1
|
Cao R, Liu Y, Wei K, Jin N, Liang Y, Ao R, Pan W, Wang X, Wang X, Zhang L, Xie J. Genes related to neural tube defects and glioblastoma. Sci Rep 2025; 15:3777. [PMID: 39885289 PMCID: PMC11782569 DOI: 10.1038/s41598-025-86891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
There are many similarities between early embryonic development and tumorigenesis. The occurrence of neural tube defects (NTDs) and glioblastoma (GBM) are both related to the abnormal development of neuroectodermal cells. To obtain genes related to both NTDs and GBM, as well as small molecule drugs with potential clinical application value. We performed bioinformatics analysis on transcriptome sequencing data of retinoic acid (RA)-induced NTDs mice, human NTDs samples and GBM samples. RT-qPCR, Western blot, and immunohistochemistry were used to validate the expression of candidate genes. Our results indicated that two genes at mRNA and protein levels have been well verified in both NTDs mouse and GBM human samples, namely, Poli and Fgf1. Molecular docking and validating in vitro were performed for FGF1 against pazopanib by using Autodock and Biacore. Cytological experiments showed that pazopanib significantly inhibited the proliferation of GBM tumor cells and mouse neural cells, promoted apoptosis, and had no effect on GBM tumor cells migration. Overall, our results demonstrated that Fgf1 abnormally expressed at different developmental stages, it may be a potentially prenatal biomarker for NTDs and potential therapeutic target for GBM. Pazopanib may be a new drug for the treatment of GBM tumors.
Collapse
Affiliation(s)
- Rui Cao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education, China, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan City, 030000, Shanxi Province, China
- Translational Medicine Research Centre, Shanxi Medical University, Taiyuan, 030000, China
| | - Yurong Liu
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030000, China
| | - Kaixin Wei
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education, China, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan City, 030000, Shanxi Province, China
| | - Ning Jin
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education, China, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan City, 030000, Shanxi Province, China
| | - Yuxiang Liang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education, China, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan City, 030000, Shanxi Province, China
| | - Ruifang Ao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education, China, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan City, 030000, Shanxi Province, China
| | - Weiwei Pan
- Shanxi Key Laboratory of Pharmaceutical Biotechnology, Shanxi Biological Research Institute Co., Ltd, Taiyuan, 030006, China
| | - Xiang Wang
- Shanxi Key Laboratory of Pharmaceutical Biotechnology, Shanxi Biological Research Institute Co., Ltd, Taiyuan, 030006, China
| | - Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, No. 2 Yabao Road, Chaoyang District, Beijing, 100020, China.
| | - Li Zhang
- Department of Hepatobiliary Surgery and Liver Transplant Center, The First Hospital of Shanxi Medical University, No. 85, Jiefang South Road, Yingze District, Taiyuan City, 030001, Shanxi Province, China.
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education, China, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan City, 030000, Shanxi Province, China.
| |
Collapse
|
2
|
Li H, Li L, Lin C, Hu M, Liu X, Wang L, Le F, Jin F. Decreased miR-149 expression in sperm is correlated with the quality of early embryonic development in conventional in vitro fertilization. Reprod Toxicol 2021; 101:28-32. [PMID: 33610732 DOI: 10.1016/j.reprotox.2021.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/17/2021] [Accepted: 02/15/2021] [Indexed: 12/26/2022]
Abstract
miRNAs play a critical role in the regulation of highly orchestrated gene expression profiles during spermatogenesis and early human embryonic development. However, there is much less information available on the effects of sperm-borne miRNAs on human embryonic development than on spermatogenesis. This study was designed to assess the relationship between two sperm-borne miRNAs (miR-34c and miR-149) and preimplantation embryo development in conventional in vitro fertilization treatment. A positive correlation was seen between a decreased level of miR-149 and a higher percentage of good-quality embryos on day 3 in conventional in vitro fertilization treatment (P < 0.0001), but no correlation was seen between miR-34c and a higher percentage of good-quality embryos (P = 0.1084). Receiver-operating characteristic curve analysis and logistic regression analysis showed that sperm-borne miR-149 with decreased expression was significantly associated with a high rate of good-quality embryos (area under the curve 0.781) (odds ratio: 0.078, 95 % confidence interval: 0.024-0.259, P < 0.0001). Our results demonstrate that the expression profile of miR-149 with significantly decreased expression could be used as a first indication of early embryonic development and may provide novel insight into the biological background of idiopathic infertile males.
Collapse
Affiliation(s)
- Hongping Li
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lejun Li
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chuanping Lin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Minhao Hu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaozhen Liu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang Le
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Reproductive Genetics, Ministry of Education, Hangzhou, China.
| |
Collapse
|