1
|
Fang F, Ni K. Expression pattern of RNA demethylase ALKBH5 in fetal and adult human testis. Tissue Cell 2025; 95:102901. [PMID: 40222158 DOI: 10.1016/j.tice.2025.102901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025]
Abstract
N6-methyladenosine (m6A) is a common post-transcriptional modification of RNAs in eukaryotic cells, which is involved in various biological processes. ALKBH5 is one of the m6A demethylases and has been reported to play important roles in mouse testis. But the function of ALKBH5 in human testis remained undiscovered. Here we aimed to analyze the expression and location of ALKBH5 in fetal and adult human testis. We found that fetal human testis is characterized by the formation of testis cords filled with pre-spermatogonia and pre-Sertoli cells, which is significantly distinct from the convoluted seminiferous epithelium in adult testis. ALKBH5 is not only widely expressed in adult human testis, but also expressed in VASA positive pre-spermatogonia, SOX9 positive pre-Sertoli cells, and CYP11A positive pre-Leydig cells in fetal human testis. Moreover, bioinformatics analysis of published RNA-sequencing data (GSE63392) revealed the expression of ALKBH5 in human fetal germ cells is upregulated with the increase of gestational weeks. Thus, our results indicate the potential role of ALKBH5 in fetal human testis development and function.
Collapse
Affiliation(s)
- Fang Fang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ke Ni
- Department of Surgery, Wuhan Red Cross Hospital, Wuhan 430015, China.
| |
Collapse
|
2
|
Chang D, Li F, Kang Y, Yan Y, Kong F, Jiang W, Wang D, Cao Z, Xu L, Huang C, Kang Y, Shang X, Zhang B. The effects of L-carnitine and fructose in improved Ham's F10 on sperm culture in idiopathic severe asthenospermia within 24h. PLoS One 2025; 20:e0306235. [PMID: 39928618 PMCID: PMC11809793 DOI: 10.1371/journal.pone.0306235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/26/2024] [Indexed: 02/12/2025] Open
Abstract
To study the effects of L-carnitine and fructose on semen parameters of severe asthenospermia patients by sperm culturing in vitro within 24h. We optimized the energy composition and antioxidant substances of sperm culture medium in vitro (based on Ham's F10 culture medium) by orthogonal test for preparing high quality culture medium. Sperms of 60 patients with idiopathic severe asthenospermia were collected, and cultured in vitro within 24h, by Ham's F10 culture medium added to different concentrations of L-carnitine and fructose and culture temperature, whose effects on sperm motility were observed to determine which is the most appropriate concentration and temperature. For determining the appropriate concentration of L-carnitine and fructose and the suitable culture temperature in Ham's F10 culture medium, the orthogonal experiments were carried out to optimize above three factors, which had great influence on sperm viability, survival rate, deformity rate and DNA fragmentation index (DFI). The final concentration of L-carnitine and fructose was determined in terms of initial tests to assess the effects of different concentrations (4, 8, 12, and 16 mg/ml L-carnitine and 0.125, 0.250, 0.375, and 0.50 mg/ml fructose) on sperm viability and motility in culture. During the operation of processing and culturing sperms in vitro within 24h, orthogonal test showed that sperm viability was better at the final concentration of 8 mg/ml L-carnitine and 0.375 mg/ml fructose in improved Ham's F10 culture medium at 36.5°C. Idiopathic severe asthenospermia sperm can be effectively improved by the modified Ham's F10 culture medium of the final concentration of 8 mg/ml L-carnitine and 0.375 mg/ml fructose at 36.5°C within 24h, which has shown better culture effect and is superior to Ham's F10 basic medium.
Collapse
Affiliation(s)
- Dehui Chang
- Department of Urology, The 940th Hospital of the People’s Liberation Army Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Fudong Li
- Department of Urology, The 940th Hospital of the People’s Liberation Army Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Yindong Kang
- Department of Urology, The 940th Hospital of the People’s Liberation Army Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Yixin Yan
- Department of Urology, The 940th Hospital of the People’s Liberation Army Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Feiyan Kong
- Second Department of Surgery, Beijing Fengtai Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Wei Jiang
- Convalescent Section First of Convalescent Zone Second, Air Force Hangzhou Secret Service Rehabilitation Center, Hangzhou, Zhejiang, China
| | - Dongxing Wang
- Department of Urology, The 940th Hospital of the People’s Liberation Army Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Zhigang Cao
- Department of Urology, The 940th Hospital of the People’s Liberation Army Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Liuting Xu
- Department of Urology, The 940th Hospital of the People’s Liberation Army Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Chuang Huang
- Department of Urology, The 940th Hospital of the People’s Liberation Army Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Yafen Kang
- Department of Urology, The 940th Hospital of the People’s Liberation Army Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Xuejun Shang
- Department of Urology, Nanjing Jinling Hospital: General Hospital of Eastern Theatre Command, Nanjing, Jiangsu, China
| | - Bin Zhang
- Department of Urology, The 940th Hospital of the People’s Liberation Army Joint Logistics Support Force, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Zhao Z, Yang T, Li F. Sperm RNA code in spermatogenesis and male infertility. Reprod Biomed Online 2024; 49:104375. [PMID: 39481211 DOI: 10.1016/j.rbmo.2024.104375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/22/2024] [Accepted: 07/05/2024] [Indexed: 11/02/2024]
Abstract
Spermatozoa are traditionally thought to be transcriptionally inert, but recent studies have revealed the presence of sperm RNA, some of which is derived from the residues of spermatocyte transcription and some from epididymosomes. Paternal sperm RNA can be affected by external factors and further modified at the post-transcriptional level, for example N6-methyladenosine (m6A), thus shaping spermatogenesis and reproductive outcome. This review briefly introduces the origin of sperm RNA and, on this basis, summarizes the current knowledge on RNA modifications and their functional role in spermatogenesis and male infertility. The bottlenecks and knowledge gaps in the current research on RNA modification in male reproduction have also been indicated. Further investigations are needed to elucidate the functional consequences of these modifications, providing new therapeutic and preventive strategies for reproductive health and genetic inheritance.
Collapse
Affiliation(s)
- Zhongyi Zhao
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Tingting Yang
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| | - Fuping Li
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|
4
|
Wang J, Wang TG, Yuan S, Li F. Accurate identification of single-cell types via correntropy-based Sparse PCA combining hypergraph and fusion similarity. J Appl Stat 2024; 52:356-380. [PMID: 39926175 PMCID: PMC11800351 DOI: 10.1080/02664763.2024.2369955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 06/11/2024] [Indexed: 02/11/2025]
Abstract
The advent of single-cell RNA sequencing (scRNA-seq) technology enables researchers to gain deep insights into cellular heterogeneity. However, the high dimensionality and noise of scRNA-seq data pose significant challenges to clustering. Therefore, we propose a new single-cell type identification method, called CHLSPCA, to address these challenges. In this model, we innovatively combine correntropy with PCA to address the noise and outliers inherent in scRNA-seq data. Meanwhile, we integrate the hypergraph into the model to extract more valuable information from the local structure of the original data. Subsequently, to capture crucial similarity information not considered by the PCA model, we employ the Gaussian kernel function and the Euclidean metric to mine the similarity information between cells, and incorporate this information into the model as the similarity constraint. Furthermore, the principal components (PCs) of PCA are very dense. A new sparse constraint is introduced into the model to gain sparse PCs. Finally, based on the principal direction matrix learned from CHLSPCA, we conduct extensive downstream analyses on real scRNA-seq datasets. The experimental results show that CHLSPCA performs better than many popular clustering methods and is expected to promote the understanding of cellular heterogeneity in scRNA-seq data analysis and support biomedical research.
Collapse
Affiliation(s)
- Juan Wang
- School of Computer Science, Qufu Normal University, Rizhao, People’s Republic of China
| | - Tai-Ge Wang
- School of Computer Science, Qufu Normal University, Rizhao, People’s Republic of China
| | - Shasha Yuan
- School of Computer Science, Qufu Normal University, Rizhao, People’s Republic of China
| | - Feng Li
- School of Computer Science, Qufu Normal University, Rizhao, People’s Republic of China
| |
Collapse
|
5
|
Li G, Che K, Wu J, Yang B. Construction of m6A-Related Gene Prediction Model and Subtype Analysis in Non-Obstructive Azoospermia Based on Bioinformatics. Am J Reprod Immunol 2024; 92:e13892. [PMID: 38958252 DOI: 10.1111/aji.13892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024] Open
Abstract
PURPOSE Non-obstructive azoospermia (NOA) is a severe and common cause of male infertility. Currently, the most reliable predictor of sperm retrieval success in NOA is histopathology, but preoperative testicular biopsy often increases the difficulty of sperm retrieval surgery. This study aims to explore the characteristics of N6-methyladenosine (m6A) modification in NOA patients and investigate the potential biomarkers and molecular mechanisms for pathological diagnosis and treatment of NOA using m6A-related genes. METHODS NOA-related datasets were downloaded from the GEO database. Based on the results of LASSO regression analysis, a prediction model was established from differentially expressed m6A-related genes, and the predictive performance of the model was evaluated using ROC curves. Cluster analysis was performed based on differentially expressed m6A-related genes to evaluate the differences in different m6A modification patterns in terms of differentially expressed genes (DEGs), biological features, and immune features. RESULTS There were significant differences in eight m6A-related genes between NOA samples and healthy controls. The ROC curves showed excellent predictive performance for the diagnostic models constructed with ALKBH5 and FTO. DEGs of two m6A modification subtypes indicated the influence of m6A-related genes in the biological processes of mitosis and meiosis in NOA patients, and there were significant immune differences between the two subtypes. CONCLUSION The NOA pathological diagnostic models constructed with FTO and ALKBH5 have good predictive ability. We have identified two different m6A modification subtypes, which may help predict sperm retrieval success rate and treatment selection in NOA patients.
Collapse
Affiliation(s)
- Guikang Li
- Department of Urology, The Affiliated Hospital of Qingdao University, Qing Dao, China
| | - Kai Che
- Department of Urology, The Affiliated Hospital of Qingdao University, Qing Dao, China
| | - Jie Wu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qing Dao, China
| | - Bin Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qing Dao, China
| |
Collapse
|
6
|
Cai Z, Zhang Y, Yang L, Ma C, Fei Y, Ding J, Song W, Tong WM, Niu Y, Li H. ALKBH5 in mouse testicular Sertoli cells regulates Cdh2 mRNA translation to maintain blood-testis barrier integrity. Cell Mol Biol Lett 2022; 27:101. [PMID: 36418936 PMCID: PMC9682758 DOI: 10.1186/s11658-022-00404-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND RNA N6-methyladenosine (m6A) is involved in mammalian spermatogenesis. In both germ cells and Leydig cells, ALKBH5 regulates spermatogenesis and androgen synthesis in an m6A-dependent manner. However, it is unclear whether ALKBH5 plays a role in testicular Sertoli cells, which constitute the blood-testis barrier (BTB) through cell junctions between adjacent Sertoli cells. METHODS ALKBH5 expression in the testes of humans and mice was detected by immunohistochemical staining and immunofluorescence staining. BTB integrity was evaluated by BTB assay. m6A-seq was performed to screen for BTB-related molecules regulated by ALKBH5. m6A immunoprecipitation-quantitative real-time polymerase chain reaction (qPCR), RNA immunoprecipitation-qPCR, western blot, coimmunoprecipitation, and polysome fractionation-qPCR analyses were performed to explore the mechanisms of ALKBH5 in BTB. Transmission electron microscopy was applied to observe the BTB ultrastructure. RESULTS ALKBH5 in Sertoli cells is related to the integrity of the BTB. Subsequently, the m6A level on Cdh2 mRNA, encoding a structural protein N-cadherin in the BTB, was found to be regulated by ALKBH5. IGF2BP1/2/3 complexes and YTHDF1 promoted Cdh2 mRNA translation. In addition, we found that basal endoplasmic specialization, in which N-cadherin is a main structural protein, was severely disordered in the testes of Alkbh5-knockout mice. CONCLUSIONS Our study revealed that ALKBH5 regulates BTB integrity via basal endoplasmic specialization by affecting Cdh2 mRNA translation.
Collapse
Affiliation(s)
- Zhonglin Cai
- grid.506261.60000 0001 0706 7839Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China ,grid.506261.60000 0001 0706 7839Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China ,grid.16821.3c0000 0004 0368 8293Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yao Zhang
- grid.506261.60000 0001 0706 7839Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Lin Yang
- grid.506261.60000 0001 0706 7839Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Chunhui Ma
- grid.506261.60000 0001 0706 7839Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yi Fei
- grid.506261.60000 0001 0706 7839Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jing Ding
- grid.506261.60000 0001 0706 7839Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Song
- grid.506261.60000 0001 0706 7839Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei-Min Tong
- grid.506261.60000 0001 0706 7839Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China ,grid.506261.60000 0001 0706 7839Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yamei Niu
- grid.506261.60000 0001 0706 7839Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China ,grid.506261.60000 0001 0706 7839Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongjun Li
- grid.506261.60000 0001 0706 7839Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Sahota JS, Sharma B, Guleria K, Sambyal V. Candidate genes for infertility: an in-silico study based on cytogenetic analysis. BMC Med Genomics 2022; 15:170. [PMID: 35918717 PMCID: PMC9347124 DOI: 10.1186/s12920-022-01320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022] Open
Abstract
Background The cause of infertility remains unclear in a significant proportion of reproductive-age couples who fail to conceive naturally. Chromosomal aberrations have been identified as one of the main genetic causes of male and female infertility. Structural chromosomal aberrations may disrupt the functioning of various genes, some of which may be important for fertility. The present study aims to identify candidate genes and putative functional interaction networks involved in male and female infertility using cytogenetic data from cultured peripheral blood lymphocytes of infertile patients. Methods Karyotypic analyses was done in 201 infertile patients (100 males and 101 females) and 201 age and gender matched healthy controls (100 males and 101 females) after 72 h peripheral lymphocyte culturing and GTG banding, followed by bioinformatic analysis using Cytoscape v3.8.2 and Metascape. Results Several chromosomal regions with a significantly higher frequency of structural aberrations were identified in the infertile males (5q2, 10q2, and 17q2) and females (6q2, 16q2, and Xq2). Segregation of the patients based on type of infertility (primary v/s secondary infertility) led to the identification of chromosomal regions with a significantly higher frequency of structural aberrations exclusively within the infertile males (5q2, 17q2) and females (16q2) with primary infertility. Cytoscape identified two networks specific to these regions: a male specific network with 99 genes and a female specific network with 109 genes. The top enriched GO terms within the male and female infertility networks were “skeletal system morphogenesis” and “mRNA transport” respectively. PSME3, PSMD3, and CDC27 were the top 3 hub genes identified within the male infertility network. Similarly, UPF3B, IRF8, and PSMB1 were the top 3 hub genes identified with the female infertility network. Among the hub genes identified in the male- and female-specific networks, PSMB1, PSMD3, and PSME3 are functional components of the proteasome complex. These hub genes have a limited number of reports related to their respective roles in maintenance of fertility in mice model and humans and require validation in further studies. Conclusion The candidate genes predicted in the present study can serve as targets for future research on infertility. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01320-x.
Collapse
Affiliation(s)
- Jatinder Singh Sahota
- Department of Human Genetics, Cytogenetics Laboratory, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
| | - Bhavna Sharma
- Department of Human Genetics, Cytogenetics Laboratory, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
| | - Kamlesh Guleria
- Department of Human Genetics, Cytogenetics Laboratory, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
| | - Vasudha Sambyal
- Department of Human Genetics, Cytogenetics Laboratory, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India.
| |
Collapse
|
8
|
Adamczewska D, Słowikowska-Hilczer J, Walczak-Jędrzejowska R. The Fate of Leydig Cells in Men with Spermatogenic Failure. Life (Basel) 2022; 12:570. [PMID: 35455061 PMCID: PMC9028943 DOI: 10.3390/life12040570] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/25/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022] Open
Abstract
The steroidogenic cells in the testicle, Leydig cells, located in the interstitial compartment, play a vital role in male reproductive tract development, maintenance of proper spermatogenesis, and overall male reproductive function. Therefore, their dysfunction can lead to all sorts of testicular pathologies. Spermatogenesis failure, manifested as azoospermia, is often associated with defective Leydig cell activity. Spermatogenic failure is the most severe form of male infertility, caused by disorders of the testicular parenchyma or testicular hormone imbalance. This review covers current progress in knowledge on Leydig cells origin, structure, and function, and focuses on recent advances in understanding how Leydig cells contribute to the impairment of spermatogenesis.
Collapse
Affiliation(s)
| | | | - Renata Walczak-Jędrzejowska
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, 92-213 Lodz, Poland; (D.A.); (J.S.-H.)
| |
Collapse
|
9
|
Tang Q, Wu W, Lu Y, Zhou Y, Wu W, Li J, Pan L, Ling X, Pan F. Joint analysis of m 6A and mRNA expression profiles in the testes of idiopathic nonobstructive azoospermia patients. Front Endocrinol (Lausanne) 2022; 13:1063929. [PMID: 36589848 PMCID: PMC9798116 DOI: 10.3389/fendo.2022.1063929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Growing evidence has indicated that epigenetic factors might be associated with the pathophysiology of idiopathic nonobstructive azoospermia (iNOA). As the most common RNA modification, N6-methyladenosine (m6A) methylation has recently attracted more attention in the regulation of spermatogenesis; however, its role in the mechanisms of iNOA is still unclear. OBJECTIVE To determine the differential expression of mRNA and m6A methylation status in the testes of iNOA patients. METHODS Testes tissues from diagnosed iNOA and controlled obstructive azoospermia (OA) patients were collected and grouped according to the histological examinations. Total RNA was isolated and quantified by an m6A RNA Methylation Quantification Kit. The expression level of mRNAs was detected by qRT-PCR analysis. Differentially expressed m6A genes were analyzed using the human ArrayStar m6A epitranscriptomic microarray, and bioinformatics analyses were applied. RESULTS A total of 36 iNOA and 8 controlled patients were included. The global expression of m6A in the iNOA group was significantly decreased. A dosage relationship was observed between the m6A decline and the degree of impaired spermatogenesis, with the successive process of normal spermatogeneis, hypospermatogenesis (HP), maturation arrest (MA), and Sertoli cell-only syndrome (SO). Four down-expressed genes (BDNF, TMEM38B, RPL3L, and C22orf42) displayed significantly lower expression of m6A methylation. Additionally, they also showed a gradually down-expressed tendency in the three groups (OA, HP, SO/MA groups). Moreover, m6A reader EIF3A was approved to have differential expression through microarrays analysis, which was consistent with the result from the qRT-PCR test. CONCLUSIONS The m6A expression was gradually downregulated in the testes tissue from iNOA patients in accordance with the degree of spermatogenic dysfunction. The determined differential expression of mRNA and m6A methylation status may represent potentially novel molecular targets for the mechanism study of iNOA in the epigenetic level, which could benefit the understanding of the pathophysiology of iNOA.
Collapse
Affiliation(s)
- Qiuqin Tang
- Department of Obstetrics, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yiwen Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yijie Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wangfei Wu
- Department of Pathology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jinhui Li
- Department of Urology, Stanford University Medical Center, Stanford, CA, United States
| | - Lianjun Pan
- Department of Andrology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiufeng Ling
- Department of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Feng Pan
- Department of Andrology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
- Department of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
- *Correspondence: Feng Pan,
| |
Collapse
|
10
|
Cai Z, Niu Y, Li H. RNA N6-methyladenosine modification, spermatogenesis, and human male infertility. Mol Hum Reprod 2021; 27:6179814. [PMID: 33749751 DOI: 10.1093/molehr/gaab020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/15/2021] [Indexed: 12/28/2022] Open
Abstract
RNA N6-methyladenosine (m6A) modification is one of the main forms of posttranscriptional modification, and its dysregulation is involved in a series of pathological processes. RNA m6A regulators, which mediate dynamic RNA m6A modification, are expressed in almost all types of testicular cells, including spermatogenetic cells and somatic cells. Cumulative studies have found that knockout of RNA m6A regulators in the testis leads to abnormal metabolism of the target mRNAs, which eventually causes spermatogenetic disorders and infertility. To date, a role for dysregulated RNA m6A modification in human male infertility remains elusive; however, dysregulated expression of RNA m6A regulators in abnormal human semen samples, including oligospermia, asthenozoospermia and azoospermia, has been found. Therefore, we speculate that abnormal RNA m6A methylation may be an important mechanism of male infertility. In this review, we summarize the recent findings regarding the spatiotemporal expression of RNA m6A regulators in the testes, mechanisms of RNA m6A modification in spermatogenesis and the relation between dysregulated RNA m6A regulators and human male infertility. In addition, we also discuss future directions in studying the molecular mechanism of male infertility and exploring their clinical applications from the viewpoint of RNA m6A modification.
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Hongjun Li
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|