition, with a median GC content at fourfold degenerate silent sites below 3% in some species and above 75% in others. The most AT-biased species are distributed among diverse non-monophyletic lineages. Surprisingly, despite the extreme variation in compositional bias, amino acid usage is highly conserved across all foraminifera. By analyzing nucleotide, codon, and amino acid composition within this diverse clade of amoeboid eukaryotes, we expand our knowledge of patterns of genome evolution across the eukaryotic tree of life.IMPORTANCEPatterns of molecular evolution in protein-coding genes reflect trade-offs between substitution biases and selection on both codon and amino acid usage. Most analyses of these factors in microbial eukaryotes focus on model species such as Acanthamoeba, Plasmodium, and yeast, where substitution bias is a primary contributor to patterns of amino acid usage. Foraminifera, an ancient clade of single-celled eukaryotes, present a conundrum, as we find highly conserved amino acid usage underlain by divergent nucleotide composition, including extreme AT-bias at silent sites among multiple non-sister lineages. We speculate that these paradoxical patterns are enabled by the dynamic genome structure of foraminifera, whose life cycles can include genome endoreplication and chromatin extrusion.
Collapse
Affiliation(s)
| | - Elinor G. Sterner
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Xyrus X. Maurer-Alcalá
- Division of Invertebrate Zoology, Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, USA
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- Program in Organismic Biology and Evolution, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
2
|
Sundar Panja A. The systematic codon usage bias has an important effect on genetic adaption in native species. Gene 2024; 926:148627. [PMID: 38823656 DOI: 10.1016/j.gene.2024.148627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Random mutations increase genetic variety and natural selection enhances adaption over generations. Codon usage biases (CUB) provide clues about the genome adaptation mechanisms of native species and extremophile species. Significant numbers of gene (CDS) of nine classes of endangered, native species, including extremophiles and mesophiles were utilised to compute CUB. Codon usage patterns differ among the lineages of endangered and extremophiles with native species. Polymorphic usage of nucleotides with codon burial suggests parallelism of native species within relatively confined taxonomic groups. Utilizing the deviation pattern of CUB of endangered and native species, I present a calculation parameter to estimate the extinction risk of endangered species. Species diversity and extinction risk are both positively associated with the propensity of random mutation in CDS (Coding DNA sequence). Codon bias tenet profoundly selected and it governs to adaptive evolution of native species.
Collapse
Affiliation(s)
- Anindya Sundar Panja
- Department of Biotechnology, Molecular Informatics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal 721102, India.
| |
Collapse
|
3
|
Yang Q, Xin C, Xiao QS, Lin YT, Li L, Zhao JL. Codon usage bias in chloroplast genes implicate adaptive evolution of four ginger species. FRONTIERS IN PLANT SCIENCE 2023; 14:1304264. [PMID: 38169692 PMCID: PMC10758403 DOI: 10.3389/fpls.2023.1304264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Codon usage bias (CUB) refers to different codons exhibiting varying frequencies of usage in the genome. Studying CUB is crucial for understanding genome structure, function, and evolutionary processes. Herein, we investigated the codon usage patterns and influencing factors of protein-coding genes in the chloroplast genomes of four sister genera (monophyletic Roscoea and Cautleya, and monophyletic Pommereschea and Rhynchanthus) from the Zingiberaceae family with contrasting habitats in southwestern China. These genera exhibit distinct habitats, providing a unique opportunity to explore the adaptive evolution of codon usage. We conducted a comprehensive analysis of nucleotide composition and codon usage on protein-coding genes in the chloroplast genomes. The study focused on understanding the relationship between codon usage and environmental adaptation, with a particular emphasis on genes associated with photosynthesis. Nucleotide composition analysis revealed that the overall G/C content of the coding genes was ˂ 48%, indicating an enrichment of A/T bases. Additionally, synonymous and optimal codons were biased toward ending with A/U bases. Natural selection is the primary factor influencing CUB characteristics, particularly photosynthesis-associated genes. We observed differential gene expressions related to light adaptation among sister genera inhabiting different environments. Certain codons were favored under specific conditions, possibly contributing to gene expression regulation in particular environments. This study provides insights into the adaptive evolution of these sister genera by analyzing CUB and offers theoretical assistance for understanding gene expression and regulation. In addition, the data support the relationship between RNA editing and CUB, and the findings shed light on potential research directions for investigating adaptive evolution.
Collapse
Affiliation(s)
- Qian Yang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Cheng Xin
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Qing-Song Xiao
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Ya-Ting Lin
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Li Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Jian-Li Zhao
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
4
|
Yao H, Li T, Ma Z, Wang X, Xu L, Zhang Y, Cai Y, Tang Z. Codon usage pattern of the ancestor of green plants revealed through Rhodophyta. BMC Genomics 2023; 24:538. [PMID: 37697255 PMCID: PMC10496412 DOI: 10.1186/s12864-023-09586-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023] Open
Abstract
Rhodophyta are among the closest known relatives of green plants. Studying the codons of their genomes can help us understand the codon usage pattern and characteristics of the ancestor of green plants. By studying the codon usage pattern of all available red algae, it was found that although there are some differences among species, high-bias genes in most red algae prefer codons ending with GC. Correlation analysis, Nc-GC3s plots, parity rule 2 plots, neutrality plot analysis, differential protein region analysis and comparison of the nucleotide content of introns and flanking sequences showed that the bias phenomenon is likely to be influenced by local mutation pressure and natural selection, the latter of which is the dominant factor in terms of translation accuracy and efficiency. It is worth noting that selection on translation accuracy could even be detected in the low-bias genes of individual species. In addition, we identified 15 common optimal codons in seven red algae except for G. sulphuraria for the first time, most of which were found to be complementary and bound to the tRNA genes with the highest copy number. Interestingly, tRNA modification was found for the highly degenerate amino acids of all multicellular red algae and individual unicellular red algae, which indicates that highly biased genes tend to use modified tRNA in translation. Our research not only lays a foundation for exploring the characteristics of codon usage of the red algae as green plant ancestors, but will also facilitate the design and performance of transgenic work in some economic red algae in the future.
Collapse
Affiliation(s)
- Huipeng Yao
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China.
| | - Tingting Li
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Zheng Ma
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Xiyuan Wang
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Lixiao Xu
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Yuxin Zhang
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Yi Cai
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Zizhong Tang
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| |
Collapse
|
5
|
Wang ZK, Liu Y, Zheng HY, Tang MQ, Xie SQ. Comparative Analysis of Codon Usage Patterns in Nuclear and Chloroplast Genome of Dalbergia (Fabaceae). Genes (Basel) 2023; 14:genes14051110. [PMID: 37239470 DOI: 10.3390/genes14051110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The Dalbergia plants are widely distributed across more than 130 tropical and subtropical countries and have significant economic and medicinal value. Codon usage bias (CUB) is a critical feature for studying gene function and evolution, which can provide a better understanding of biological gene regulation. In this study, we comprehensively analyzed the CUB patterns of the nuclear genome, chloroplast genome, and gene expression, as well as systematic evolution of Dalbergia species. Our results showed that the synonymous and optimal codons in the coding regions of both nuclear and chloroplast genome of Dalbergia preferred ending with A/U at the third codon base. Natural selection was the primary factor affecting the CUB features. Furthermore, in highly expressed genes of Dalbergia odorifera, we found that genes with stronger CUB exhibited higher expression levels, and these highly expressed genes tended to favor the use of G/C-ending codons. In addition, the branching patterns of the protein-coding sequences and the chloroplast genome sequences were very similar in the systematic tree, and different with the cluster from the CUB of the chloroplast genome. This study highlights the CUB patterns and features of Dalbergia species in different genomes, explores the correlation between CUB preferences and gene expression, and further investigates the systematic evolution of Dalbergia, providing new insights into codon biology and the evolution of Dalbergia plants.
Collapse
Affiliation(s)
- Zu-Kai Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, School of Forestry, Hainan University, Haikou 570228, China
| | - Yi Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, School of Forestry, Hainan University, Haikou 570228, China
| | - Hao-Yue Zheng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, School of Forestry, Hainan University, Haikou 570228, China
| | - Min-Qiang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, School of Forestry, Hainan University, Haikou 570228, China
| | - Shang-Qian Xie
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, School of Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Xu M, Gu Z, Huang J, Guo B, Jiang L, Xu K, Ye Y, Li J. The Complete Mitochondrial Genome of Mytilisepta virgata (Mollusca: Bivalvia), Novel Gene Rearrangements, and the Phylogenetic Relationships of Mytilidae. Genes (Basel) 2023; 14:910. [PMID: 37107667 PMCID: PMC10137486 DOI: 10.3390/genes14040910] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The circular mitochondrial genome of Mytilisepta virgata spans 14,713 bp, which contains 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, and 22 transfer RNA genes. Analysis of the 13 PCGs reveals that the mitochondrial gene arrangement of Mytilisepta is relatively conserved at the genus level. The location of the atp8 gene in Mytilisepta keenae differs from that of other species. However, compared with the putative molluscan ancestral gene order, M. virgata exhibits a high level of rearrangement. We constructed phylogenetic trees based on concatenated 12 PCGs from Mytilidae. As a result, we found that M. virgata is in the same clade as other Mytilisepta spp. The result of estimated divergence times revealed that M. virgata and M. keenae diverged around the early Paleogene period, although the oldest Mytilisepta fossil was from the late or upper Eocene period. Our results provide robust statistical evidence for a sister-group relationship within Mytilida. The findings not only confirm previous results, but also provide valuable insights into the evolutionary history of Mytilidae.
Collapse
Affiliation(s)
- Minhui Xu
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhongqi Gu
- Shengsi Marine Science and Technology Institute, Shengsi, Zhoushan 202450, China
| | - Ji Huang
- Shengsi Marine Science and Technology Institute, Shengsi, Zhoushan 202450, China
| | - Baoying Guo
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Lihua Jiang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Kaida Xu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs of China, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jiji Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
7
|
Carr M, Leadbeater BSC. Re-evaluating Loricate Choanoflagellate Phylogenetics: Molecular Evidence Points to the Paraphyly of Tectiform Species. Protist 2022; 173:125924. [PMID: 36327744 DOI: 10.1016/j.protis.2022.125924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Lorica-bearing choanoflagellates belong to the order Acanthoecida, a taxon which has been consistently recovered as monophyletic in molecular phylogenies. Based upon differences in lorica development and morphology, as well as the presence or absence of a motile dispersal stage, species are labelled as either nudiform or tectiform. Whilst Acanthoecida is robustly resolved in molecular phylogenies, the placement of the root of the clade is less certain with two different positions identified in past studies. One recovered root has been placed between the nudiform family Acanthoecidae and the tectiform family Stephanoecidae. An alternative root placement falls within the tectiform species, recovering the monophyletic Acanthoecidae nested within a paraphyletic Stephanoecidae. Presented here is a 14-gene phylogeny, based upon nucleotide and amino acid sequences, which strongly supports tectiform paraphyly. The horizontal transfer of a ribosomal protein gene, from a possible SAR donor, into a subset of acanthoecid species provides further, independent, support for this root placement. Differing patterns of codon usage bias across the choanoflagellates are proposed as the cause of artefactual phylogenetic signals that lead to the recovery of tectiform monophyly.
Collapse
Affiliation(s)
- Martin Carr
- Department of Biological & Geographical Sciences, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire HD1 3DH, United Kingdom.
| | - Barry S C Leadbeater
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
8
|
Torres AG, Rodríguez-Escribà M, Marcet-Houben M, Santos Vieira H, Camacho N, Catena H, Murillo Recio M, Rafels-Ybern À, Reina O, Torres F, Pardo-Saganta A, Gabaldón T, Novoa E, Ribas de Pouplana L. Human tRNAs with inosine 34 are essential to efficiently translate eukarya-specific low-complexity proteins. Nucleic Acids Res 2021; 49:7011-7034. [PMID: 34125917 PMCID: PMC8266599 DOI: 10.1093/nar/gkab461] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
The modification of adenosine to inosine at the wobble position (I34) of tRNA anticodons is an abundant and essential feature of eukaryotic tRNAs. The expansion of inosine-containing tRNAs in eukaryotes followed the transformation of the homodimeric bacterial enzyme TadA, which generates I34 in tRNAArg and tRNALeu, into the heterodimeric eukaryotic enzyme ADAT, which modifies up to eight different tRNAs. The emergence of ADAT and its larger set of substrates, strongly influenced the tRNA composition and codon usage of eukaryotic genomes. However, the selective advantages that drove the expansion of I34-tRNAs remain unknown. Here we investigate the functional relevance of I34-tRNAs in human cells and show that a full complement of these tRNAs is necessary for the translation of low-complexity protein domains enriched in amino acids cognate for I34-tRNAs. The coding sequences for these domains require codons translated by I34-tRNAs, in detriment of synonymous codons that use other tRNAs. I34-tRNA-dependent low-complexity proteins are enriched in functional categories related to cell adhesion, and depletion in I34-tRNAs leads to cellular phenotypes consistent with these roles. We show that the distribution of these low-complexity proteins mirrors the distribution of I34-tRNAs in the phylogenetic tree.
Collapse
Affiliation(s)
- Adrian Gabriel Torres
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
| | - Marta Rodríguez-Escribà
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
| | - Marina Marcet-Houben
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Catalonia 08034, Spain
| | | | - Noelia Camacho
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
| | - Helena Catena
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
| | - Marina Murillo Recio
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
| | - Àlbert Rafels-Ybern
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
| | - Oscar Reina
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
| | - Francisco Miguel Torres
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
| | - Ana Pardo-Saganta
- Centre for Applied Medical Research (CIMA Universidad de Navarra), Pamplona 31008, Spain
| | - Toni Gabaldón
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Catalonia 08034, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Catalonia 08010, Spain
| | - Eva Maria Novoa
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain
- University Pompeu Fabra, Barcelona, Catalonia 08003, Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Catalonia 08010, Spain
| |
Collapse
|
9
|
Matriano DM, Alegado RA, Conaco C. Detection of horizontal gene transfer in the genome of the choanoflagellate Salpingoeca rosetta. Sci Rep 2021; 11:5993. [PMID: 33727612 PMCID: PMC7971027 DOI: 10.1038/s41598-021-85259-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/28/2021] [Indexed: 01/31/2023] Open
Abstract
Horizontal gene transfer (HGT), the movement of heritable materials between distantly related organisms, is crucial in eukaryotic evolution. However, the scale of HGT in choanoflagellates, the closest unicellular relatives of metazoans, and its possible roles in the evolution of animal multicellularity remains unexplored. We identified at least 175 candidate HGTs in the genome of the colonial choanoflagellate Salpingoeca rosetta using sequence-based tests. The majority of these were orthologous to genes in bacterial and microalgal lineages, yet displayed genomic features consistent with the rest of the S. rosetta genome-evidence of ancient acquisition events. Putative functions include enzymes involved in amino acid and carbohydrate metabolism, cell signaling, and the synthesis of extracellular matrix components. Functions of candidate HGTs may have contributed to the ability of choanoflagellates to assimilate novel metabolites, thereby supporting adaptation, survival in diverse ecological niches, and response to external cues that are possibly critical in the evolution of multicellularity in choanoflagellates.
Collapse
Affiliation(s)
- Danielle M Matriano
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| | - Rosanna A Alegado
- Department of Oceanography, Hawai'i Sea Grant, Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Manoa, Honolulu, USA
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines.
| |
Collapse
|
10
|
Deng Y, de Lima Hedayioglu F, Kalfon J, Chu D, von der Haar T. Hidden patterns of codon usage bias across kingdoms. J R Soc Interface 2020; 17:20190819. [PMID: 32070219 PMCID: PMC7061699 DOI: 10.1098/rsif.2019.0819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The genetic code is necessarily degenerate with 64 possible nucleotide triplets being translated into 20 amino acids. Eighteen out of the 20 amino acids are encoded by multiple synonymous codons. While synonymous codons are clearly equivalent in terms of the information they carry, it is now well established that they are used in a biased fashion. There is currently no consensus as to the origin of this bias. Drawing on ideas from stochastic thermodynamics we derive from first principles a mathematical model describing the statistics of codon usage bias. We show that the model accurately describes the distribution of codon usage bias of genomes in the fungal and bacterial kingdoms. Based on it, we derive a new computational measure of codon usage bias-the distance D capturing two aspects of codon usage bias: (i) differences in the genome-wide frequency of codons and (ii) apparent non-random distributions of codons across mRNAs. By means of large scale computational analysis of over 900 species across two kingdoms of life, we demonstrate that our measure provides novel biological insights. Specifically, we show that while codon usage bias is clearly based on heritable traits and closely related species show similar degrees of bias, there is considerable variation in the magnitude of D within taxonomic classes suggesting that the contribution of sequence-level selection to codon bias varies substantially within relatively confined taxonomic groups. Interestingly, commonly used model organisms are near the median for values of D for their taxonomic class, suggesting that they may not be good representative models for species with more extreme D, which comprise organisms of medical and agricultural interest. We also demonstrate that amino acid specific patterns of codon usage are themselves quite variable between branches of the tree of life, and that some of this variability correlates with organismal tRNA content.
Collapse
Affiliation(s)
- Yun Deng
- School of Computing, University of Kent, Canterbury CT2 7NF, UK
| | | | - Jeremie Kalfon
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Dominique Chu
- School of Computing, University of Kent, Canterbury CT2 7NF, UK
| | - Tobias von der Haar
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| |
Collapse
|
11
|
Southworth J, Grace CA, Marron AO, Fatima N, Carr M. A genomic survey of transposable elements in the choanoflagellate Salpingoeca rosetta reveals selection on codon usage. Mob DNA 2019; 10:44. [PMID: 31788034 PMCID: PMC6875170 DOI: 10.1186/s13100-019-0189-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/13/2019] [Indexed: 12/04/2022] Open
Abstract
Background Unicellular species make up the majority of eukaryotic diversity, however most studies on transposable elements (TEs) have centred on multicellular host species. Such studies may have therefore provided a limited picture of how transposable elements evolve across eukaryotes. The choanoflagellates, as the sister group to Metazoa, are an important study group for investigating unicellular to multicellular transitions. A previous survey of the choanoflagellate Monosiga brevicollis revealed the presence of only three families of LTR retrotransposons, all of which appeared to be active. Salpingoeca rosetta is the second choanoflagellate to have its whole genome sequenced and provides further insight into the evolution and population biology of transposable elements in the closest relative of metazoans. Results Screening the genome revealed the presence of a minimum of 20 TE families. Seven of the annotated families are DNA transposons and the remaining 13 families are LTR retrotransposons. Evidence for two putative non-LTR retrotransposons was also uncovered, but full-length sequences could not be determined. Superfamily phylogenetic trees indicate that vertical inheritance and, in the case of one family, horizontal transfer have been involved in the evolution of the choanoflagellates TEs. Phylogenetic analyses of individual families highlight recent element activity in the genome, however six families did not show evidence of current transposition. The majority of families possess young insertions and the expression levels of TE genes vary by four orders of magnitude across families. In contrast to previous studies on TEs, the families present in S. rosetta show the signature of selection on codon usage, with families favouring codons that are adapted to the host translational machinery. Selection is stronger in LTR retrotransposons than DNA transposons, with highly expressed families showing stronger codon usage bias. Mutation pressure towards guanosine and cytosine also appears to contribute to TE codon usage. Conclusions S. rosetta increases the known diversity of choanoflagellate TEs and the complement further highlights the role of horizontal gene transfer from prey species in choanoflagellate genome evolution. Unlike previously studied TEs, the S. rosetta families show evidence for selection on their codon usage, which is shown to act via translational efficiency and translational accuracy.
Collapse
Affiliation(s)
- Jade Southworth
- 1Department of Biological & Geographical Sciences, University of Huddersfield, Huddersfield, HD1 3DH UK
| | - C Alastair Grace
- 1Department of Biological & Geographical Sciences, University of Huddersfield, Huddersfield, HD1 3DH UK
| | - Alan O Marron
- 2Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA UK
| | - Nazeefa Fatima
- 3Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Martin Carr
- 1Department of Biological & Geographical Sciences, University of Huddersfield, Huddersfield, HD1 3DH UK
| |
Collapse
|