1
|
Kunz L, Poretti M, Praz CR, Müller MC, Wyler M, Keller B, Wicker T, Bourras S. High-Copy Transposons from a Pathogen Give Rise to a Conserved sRNA Family with a Novel Host Immunity Target. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:545-551. [PMID: 38551853 DOI: 10.1094/mpmi-10-23-0176-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2024]
Abstract
Small RNAs (sRNAs) are involved in gene silencing in multiple ways, including through cross-kingdom transfers from parasites to their hosts. Little is known about the evolutionary mechanisms enabling eukaryotic microbes to evolve functional mimics of host small regulatory RNAs. Here, we describe the identification and functional characterization of SINE_sRNA1, an sRNA family derived from highly abundant short interspersed nuclear element (SINE) retrotransposons in the genome of the wheat powdery mildew pathogen. SINE_sRNA1 is encoded by a sequence motif that is conserved in multiple SINE families and corresponds to a functional plant microRNA (miRNA) mimic targeting Tae_AP1, a wheat gene encoding an aspartic protease only found in monocots. Tae_AP1 has a novel function enhancing both pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), thereby contributing to the cross activation of plant defenses. We conclude that SINE_sRNA1 and Tae_AP1 are functional innovations, suggesting the contribution of transposons to the evolutionary arms race between a parasite and its host. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Lukas Kunz
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Manuel Poretti
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Coraline R Praz
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
- Center of Biotechnology and Genomics of Plants, Polytechnic University of Madrid, Campus de Montegancedo, 28223 Madrid, Spain
| | - Marion C Müller
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising-Weihenstephan, Germany
| | - Michele Wyler
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
- MWSchmid GmbH, Hauptstrasse 34, CH-8750 Glarus, Switzerland
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Salim Bourras
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
- Department of Plant Biology, Swedish University of Agricultural Sciences, Almas Allé 5, 75007 Uppsala, Sweden
| |
Collapse
|
2
|
Mustafin RN, Khusnutdinova E. Perspective for Studying the Relationship of miRNAs with Transposable Elements. Curr Issues Mol Biol 2023; 45:3122-3145. [PMID: 37185728 PMCID: PMC10136691 DOI: 10.3390/cimb45040204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/07/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Transposable elements are important sources of miRNA, long non-coding RNAs genes, and their targets in the composition of protein-coding genes in plants and animals. Therefore, the detection of expression levels of specific non-coding RNAs in various tissues and cells in normal and pathological conditions may indicate a programmed pattern of transposable elements' activation. This reflects the species-specific composition and distribution of transposable elements in genomes, which underlie gene regulation in every cell division, including during aging. TEs' expression is also regulated by epigenetic factors (DNA methylation, histone modifications), SIRT6, cytidine deaminases APOBEC3, APOBEC1, and other catalytic proteins, such as ERCC, TREX1, RB1, HELLS, and MEGP2. In evolution, protein-coding genes and their regulatory elements are derived from transposons. As part of non-coding regions and introns of genes, they are sensors for transcriptional and post-transcriptional control of expression, using miRNAs and long non-coding RNAs, that arose from transposable elements in evolution. Methods (Orbld, ncRNAclassifier) and databases have been created for determining the occurrence of miRNAs from transposable elements in plants (PlanTE-MIR DB, PlaNC-TE), which can be used to design epigenetic gene networks in ontogenesis. Based on the data accumulated in the scientific literature, the presence of 467 transposon-derived miRNA genes in the human genome has been reliably established. It was proposed to create an updated and controlled online bioinformatics database of miRNAs derived from transposable elements in healthy individuals, as well as expression changes of these miRNAs during aging and various diseases, such as cancer and difficult-to-treat diseases. The use of the information obtained can open new horizons in the management of tissue and organ differentiation to aging slow down. In addition, the created database could become the basis for clarifying the mechanisms of pathogenesis of various diseases (imbalance in the activity of transposable elements, reflected in changes in the expression of miRNAs) and designing their targeted therapy using specific miRNAs as targets. This article provides examples of the detection of transposable elements-derived miRNAs involved in the development of specific malignant neoplasms, aging, and idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Rustam Nailevich Mustafin
- Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Elza Khusnutdinova
- Ufa Federal Research Centre, Institute of Biochemistry and Genetics, Russian Academy of Sciences, 450054 Ufa, Russia
| |
Collapse
|
3
|
Pegler JL, Oultram JMJ, Mann CWG, Carroll BJ, Grof CPL, Eamens AL. Miniature Inverted-Repeat Transposable Elements: Small DNA Transposons That Have Contributed to Plant MICRORNA Gene Evolution. PLANTS (BASEL, SWITZERLAND) 2023; 12:1101. [PMID: 36903960 PMCID: PMC10004981 DOI: 10.3390/plants12051101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Angiosperms form the largest phylum within the Plantae kingdom and show remarkable genetic variation due to the considerable difference in the nuclear genome size of each species. Transposable elements (TEs), mobile DNA sequences that can amplify and change their chromosome position, account for much of the difference in nuclear genome size between individual angiosperm species. Considering the dramatic consequences of TE movement, including the complete loss of gene function, it is unsurprising that the angiosperms have developed elegant molecular strategies to control TE amplification and movement. Specifically, the RNA-directed DNA methylation (RdDM) pathway, directed by the repeat-associated small-interfering RNA (rasiRNA) class of small regulatory RNA, forms the primary line of defense to control TE activity in the angiosperms. However, the miniature inverted-repeat transposable element (MITE) species of TE has at times avoided the repressive effects imposed by the rasiRNA-directed RdDM pathway. MITE proliferation in angiosperm nuclear genomes is due to their preference to transpose within gene-rich regions, a pattern of transposition that has enabled MITEs to gain further transcriptional activity. The sequence-based properties of a MITE results in the synthesis of a noncoding RNA (ncRNA), which, after transcription, folds to form a structure that closely resembles those of the precursor transcripts of the microRNA (miRNA) class of small regulatory RNA. This shared folding structure results in a MITE-derived miRNA being processed from the MITE-transcribed ncRNA, and post-maturation, the MITE-derived miRNA can be used by the core protein machinery of the miRNA pathway to regulate the expression of protein-coding genes that harbor homologous MITE insertions. Here, we outline the considerable contribution that the MITE species of TE have made to expanding the miRNA repertoire of the angiosperms.
Collapse
Affiliation(s)
- Joseph L. Pegler
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jackson M. J. Oultram
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Christopher W. G. Mann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Bernard J. Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Christopher P. L. Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Andrew L. Eamens
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
4
|
Kondo H, Sugahara H, Fujita M, Hyodo K, Andika IB, Hisano H, Suzuki N. Discovery and Genome Characterization of a Closterovirus from Wheat Plants with Yellowing Leaf Symptoms in Japan. Pathogens 2023; 12:358. [PMID: 36986280 PMCID: PMC10053543 DOI: 10.3390/pathogens12030358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Many aphid-borne viruses are important pathogens that affect wheat crops worldwide. An aphid-transmitted closterovirus named wheat yellow leaf virus (WYLV) was found to have infected wheat plants in Japan in the 1970s; however, since then, its viral genome sequence and occurrence in the field have not been investigated. We observed yellowing leaves in the 2018/2019 winter wheat-growing season in an experimental field in Japan where WYLV was detected five decades ago. A virome analysis of those yellow leaf samples lead to the discovery of a closterovirus together with a luteovirus (barley yellow dwarf virus PAV variant IIIa). The complete genomic sequence of this closterovirus, named wheat closterovirus 1 isolate WL19a (WhCV1-WL19a), consisted of 15,452 nucleotides harboring nine open reading frames. Additionally, we identified another WhCV1 isolate, WL20, in a wheat sample from the winter wheat-growing season of 2019/2020. A transmission test indicated that WhCV1-WL20 was able to form typical filamentous particles and transmissible by oat bird-cherry aphid (Rhopalosiphum pad). Sequence and phylogenetic analyses showed that WhCV1 was distantly related to members of the genus Closterovirus (family Closteroviridae), suggesting that the virus represents a novel species in the genus. Furthermore, the characterization of WhCV1-WL19a-derived small RNAs using high-throughput sequencing revealed highly abundant 22-nt-class small RNAs potentially derived from the 3'-terminal end of the WhCV1 negative-strand genomic RNA, indicating that this terminal end of the WhCV1 genome is likely particularly targeted for the synthesis of viral small RNAs in wheat plants. Our results provide further knowledge on closterovirus diversity and pathogenicity and suggest that the impact of WhCV1 on wheat production warrants further investigations.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Hitomi Sugahara
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Miki Fujita
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Kiwamu Hyodo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Hiroshi Hisano
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
5
|
Bariah I, Gribun L, Kashkush K. Transposable elements are associated with genome-specific gene expression in bread wheat. FRONTIERS IN PLANT SCIENCE 2023; 13:1072232. [PMID: 36714723 PMCID: PMC9878150 DOI: 10.3389/fpls.2022.1072232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Recent studies in wheat emphasized the importance of TEs, which occupy ~85% of the wheat genome, as a major source of intraspecific genetic variation due to their recent activity and involvement in genomic rearrangements. The contribution of TEs to structural and functional variations in bread wheat genes is not fully understood. METHODS Here, publicly available RNA-Seq databases of bread wheat were integrated to identify TE insertions within gene bodies (exons\ introns) and assess the impact of TE insertions on gene expression variations of homoeologs gene groups. Overall, 70,818 homoeologs genes were analyzed: 55,170 genes appeared in each one of the three subgenomes (termed ABD), named triads; 12,640 genes appeared in two of the three subgenomes (in A and B only, termed AB; or in A and D only, termed AD; or in B and D only, termed BD);, named dyads; and 3,008 genes underwent duplication in one of the three subgenomes (two copies in: subgenome A, termed AABD; subgenome B, termed ABBD; or subgenome D, termed ABDD), named tetrads. RESULTS To this end, we found that ~36% of the 70,818 genes contained at least one TE insertion within the gene body, mostly in triads. Analysis of 14,258 triads revealed that the presence of TE insertion in at least one of the triad genes (7,439 triads) was associated with balanced expression (similar expression levels) between the homoeolog genes. TE insertions within the exon or in the untranslated regions (UTRs) of one or more of the homoeologs in a triad were significantly associated with homoeolog expression bias. Furthermore, we found a statistically significant correlation between the presence\absence of TEs insertions belonging to six TE superfamilies and 17 TE subfamilies and the suppression of a single homoeolog gene. A significant association was observed between the presence of TE insertions from specific superfamilies and the expression of genes that are associated with biotic and abiotic stress responses. CONCLUSION Our data strongly indicate that TEs might play a prominent role in controlling gene expression in a genome-specific manner in bread wheat.
Collapse
|
6
|
Liu P, Cuerda-Gil D, Shahid S, Slotkin RK. The Epigenetic Control of the Transposable Element Life Cycle in Plant Genomes and Beyond. Annu Rev Genet 2022; 56:63-87. [DOI: 10.1146/annurev-genet-072920-015534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Within the life cycle of a living organism, another life cycle exists for the selfish genome inhabitants, which are called transposable elements (TEs). These mobile sequences invade, duplicate, amplify, and diversify within a genome, increasing the genome's size and generating new mutations. Cells act to defend their genome, but rather than permanently destroying TEs, they use chromatin-level repression and epigenetic inheritance to silence TE activity. This level of silencing is ephemeral and reversible, leading to a dynamic equilibrium between TE suppression and reactivation within a host genome. The coexistence of the TE and host genome can also lead to the domestication of the TE to serve in host genome evolution and function. In this review, we describe the life cycle of a TE, with emphasis on how epigenetic regulation is harnessed to control TEs for host genome stability and innovation.
Collapse
Affiliation(s)
- Peng Liu
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Diego Cuerda-Gil
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
- Graduate Program in the Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Saima Shahid
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - R. Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
7
|
Macquet J, Mounichetty S, Raffaele S. Genetic co-option into plant-filamentous pathogen interactions. TRENDS IN PLANT SCIENCE 2022; 27:1144-1158. [PMID: 35909010 DOI: 10.1016/j.tplants.2022.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/16/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Plants are engaged in a coevolutionary arms race with their pathogens that drives rapid diversification and specialization of genes involved in resistance and virulence. However, some major innovations in plant-pathogen interactions, such as molecular decoys, trans-kingdom RNA interference, two-speed genomes, and receptor networks, evolved through the expansion of the functional landscape of genes. This is a typical outcome of genetic co-option, the evolutionary process by which available genes are recruited into new biological functions. Co-option into plant-pathogen interactions emerges generally from (i) cis-regulatory variation, (ii) horizontal gene transfer (HGT), (iii) mutations altering molecular promiscuity, and (iv) rewiring of gene networks and protein complexes. Understanding these molecular mechanisms is key for the functional and predictive biology of plant-pathogen interactions.
Collapse
Affiliation(s)
- Joris Macquet
- Laboratoire des Interactions Plante-Microbe-Environnement (LIPME), Université de Toulouse, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Castanet Tolosan, France
| | - Shantala Mounichetty
- Laboratoire des Interactions Plante-Microbe-Environnement (LIPME), Université de Toulouse, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Castanet Tolosan, France
| | - Sylvain Raffaele
- Laboratoire des Interactions Plante-Microbe-Environnement (LIPME), Université de Toulouse, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Castanet Tolosan, France.
| |
Collapse
|
8
|
Teresi SJ, Teresi MB, Edger PP. TE Density: a tool to investigate the biology of transposable elements. Mob DNA 2022; 13:11. [PMID: 35413944 PMCID: PMC9004194 DOI: 10.1186/s13100-022-00264-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) are powerful creators of genotypic and phenotypic diversity due to their inherent mutagenic capabilities and in this way they serve as a deep reservoir of sequences for genomic variation. As agents of genetic disruption, a TE's potential to impact phenotype is partially a factor of its location in the genome. Previous research has shown TEs' ability to impact the expression of neighboring genes, however our understanding of this trend is hampered by the exceptional amount of diversity in the TE world, and a lack of publicly available computational methods that quantify the presence of TEs relative to genes. RESULTS Here, we have developed a tool to more easily quantify TE presence relative to genes through the use of only a gene and TE annotation, yielding a new metric we call TE Density. Briefly defined as the proportion of TE-occupied base-pairs relative to a window-size of the genome. This new pipeline reports TE density for each gene in the genome, for each type descriptor of TE (order and superfamily), and for multiple positions and distances relative to the gene (upstream, intragenic, and downstream) over sliding, user-defined windows. In this way, we overcome previous limitations to the study of TE-gene relationships by focusing on all TE types present in the genome, utilizing flexible genomic distances for measurement, and reporting a TE presence metric for every gene in the genome. CONCLUSIONS Together, this new tool opens up new avenues for studying TE-gene relationships, genome architecture, comparative genomics, and the tremendous diversity present of the TE world. TE Density is open-source and freely available at: https://github.com/sjteresi/TE_Density .
Collapse
Affiliation(s)
- Scott J Teresi
- Department of Horticulture, Michigan State University, East Lansing, Michigan, USA
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, Michigan, USA
| | | | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, Michigan, USA.
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
9
|
Crescente JM, Zavallo D, Del Vas M, Asurmendi S, Helguera M, Fernandez E, Vanzetti LS. Genome-wide identification of MITE-derived microRNAs and their targets in bread wheat. BMC Genomics 2022; 23:154. [PMID: 35193500 PMCID: PMC8862332 DOI: 10.1186/s12864-022-08364-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 02/03/2022] [Indexed: 12/15/2022] Open
Abstract
Background Plant miRNAs are a class of small non-coding RNAs that can repress gene expression at the post-transcriptional level by targeting RNA degradation or promoting translational repression. There is increasing evidence that some miRNAs can derive from a group of non-autonomous class II transposable elements called Miniature Inverted-repeat Transposable Elements (MITEs). Results We used public small RNA and degradome libraries from Triticum aestivum to screen for microRNAs production and predict their cleavage target sites. In parallel, we also created a comprehensive wheat MITE database by identifying novel elements and compiling known ones. When comparing both data sets, we found high homology between MITEs and 14% of all the miRNAs production sites detected. Furthermore, we show that MITE-derived miRNAs have preference for targeting degradation sites with MITE insertions in the 3’ UTR regions of the transcripts. Conclusions Our results revealed that MITE-derived miRNAs can underlay the origin of some miRNAs and potentially shape a regulatory gene network. Since MITEs are found in millions of insertions in the wheat genome and are closely linked to genic regions, this kind of regulatory network could have a significant impact on the post-transcriptional control of gene expression. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-022-08364-4).
Collapse
Affiliation(s)
- Juan M Crescente
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, CP C1425FQB, Argentina.
| | - Diego Zavallo
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA - Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Los Reseros y Nicolás Repetto, Hurlingham, CP 1686, Argentina
| | - Mariana Del Vas
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA - Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Los Reseros y Nicolás Repetto, Hurlingham, CP 1686, Argentina
| | - Sebastián Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA - Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Los Reseros y Nicolás Repetto, Hurlingham, CP 1686, Argentina
| | - Marcelo Helguera
- Instituto Nacional de Tecnología Agropecuaria (INTA). EEA INTA Marcos Juárez, Ruta 12 s/n, Marcos Juarez, CP 2850, Argentina
| | - Elmer Fernandez
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE-CONICET), Universidad Católica de Córdoba, Córdoba, Argentina.,Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Leonardo S Vanzetti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, CP C1425FQB, Argentina.,Instituto Nacional de Tecnología Agropecuaria (INTA). EEA INTA Marcos Juárez, Ruta 12 s/n, Marcos Juarez, CP 2850, Argentina
| |
Collapse
|
10
|
Blasio F, Prieto P, Pradillo M, Naranjo T. Genomic and Meiotic Changes Accompanying Polyploidization. PLANTS (BASEL, SWITZERLAND) 2022; 11:125. [PMID: 35009128 PMCID: PMC8747196 DOI: 10.3390/plants11010125] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 05/04/2023]
Abstract
Hybridization and polyploidy have been considered as significant evolutionary forces in adaptation and speciation, especially among plants. Interspecific gene flow generates novel genetic variants adaptable to different environments, but it is also a gene introgression mechanism in crops to increase their agronomical yield. An estimate of 9% of interspecific hybridization has been reported although the frequency varies among taxa. Homoploid hybrid speciation is rare compared to allopolyploidy. Chromosome doubling after hybridization is the result of cellular defects produced mainly during meiosis. Unreduced gametes, which are formed at an average frequency of 2.52% across species, are the result of altered spindle organization or orientation, disturbed kinetochore functioning, abnormal cytokinesis, or loss of any meiotic division. Meiotic changes and their genetic basis, leading to the cytological diploidization of allopolyploids, are just beginning to be understood especially in wheat. However, the nature and mode of action of homoeologous recombination suppressor genes are poorly understood in other allopolyploids. The merger of two independent genomes causes a deep modification of their architecture, gene expression, and molecular interactions leading to the phenotype. We provide an overview of genomic changes and transcriptomic modifications that particularly occur at the early stages of allopolyploid formation.
Collapse
Affiliation(s)
- Francesco Blasio
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4048, 14080 Cordova, Spain;
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Tomás Naranjo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| |
Collapse
|
11
|
Nicolau M, Picault N, Moissiard G. The Evolutionary Volte-Face of Transposable Elements: From Harmful Jumping Genes to Major Drivers of Genetic Innovation. Cells 2021; 10:cells10112952. [PMID: 34831175 PMCID: PMC8616336 DOI: 10.3390/cells10112952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Transposable elements (TEs) are self-replicating DNA elements that constitute major fractions of eukaryote genomes. Their ability to transpose can modify the genome structure with potentially deleterious effects. To repress TE activity, host cells have developed numerous strategies, including epigenetic pathways, such as DNA methylation or histone modifications. Although TE neo-insertions are mostly deleterious or neutral, they can become advantageous for the host under specific circumstances. The phenomenon leading to the appropriation of TE-derived sequences by the host is known as TE exaptation or co-option. TE exaptation can be of different natures, through the production of coding or non-coding DNA sequences with ultimately an adaptive benefit for the host. In this review, we first give new insights into the silencing pathways controlling TE activity. We then discuss a model to explain how, under specific environmental conditions, TEs are unleashed, leading to a TE burst and neo-insertions, with potential benefits for the host. Finally, we review our current knowledge of coding and non-coding TE exaptation by providing several examples in various organisms and describing a method to identify TE co-option events.
Collapse
Affiliation(s)
- Melody Nicolau
- LGDP-UMR5096, CNRS, 66860 Perpignan, France; (M.N.); (N.P.)
- LGDP-UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Nathalie Picault
- LGDP-UMR5096, CNRS, 66860 Perpignan, France; (M.N.); (N.P.)
- LGDP-UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Guillaume Moissiard
- LGDP-UMR5096, CNRS, 66860 Perpignan, France; (M.N.); (N.P.)
- LGDP-UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
- Correspondence:
| |
Collapse
|
12
|
Campo S, Sánchez‐Sanuy F, Camargo‐Ramírez R, Gómez‐Ariza J, Baldrich P, Campos‐Soriano L, Soto‐Suárez M, San Segundo B. A novel Transposable element-derived microRNA participates in plant immunity to rice blast disease. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1798-1811. [PMID: 33780108 PMCID: PMC8428829 DOI: 10.1111/pbi.13592] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that direct post-transcriptional gene silencing in plant development and stress responses through cleavage or translational repression of target mRNAs. Here, we report the identification and functional characterization of a new member of the miR812 family in rice (named as miR812w) involved in disease resistance. miR812w is present in cultivated Oryza species, both japonica and indica subspecies, and wild rice species within the Oryza genus, but not in dicotyledonous species. miR812w is a 24nt-long that requires DCL3 for its biogenesis and is loaded into AGO4 proteins. Whereas overexpression of miR812w increased resistance to infection by the rice blast fungus Magnaporthe oryzae, CRISPR/Cas9-mediated MIR812w editing enhances disease susceptibility, supporting that miR812w plays a role in blast resistance. We show that miR812w derives from the Stowaway type of rice MITEs (Miniature Inverted-Repeat Transposable Elements). Moreover, miR812w directs DNA methylation in trans at target genes that have integrated a Stowaway MITE copy into their 3' or 5' untranslated region (ACO3, CIPK10, LRR genes), as well as in cis at the MIR812w locus. The target genes of miR812 were found to be hypo-methylated around the miR812 recognition site, their expression being up-regulated in transgene-free CRISPR/Cas9-edited miR812 plants. These findings further support that, in addition to post-transcriptional regulation of gene expression, miRNAs can exert their regulatory function at the transcriptional level. This relationship between miR812w and Stowaway MITEs integrated into multiple coding genes might eventually create a network for miR812w-mediated regulation of gene expression with implications in rice immunity.
Collapse
Affiliation(s)
- Sonia Campo
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Ferran Sánchez‐Sanuy
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Rosany Camargo‐Ramírez
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Jorge Gómez‐Ariza
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Patricia Baldrich
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
- Present address:
Donald Danforth Plant Science Center975 N Warson RoadSt. LouisMO63132USA
| | - Lidia Campos‐Soriano
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Mauricio Soto‐Suárez
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
- Present address:
Corporación Colombiana de Investigación Agropecuaria. AGROSAVIAKm 14 vía Mosquera‐BogotáMosquera250047Colombia
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| |
Collapse
|
13
|
Ebrahimzadegan R, Orooji F, Ma P, Mirzaghaderi G. Differentially Amplified Repetitive Sequences Among Aegilops tauschii Subspecies and Genotypes. FRONTIERS IN PLANT SCIENCE 2021; 12:716750. [PMID: 34490015 PMCID: PMC8417419 DOI: 10.3389/fpls.2021.716750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Genomic repetitive sequences commonly show species-specific sequence type, abundance, and distribution patterns, however, their intraspecific characteristics have been poorly described. We quantified the genomic repetitive sequences and performed single nucleotide polymorphism (SNP) analysis between 29 Ae. tauschii genotypes and subspecies using publicly available raw genomic Illumina sequence reads and used fluorescence in situ hybridization (FISH) to experimentally analyze some repeats. The majority of the identified repetitive sequences had similar contents and proportions between anathera, meyeri, and strangulata subspecies. However, two Ty3/gypsy retrotransposons (CL62 and CL87) showed significantly higher abundances, and CL1, CL119, CL213, CL217 tandem repeats, and CL142 retrotransposon (Ty1/copia type) showed significantly lower abundances in subspecies strangulata compared with the subspecies anathera and meyeri. One tandem repeat and 45S ribosomal DNA (45S rDNA) abundances showed a high variation between genotypes but their abundances were not subspecies specific. Phylogenetic analysis using the repeat abundances of the aforementioned clusters placed the strangulata subsp. in a distinct clade but could not discriminate anathera and meyeri. A near complete differentiation of anathera and strangulata subspecies was observed using SNP analysis; however, var. meyeri showed higher genetic diversity. FISH using major tandem repeats couldn't detect differences between subspecies, although (GAA)10 signal patterns generated two different karyotype groups. Taken together, the different classes of repetitive DNA sequences have differentially accumulated between strangulata and the other two subspecies of Ae. tauschii that is generally in agreement with spike morphology, implying that factors affecting repeatome evolution are variable even among highly closely related lineages.
Collapse
Affiliation(s)
- Rahman Ebrahimzadegan
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Fatemeh Orooji
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Pengtao Ma
- College of Life Sciences, Yantai University, Yantai, China
| | - Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
14
|
Kozlowski DKL, Hassanaly‐Goulamhoussen R, Da Rocha M, Koutsovoulos GD, Bailly‐Bechet M, Danchin EGJ. Movements of transposable elements contribute to the genomic plasticity and species diversification in an asexually reproducing nematode pest. Evol Appl 2021; 14:1844-1866. [PMID: 34295368 PMCID: PMC8288018 DOI: 10.1111/eva.13246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
Despite reproducing without sexual recombination, Meloidogyne incognita is an adaptive and versatile phytoparasitic nematode. This species displays a global distribution, can parasitize a large range of plants, and can overcome plant resistance in a few generations. The mechanisms underlying this adaptability remain poorly known. At the whole-genome level, only a few single nucleotide variations have been observed across different geographical isolates with distinct ranges of compatible hosts. Exploring other factors possibly involved in genomic plasticity is thus important. Transposable elements (TEs), by their repetitive nature and mobility, can passively and actively impact the genome dynamics. This is particularly expected in polyploid hybrid genomes such as the one of M. incognita. Here, we have annotated the TE content of M. incognita, analyzed the statistical properties of this TE landscape, and used whole-genome pool-seq data to estimate the mobility of these TEs across twelve geographical isolates, presenting variations in ranges of compatible host plants. DNA transposons are more abundant than retrotransposons, and the high similarity of TE copies to their consensus sequences suggests they have been at least recently active. We have identified loci in the genome where the frequencies of presence of a TE showed substantial variations across the different isolates. Overall, variations in TE frequencies across isolates followed their phylogenetic divergence, suggesting TEs participate in the species diversification. Compared with the M. incognita reference genome, we detected isolate and lineage-specific de novo insertion of some TEs, including within genic regions or in the upstream regulatory regions. We validated by PCR the insertion of some of these TEs inside genic regions, confirming TE movements have possible functional impacts. Overall, we show DNA transposons can drive genomic plasticity in M. incognita and their role in genome evolution of other parthenogenetic animal deserves further investigation.
Collapse
|
15
|
Ariel FD, Manavella PA. When junk DNA turns functional: transposon-derived non-coding RNAs in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4132-4143. [PMID: 33606874 DOI: 10.1093/jxb/erab073] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/12/2021] [Indexed: 05/05/2023]
Abstract
Transposable elements (TEs) are major contributors to genome complexity in eukaryotes. TE mobilization may cause genome instability, although it can also drive genome diversity throughout evolution. TE transposition may influence the transcriptional activity of neighboring genes by modulating the epigenomic profile of the region or by altering the relative position of regulatory elements. Notably, TEs have emerged in the last few years as an important source of functional long and small non-coding RNAs. A plethora of small RNAs derived from TEs have been linked to the trans regulation of gene activity at the transcriptional and post-transcriptional levels. Furthermore, TE-derived long non-coding RNAs have been shown to modulate gene expression by interacting with protein partners, sequestering active small RNAs, and forming duplexes with DNA or other RNA molecules. In this review, we summarize our current knowledge of the functional and mechanistic paradigms of TE-derived long and small non-coding RNAs and discuss their role in plant development and evolution.
Collapse
Affiliation(s)
- Federico D Ariel
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|
16
|
Poretti M, Sotiropoulos AG, Graf J, Jung E, Bourras S, Krattinger SG, Wicker T. Comparative Transcriptome Analysis of Wheat Lines in the Field Reveals Multiple Essential Biochemical Pathways Suppressed by Obligate Pathogens. FRONTIERS IN PLANT SCIENCE 2021; 12:720462. [PMID: 34659291 PMCID: PMC8513673 DOI: 10.3389/fpls.2021.720462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/20/2021] [Indexed: 05/03/2023]
Abstract
Mildew and rust are the most devastating cereal pathogens, and in wheat they can cause up to 50% yield loss every year. Wheat lines containing resistance genes are used to effectively control fungal diseases, but the molecular mechanisms underlying the interaction between wheat and its fungal pathogens are poorly understood. Here, we used RNA sequencing (RNA-Seq) to compare the transcriptomic landscape of susceptible and resistant wheat lines to identify genes and pathways that are targeted by obligate biotrophic fungal pathogens. The five lines differed in the expression of thousands of genes under infection as well as control conditions. Generally, mixed infection with powdery mildew and leaf rust resulted in downregulation of numerous genes in susceptible lines. Interestingly, transcriptomic comparison between the nearly isogenic lines Thatcher and Thatcher-Lr34 identified 753 genes that are uniquely downregulated in the susceptible line upon infection. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, revealed the suppression of six major biochemical pathways, namely nuclear transport, alternative splicing, DNA damage response, ubiquitin-mediated proteolysis, phosphoinositol signaling, and photosynthesis. We conclude that powdery mildew and leaf rust evade the wheat defense system by suppression of programmed cell death (PCD) and responses to cellular damage. Considering the broad range of the induced changes, we propose that the pathogen targets "master regulators" at critical steps in the respective pathways. Identification of these wheat genes targeted by the pathogen could inspire new directions for future wheat breeding.
Collapse
Affiliation(s)
- Manuel Poretti
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Johannes Graf
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Esther Jung
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Salim Bourras
- Department of Forest Mycology and Plant Pathology, Division of Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Simon G. Krattinger
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
- *Correspondence: Thomas Wicker,
| |
Collapse
|
17
|
Nieto Feliner G, Casacuberta J, Wendel JF. Genomics of Evolutionary Novelty in Hybrids and Polyploids. Front Genet 2020; 11:792. [PMID: 32849797 PMCID: PMC7399645 DOI: 10.3389/fgene.2020.00792] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
It has long been recognized that hybridization and polyploidy are prominent processes in plant evolution. Although classically recognized as significant in speciation and adaptation, recognition of the importance of interspecific gene flow has dramatically increased during the genomics era, concomitant with an unending flood of empirical examples, with or without genome doubling. Interspecific gene flow is thus increasingly thought to lead to evolutionary innovation and diversification, via adaptive introgression, homoploid hybrid speciation and allopolyploid speciation. Less well understood, however, are the suite of genetic and genomic mechanisms set in motion by the merger of differentiated genomes, and the temporal scale over which recombinational complexity mediated by gene flow might be expressed and exposed to natural selection. We focus on these issues here, considering the types of molecular genetic and genomic processes that might be set in motion by the saltational event of genome merger between two diverged species, either with or without genome doubling, and how these various processes can contribute to novel phenotypes. Genetic mechanisms include the infusion of new alleles and the genesis of novel structural variation including translocations and inversions, homoeologous exchanges, transposable element mobilization and novel insertional effects, presence-absence variation and copy number variation. Polyploidy generates massive transcriptomic and regulatory alteration, presumably set in motion by disrupted stoichiometries of regulatory factors, small RNAs and other genome interactions that cascade from single-gene expression change up through entire networks of transformed regulatory modules. We highlight both these novel combinatorial possibilities and the range of temporal scales over which such complexity might be generated, and thus exposed to natural selection and drift.
Collapse
Affiliation(s)
- Gonzalo Nieto Feliner
- Department of Biodiversity and Conservation, Real Jardín Botánico, CSIC, Madrid, Spain
| | - Josep Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
18
|
Bariah I, Keidar-Friedman D, Kashkush K. Where the Wild Things Are: Transposable Elements as Drivers of Structural and Functional Variations in the Wheat Genome. FRONTIERS IN PLANT SCIENCE 2020; 11:585515. [PMID: 33072155 PMCID: PMC7530836 DOI: 10.3389/fpls.2020.585515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/08/2020] [Indexed: 05/16/2023]
Abstract
Transposable elements (TEs) are major contributors to genome plasticity and thus are likely to have a dramatic impact on genetic diversity and speciation. Recent technological developments facilitated the sequencing and assembly of the wheat genome, opening the gate for whole genome analysis of TEs in wheat, which occupy over 80% of the genome. Questions that have been long unanswered regarding TE dynamics throughout the evolution of wheat, are now being addressed more easily, while new questions are rising. In this review, we discuss recent advances in the field of TE dynamics in wheat and possible future directions.
Collapse
|