1
|
Hu T, Ma H, Xiao Y, Sun R, Li C, Shan L, Zhang B. Chromosome-Level Genome Assembly of Five Emberiza Species Reveals the Genomic Characteristics and Intrinsic Drivers of Adaptive Radiation. Mol Ecol Resour 2025:e14063. [PMID: 39776321 DOI: 10.1111/1755-0998.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/28/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Emberiza buntings (Aves: Emberizidae) exhibit extensive diversity and rapid diversification within the Old World, particularly in the eastern Palearctic, making them valuable models for studying rapid radiation among sympatric species. Despite their ecological and morphological diversity, there remains a significant gap in understanding the genomic underpinnings driving their rapid speciation. To fill this gap, we assembled high-quality chromosome-level genomes of five representative Emberiza species (E. aureola, E. pusilla, E. rustica, E. rutila and E. spodocephala). Comparative genomic analysis revealed distinct migration-related evolutionary adaptations in their genomes, including variations in lipid metabolism, oxidative stress response, locomotor ability and circadian regulation. These changes may facilitate the rapid occupation of emerging ecological niches and provide opportunities for species diversification. Additionally, these five species exhibited abnormal abundances of long terminal repeat retrotransposons (LTRs), comprising over 20% of their genomes, with insertion times corresponding to their divergence (~2.5 million years ago). The presence of LTRs influenced genome size, chromosomal structure and single-gene expression, suggesting their role in promoting the rapid diversification of Emberiza species. These findings offer valuable insights into the adaptive radiation of Emberiza and establish a robust theoretical foundation for further exploration of the patterns and mechanisms underlying their diversification.
Collapse
Affiliation(s)
- Tingli Hu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Haohao Ma
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yongxuan Xiao
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Ruolei Sun
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Chunlin Li
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Lei Shan
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Baowei Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| |
Collapse
|
2
|
Searle JB, Pardo-Manuel de Villena F. Meiotic Drive and Speciation. Annu Rev Genet 2024; 58:341-363. [PMID: 39585909 DOI: 10.1146/annurev-genet-111523-102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Meiotic drive is the biased transmission of alleles from heterozygotes, contrary to Mendel's laws, and reflects intragenomic conflict rather than organism-level Darwinian selection. Theory has been developed as to how centromeric properties can promote female meiotic drive and how conflict between the X and Y chromosomes in males can promote male meiotic drive. There are empirical data that fit both the centromere drive and sex chromosome drive models. Sex chromosome drive may have relevance to speciation through the buildup of Dobzhansky-Muller incompatibilities involving drive and suppressor systems, studied particularly in Drosophila. Centromere drive may promote fixation of chromosomal rearrangements involving the centromere, and those fixed rearrangements may contribute to reproductive isolation, studied particularly in the house mouse. Genome-wide tests suggest that meiotic drive promotes allele fixation with regularity, and those studying the genomics of speciation need to be aware of the potential impact of such fixations on reproductive isolation. New species can originate in many different ways (including multiple factors acting together), and a substantial body of work on meiotic drive point to it being one of the processes involved.
Collapse
Affiliation(s)
- Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA;
| | | |
Collapse
|
3
|
Amorim KDJ, Costa GWWF, Motta-Neto CC, Soares RX, Borges AT, Benetti DD, Cioffi MB, Bertollo LAC, Tanomtong A, Molina WF. Karyotypic changes and diversification time in Epinephelidae groupers (Perciformes). Implications on reproductive isolation. AN ACAD BRAS CIENC 2024; 96:e20221011. [PMID: 38597487 DOI: 10.1590/0001-3765202420221011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/26/2023] [Indexed: 04/11/2024] Open
Abstract
Groupers (Epinephelidae and Serranidae) have attracted special attention to fish farming, and their species offer good opportunities for successful hybridizations. Cytogenetic data allow a better understanding of the role of karyotypic diversification in the acquisition of post-zygotic reproductive isolation (RI). Thus, chromosomal analyses were performed on E. striatus (Caribbean Sea), E. coioides and E. tauvina (Indo-Pacific Region), using standard procedures and mapping of six repetitive DNA classes by the in situ hybridization. The three species have 2n=48 chromosomes. The karyotypes of E. coioides and E. striatus are composed only of acrocentric chromosomes (FN=48), while E. tauvina has 8 submetacentric chromosomes (FN=56). Heterochromatin has a preferential centromeric distribution, and the microsatellite repeats are dispersed throughout the chromosomes of all species. The 18S and 5S rDNA sites are unique but show a colocalization arrangement in E. tauvina and E. striatus. The chromosomal organization suggests that the three species still maintain a significant amount of syntenic regions. The range of the karyotype divergence and the RI levels showed low, but goes turn proportionally greater in relation to the divergence time between the parental species. The slow acquisition of postzygotic RI is consistent with the high karyotype homogeneity presented by Epinephelidae family.
Collapse
Affiliation(s)
- Karlla Danielle J Amorim
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Biologia Celular e Genética, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Gideão W W F Costa
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Biologia Celular e Genética, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Clóvis C Motta-Neto
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Biologia Celular e Genética, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Rodrigo X Soares
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Biologia Celular e Genética, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Amanda T Borges
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Biologia Celular e Genética, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Daniel D Benetti
- University of Miami, Rosenstiel School of Marine and Atmospheric Science (RSMAS), 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | - Marcelo B Cioffi
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Laboratório de Citogenética de Peixes, Caixa Postal 676, 13565-905 São Carlos, SP, Brazil
| | - Luiz A C Bertollo
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Laboratório de Citogenética de Peixes, Caixa Postal 676, 13565-905 São Carlos, SP, Brazil
| | - Alongklod Tanomtong
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen, 40002,Thailand
- Toxic Substances in Livestock and Aquatic Animals Research Group, Khon Kaen University, Muang, Khon Kaen 40002, Thailand
| | - Wagner F Molina
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Biologia Celular e Genética, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, 59078-970 Natal, RN, Brazil
| |
Collapse
|
4
|
Belcik JT, Ashley MV. Riverscape genetics of the orangethroat darter complex. JOURNAL OF FISH BIOLOGY 2024; 104:837-850. [PMID: 37971888 DOI: 10.1111/jfb.15619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/16/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Freshwater darters belonging to the orangethroat darter species complex, or Ceasia, are widely distributed in the Central and Southern United States, with ranges that span both glaciated and unglaciated regions. Up to 15 species have been recognized in the complex, with one, Etheostoma spectabile, having a widespread northern distribution and another, Etheostoma pulchellum, having a sizeable southern distribution. The other species in the complex have much more restricted distributions in unglaciated regions of the Central Highlands. We sampled 384 darters from 52 sites covering much of the range of Ceasia and evaluated patterns of genetic diversity, genetic structure, and pre- and post-glacial patterns of range contraction and expansion. We anticipated finding much stronger signals of genetic differentiation and diversification in unglaciated regions, given the higher species diversity and levels of endemism reported there. Surprisingly, microsatellite genotyping revealed two well-differentiated genetic clusters of E. spectabile in samples from glaciated regions, one confined to the Illinois River basin and another found in the Wabash drainage and Great Lakes tributaries. This suggests that there was expansion from two isolated glacial refugia, with little subsequent post-glacial gene flow. Fish collected from throughout the unglaciated region were less genetically differentiated. Fish assigned to Etheostoma burri and Etheostoma uniporum based on collection sites and morphological characters were not genetically differentiated from E. spectabile samples from the region. Hybridization and introgression occurring in the Central Highlands may confound genetic delineation of species in this region of high endemism and diversity.
Collapse
Affiliation(s)
- John T Belcik
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
- U.S. Army Corps of Engineers Chicago District, Chicago, Illinois, USA
| | - Mary V Ashley
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Black TN, Rastogi A, Saegert A, Dib J, Moran RL. Male recognition of conspecific female chemical cues in a diverse clade of freshwater fishes. JOURNAL OF FISH BIOLOGY 2024; 104:883-886. [PMID: 37906501 DOI: 10.1111/jfb.15600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Where orangethroat darters (Etheostoma: Ceasia) and rainbow darters (Etheostoma caeruleum) co-occur, males prefer conspecific over heterospecific females. The cues males use to identify conspecific females remain unclear. We conducted behavioral trials to ask whether chemical cues function in conspecific recognition. We found that males from three orangethroat darter species preferentially associate with female scent over a control. Our results support the use of olfaction in conspecific identification in the orangethroat clade and contribute to our understanding of signals that may facilitate species recognition and underlie the evolution of behavioral isolation.
Collapse
Affiliation(s)
- Taylor N Black
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Aakriti Rastogi
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Abby Saegert
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Joseph Dib
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Rachel L Moran
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Desvignes T, Bista I, Herrera K, Landes A, Postlethwait JH. Cold-Driven Hemoglobin Evolution in Antarctic Notothenioid Fishes Prior to Hemoglobin Gene Loss in White-Blooded Icefishes. Mol Biol Evol 2023; 40:msad236. [PMID: 37879119 PMCID: PMC10651078 DOI: 10.1093/molbev/msad236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/08/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
Expression of multiple hemoglobin isoforms with differing physiochemical properties likely helps species adapt to different environmental and physiological conditions. Antarctic notothenioid fishes inhabit the icy Southern Ocean and display fewer hemoglobin isoforms, each with less affinity for oxygen than temperate relatives. Reduced hemoglobin multiplicity was proposed to result from relaxed selective pressure in the cold, thermally stable, and highly oxygenated Antarctic waters. These conditions also permitted the survival and diversification of white-blooded icefishes, the only vertebrates living without hemoglobin. To understand hemoglobin evolution during adaptation to freezing water, we analyzed hemoglobin genes from 36 notothenioid genome assemblies. Results showed that adaptation to frigid conditions shaped hemoglobin gene evolution by episodic diversifying selection concomitant with cold adaptation and by pervasive evolution in Antarctic notothenioids compared to temperate relatives, likely a continuing adaptation to Antarctic conditions. Analysis of hemoglobin gene expression in adult hematopoietic organs in various temperate and Antarctic species further revealed a switch in hemoglobin gene expression underlying hemoglobin multiplicity reduction in Antarctic fish, leading to a single hemoglobin isoform in adult plunderfishes and dragonfishes, the sister groups to icefishes. The predicted high hemoglobin multiplicity in Antarctic fish embryos based on transcriptomic data, however, raises questions about the molecular bases and physiological implications of diverse hemoglobin isoforms in embryos compared to adults. This analysis supports the hypothesis that the last common icefish ancestor was vulnerable to detrimental mutations affecting the single ancestral expressed alpha- and beta-globin gene pair, potentially predisposing their subsequent loss.
Collapse
Affiliation(s)
- Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Iliana Bista
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt 60325, Germany
- Senckenberg Research Institute, Frankfurt 60325, Germany
| | - Karina Herrera
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Audrey Landes
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
7
|
Zhou W, Furey NM, Soisook P, Thong VD, Lim BK, Rossiter SJ, Mao X. Diversification and introgression in four chromosomal taxa of the Pearson's horseshoe bat (Rhinolophus pearsoni) group. Mol Phylogenet Evol 2023; 183:107784. [PMID: 37040825 DOI: 10.1016/j.ympev.2023.107784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/11/2023] [Accepted: 04/07/2023] [Indexed: 04/13/2023]
Abstract
Chromosomal variation among closely related taxa is common in both plants and animals, and can reduce rates of introgression as well as promote reproductive isolation and speciation. In mammals, studies relating introgression to chromosomal variation have tended to focus on a few model systems and typically characterized levels of introgression using small numbers of loci. Here we took a genome-wide approach to examine how introgression rates vary among four closely related horseshoe bats (Rhinolophus pearsoni group) that possess different diploid chromosome numbers (2n = 42, 44, 46, and 60) resulting from Robertsonian (Rb) changes (fissions/fusions). Using a sequence capture we obtained orthologous loci for thousands of nuclear loci, as well as mitogenomes, and performed phylogenetic and population genetic analyses. We found that the taxon with 2n = 60 was the first to diverge in this group, and that the relationships among the three other taxa (2n = 42, 44 and 46) showed discordance across our different analyses. Our results revealed signatures of multiple ancient introgression events between the four taxa, with evidence of mitonuclar discordance in phylogenetic trees and reticulation events in their evolutionary history. Despite this, we found no evidence of recent and/or ongoing introgression between taxa. Overall, our results indicate that the effects of Rb changes on the reduction of introgression are complicated and that these may contribute to reproductive isolation and speciation in concert with other factors (e.g. phenotypic and genic divergence).
Collapse
Affiliation(s)
- Weiwei Zhou
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China
| | - Neil M Furey
- Fauna & Flora International (Cambodia), PO Box 1380, No. 19, Street 360, Boeng Keng Kong 1, Phnom Penh 12000, Cambodia
| | - Pipat Soisook
- Princess Maha Chakri Sirindhorn Natural History Museum, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Vu D Thong
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Viet Nam; Graduate University of Science and Technology, VAST, Viet Nam
| | - Burton K Lim
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario M5S 2C6, Canada
| | - Stephen J Rossiter
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK.
| | - Xiuguang Mao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
8
|
Hotaling S, Desvignes T, Sproul JS, Lins LSF, Kelley JL. Pathways to polar adaptation in fishes revealed by long-read sequencing. Mol Ecol 2023; 32:1381-1397. [PMID: 35561000 DOI: 10.1111/mec.16501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/31/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022]
Abstract
Long-read sequencing is driving a new reality for genome science in which highly contiguous assemblies can be produced efficiently with modest resources. Genome assemblies from long-read sequences are particularly exciting for understanding the evolution of complex genomic regions that are often difficult to assemble. In this study, we utilized long-read sequencing data to generate a high-quality genome assembly for an Antarctic eelpout, Ophthalmolycus amberensis, the first for the globally distributed family Zoarcidae. We used this assembly to understand how O. amberensis has adapted to the harsh Southern Ocean and compared it to another group of Antarctic fishes: the notothenioids. We showed that selection has largely acted on different targets in eelpouts relative to notothenioids. However, we did find some overlap; in both groups, genes involved in membrane structure, thermal tolerance and vision have evidence of positive selection. We found evidence for historical shifts of transposable element activity in O. amberensis and other polar fishes, perhaps reflecting a response to environmental change. We were specifically interested in the evolution of two complex genomic loci known to underlie key adaptations to polar seas: haemoglobin and antifreeze proteins (AFPs). We observed unique evolution of the haemoglobin MN cluster in eelpouts and related fishes in the suborder Zoarcoidei relative to other Perciformes. For AFPs, we identified the first species in the suborder with no evidence of afpIII sequences (Cebidichthys violaceus) in the genomic region where they are found in all other Zoarcoidei, potentially reflecting a lineage-specific loss of this cluster. Beyond polar fishes, our results highlight the power of long-read sequencing to understand genome evolution.
Collapse
Affiliation(s)
- Scott Hotaling
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - John S Sproul
- Department of Biology, University of Nebraska Omaha, Omaha, Nebraska, USA
| | - Luana S F Lins
- Australian National Insect Collection, CSIRO, Canberra, Australia
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
9
|
Hubbell JP, Schaefer JF, Kreiser BR. The influence of habitat characteristics on the occupancy and dispersal of two headwater fishes in a dendritic network. Ecosphere 2023. [DOI: 10.1002/ecs2.4388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Joshua P. Hubbell
- Department of Biological Sciences Hattiesburg University of Southern Mississippi Hattiesburg Mississippi USA
| | - Jacob F. Schaefer
- Department of Biological Sciences Hattiesburg University of Southern Mississippi Hattiesburg Mississippi USA
| | - Brian R. Kreiser
- Department of Biological Sciences Hattiesburg University of Southern Mississippi Hattiesburg Mississippi USA
| |
Collapse
|
10
|
Rayamajhi N, Cheng CHC, Catchen JM. Evaluating Illumina-, Nanopore-, and PacBio-based genome assembly strategies with the bald notothen, Trematomus borchgrevinki. G3 (BETHESDA, MD.) 2022; 12:jkac192. [PMID: 35904764 PMCID: PMC9635638 DOI: 10.1093/g3journal/jkac192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
Abstract
For any genome-based research, a robust genome assembly is required. De novo assembly strategies have evolved with changes in DNA sequencing technologies and have been through at least 3 phases: (1) short-read only, (2) short- and long-read hybrid, and (3) long-read only assemblies. Each of the phases has its own error model. We hypothesized that hidden short-read scaffolding errors and erroneous long-read contigs degrade the quality of short- and long-read hybrid assemblies. We assembled the genome of Trematomus borchgrevinki from data generated during each of the 3 phases and assessed the quality problems we encountered. We developed strategies such as k-mer-assembled region replacement, parameter optimization, and long-read sampling to address the error models. We demonstrated that a k-mer-based strategy improved short-read assemblies as measured by Benchmarking Universal Single-Copy Ortholog while mate-pair libraries introduced hidden scaffolding errors and perturbed Benchmarking Universal Single-Copy Ortholog scores. Furthermore, we found that although hybrid assemblies can generate higher contiguity they tend to suffer from lower quality. In addition, we found long-read-only assemblies can be optimized for contiguity by subsampling length-restricted raw reads. Our results indicate that long-read contig assembly is the current best choice and that assemblies from phase I and phase II were of lower quality.
Collapse
Affiliation(s)
- Niraj Rayamajhi
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana-Champaign, Champaign, IL 61801, USA
| | - Chi-Hing Christina Cheng
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana-Champaign, Champaign, IL 61801, USA
| | - Julian M Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana-Champaign, Champaign, IL 61801, USA
| |
Collapse
|
11
|
Million KM, Lively CM. Trans-specific polymorphism and the convergent evolution of supertypes in major histocompatibility complex class II genes in darters ( Etheostoma). Ecol Evol 2022; 12:e8485. [PMID: 36311547 PMCID: PMC9601779 DOI: 10.1002/ece3.8485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/24/2022] Open
Abstract
Major Histocompatibility Complex (MHC) genes are one of the most polymorphic gene groups known in vertebrates. MHC genes also exhibit allelic variants that are shared among taxa, referred to as trans-specific polymorphism (TSP). The role that selection plays in maintaining such high diversity within species, as well as TSP, is an ongoing discussion in biology. In this study, we used deep-sequencing techniques to characterize MHC class IIb gene diversity in three sympatric species of darters. We found at least 5 copies of the MHC gene in darters, with 126 genetic variants encoding 122 unique amino acid sequences. We identified four supertypes based on the binding properties of proteins encoded by the sequences. Although each species had a unique pool of variants, many variants were shared between species pairs and across all three species. Phylogenetic analysis showed that the variants did not group together monophyletically based on species identity or on supertype. An expanded phylogenetic analysis showed that some darter alleles grouped together with alleles from other percid fishes. Our findings show that TSP occurs in darters, which suggests that balancing selection is acting at the genotype level. Supertypes, however, are most likely evolving convergently, as evidenced by the fact that alleles do not form monophyletic groups based on supertype. Our research demonstrates that selection may be acting differently on MHC genes at the genotype and supertype levels, selecting for the maintenance of high genotypic diversity while driving the convergent evolution of similar MHC phenotypes across different species.
Collapse
Affiliation(s)
- Kara M. Million
- Department of BiologyIndiana UniversityBloomingtonIndianaUSA
| | | |
Collapse
|
12
|
Comprehensive Characterization of Multitissue Expression Landscape, Co-Expression Networks and Positive Selection in Pikeperch. Cells 2021; 10:cells10092289. [PMID: 34571938 PMCID: PMC8471114 DOI: 10.3390/cells10092289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/19/2022] Open
Abstract
Promising efforts are ongoing to extend genomics resources for pikeperch (Sander lucioperca), a species of high interest for the sustainable European aquaculture sector. Although previous work, including reference genome assembly, transcriptome sequence, and single-nucleotide polymorphism genotyping, added a great wealth of genomic tools, a comprehensive characterization of gene expression across major tissues in pikeperch still remains an unmet research need. Here, we used deep RNA-Sequencing of ten vital tissues collected in eight animals to build a high-confident and annotated trancriptome atlas, to detect the tissue-specificity of gene expression and co-expression network modules, and to investigate genome-wide selective signatures in the Percidae fish family. Pathway enrichment and protein–protein interaction network analyses were performed to characterize the unique biological functions of tissue-specific genes and co-expression modules. We detected strong functional correlations and similarities of tissues with respect to their expression patterns—but also significant differences in the complexity and composition of their transcriptomes. Moreover, functional analyses revealed that tissue-specific genes essentially play key roles in the specific physiological functions of the respective tissues. Identified network modules were also functionally coherent with tissues’ main physiological functions. Although tissue specificity was not associated with positive selection, several genes under selection were found to be involved in hypoxia, immunity, and gene regulation processes, that are crucial for fish adaption and welfare. Overall, these new resources and insights will not only enhance the understanding of mechanisms of organ biology in pikeperch, but also complement the amount of genomic resources for this commercial species.
Collapse
|
13
|
Sassone AB, Hojsgaard DH, Giussani LM, Brassac J, Blattner FR. Genomic, karyological and morphological changes of South American garlics (Ipheion) provide insights into mechanisms of speciation in the Pampean region. Mol Ecol 2021; 30:3716-3729. [PMID: 34087027 DOI: 10.1111/mec.16009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 01/15/2023]
Abstract
Speciation proceeds through mechanisms that promote reproductive isolation and shape the extent of genetic variation in natural populations, and thus its study is essential to understand the evolutionary processes leading to increased biodiversity. Chromosomal rearrangements are known to facilitate reproductive isolation by hybrid sterility and favour speciation events. The genus Ipheion (Amaryllidaceae, Allioideae) is unique as its species exhibit a remarkable karyological variability but lack population-level genetic data. To unveil the diversification processes acting upon the formation of new lineages within Ipheion in the Pampas of South America, we combined morphology and karyology approaches with genotyping-by-sequencing. Our phylogenomic and population genomics results supported the taxonomic division of Ipheion into three morphological and genetically well-differentiated groups. The origin of Ipheion uniflorum was traced back to its current southern distribution area in the southern Pampean region (in Argentina), from where it had expanded to the north reaching Uruguay. Our results further suggested that chromosome rearrangements and ploidy shifts had triggered speciation events, first during the origin of I. uniflorum and later during its subsequent diversification into I. recurvifolium and I. tweedieanum, in both cases reinforced by extrinsic factors and biogeographical settings. The current study illustrates the analytical power of multidisciplinary approaches integrating phylo- and population genomics with classic analyses to reveal evolutionary processes in plants.
Collapse
Affiliation(s)
- Agostina B Sassone
- Instituto de Botánica Darwinion, CONICET-ANCEFN, Buenos Aires, Argentina.,Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Diego H Hojsgaard
- Department of Systematics, Biodiversity, and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Liliana M Giussani
- Instituto de Botánica Darwinion, CONICET-ANCEFN, Buenos Aires, Argentina
| | - Jonathan Brassac
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Frank R Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
14
|
Oliveira DR, Reid BN, Fitzpatrick SW. Genome-wide diversity and habitat underlie fine-scale phenotypic differentiation in the rainbow darter ( Etheostoma caeruleum). Evol Appl 2021; 14:498-512. [PMID: 33664790 PMCID: PMC7896715 DOI: 10.1111/eva.13135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022] Open
Abstract
Adaptation to environmental change requires that populations harbor the necessary genetic variation to respond to selection. However, dispersal-limited species with fragmented populations and reduced genetic diversity may lack this variation and are at an increased risk of local extinction. In freshwater fish species, environmental change in the form of increased stream temperatures places many cold-water species at-risk. We present a study of rainbow darters (Etheostoma caeruleum) in which we evaluated the importance of genetic variation on adaptive potential and determined responses to extreme thermal stress. We compared fine-scale patterns of morphological and thermal tolerance differentiation across eight sites, including a unique lake habitat. We also inferred contemporary population structure using genomic data and characterized the relationship between individual genetic diversity and stress tolerance. We found site-specific variation in thermal tolerance that generally matched local conditions and morphological differences associated with lake-stream divergence. We detected patterns of population structure on a highly local spatial scale that could not be explained by isolation by distance or stream connectivity. Finally, we showed that individual thermal tolerance was positively correlated with genetic variation, suggesting that sites with increased genetic diversity may be better at tolerating novel stress. Our results highlight the importance of considering intraspecific variation in understanding population vulnerability and stress response.
Collapse
Affiliation(s)
| | - Brendan N. Reid
- W.K. Kellogg Biological StationMichigan State UniversityHickory CornersMIUSA
| | - Sarah W. Fitzpatrick
- W.K. Kellogg Biological StationMichigan State UniversityHickory CornersMIUSA
- Department of Integrative BiologyMichigan State UniversityEast LansingMIUSA
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEast LansingMIUSA
| |
Collapse
|
15
|
Chromonomer: A Tool Set for Repairing and Enhancing Assembled Genomes Through Integration of Genetic Maps and Conserved Synteny. G3-GENES GENOMES GENETICS 2020; 10:4115-4128. [PMID: 32912931 PMCID: PMC7642942 DOI: 10.1534/g3.120.401485] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The pace of the sequencing and computational assembly of novel reference genomes is accelerating. Though DNA sequencing technologies and assembly software tools continue to improve, biological features of genomes such as repetitive sequence as well as molecular artifacts that often accompany sequencing library preparation can lead to fragmented or chimeric assemblies. If left uncorrected, defects like these trammel progress on understanding genome structure and function, or worse, positively mislead this research. Fortunately, integration of additional, independent streams of information, such as a marker-dense genetic map and conserved orthologous gene order from related taxa, can be used to scaffold together unlinked, disordered fragments and to restructure a reference genome where it is incorrectly joined. We present a tool set for automating these processes, one that additionally tracks any changes to the assembly and to the genetic map, and which allows the user to scrutinize these changes with the help of web-based, graphical visualizations. Chromonomer takes a user-defined reference genome, a map of genetic markers, and, optionally, conserved synteny information to construct an improved reference genome of chromosome models: a “chromonome”. We demonstrate Chromonomer’s performance on genome assemblies and genetic maps that have disparate characteristics and levels of quality.
Collapse
|
16
|
Reid BN, Moran RL, Kopack CJ, Fitzpatrick SW. Rapture-ready darters: Choice of reference genome and genotyping method (whole-genome or sequence capture) influence population genomic inference in Etheostoma. Mol Ecol Resour 2020; 21:404-420. [PMID: 33058399 DOI: 10.1111/1755-0998.13275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 11/26/2022]
Abstract
Researchers studying nonmodel organisms have an increasing number of methods available for generating genomic data. However, the applicability of different methods across species, as well as the effect of reference genome choice on population genomic inference, remain difficult to predict in many cases. We evaluated the impact of data type (whole-genome vs. reduced representation) and reference genome choice on data quality and on population genomic and phylogenomic inference across several species of darters (subfamily Etheostomatinae), a highly diverse radiation of freshwater fish. We generated a high-quality reference genome and developed a hybrid RADseq/sequence capture (Rapture) protocol for the Arkansas darter (Etheostoma cragini). Rapture data from 1,900 individuals spanning four darter species showed recovery of most loci across darter species at high depth and consistent estimates of heterozygosity regardless of reference genome choice. Loci with baits spanning both sides of the restriction enzyme cut site performed especially well across species. For low-coverage whole-genome data, choice of reference genome affected read depth and inferred heterozygosity. For similar amounts of sequence data, Rapture performed better at identifying fine-scale genetic structure compared to whole-genome sequencing. Rapture loci also recovered an accurate phylogeny for the study species and demonstrated high phylogenetic informativeness across the evolutionary history of the genus Etheostoma. Low cost and high cross-species effectiveness regardless of reference genome suggest that Rapture and similar sequence capture methods may be worthwhile choices for studies of diverse species radiations.
Collapse
Affiliation(s)
- Brendan N Reid
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Rachel L Moran
- Department of Evolution, Ecology, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | | | - Sarah W Fitzpatrick
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA.,Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|