1
|
Sutovsky P, Zigo M, Tirpak F, Oko R. Paternal contributions to mammalian zygote - Beyond sperm-oocyte fusion. Curr Top Dev Biol 2025; 162:387-446. [PMID: 40180516 DOI: 10.1016/bs.ctdb.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Contrary to a common misconception that the fertilizing spermatozoon acts solely as a vehicle for paternal genome delivery to the zygote, this chapter aims to illustrate how the male gamete makes other essential contributions , including the sperm borne-oocyte activation factors, centrosome components, and components of the sperm proteome and transcriptome that help to lay the foundation for pregnancy establishment and maintenance to term, and the newborn and adult health. Our inquiry starts immediately after sperm plasma membrane fusion with its oocyte counterpart, the oolemma. Parallel to and following sperm incorporation in the egg cytoplasm, some of the sperm structures (perinuclear theca) are dissolved and spent to induce development, others (nucleus, centriole) are transformed into zygotic structures enabling it, and yet others (mitochondrial and fibrous sheath, axonemal microtubules and outer dense fibers) are recycled as to not stand in its way. Noteworthy advances in this research include the identification of several sperm-borne oocyte activating factor candidates, the role of autophagy in the post-fertilization sperm mitochondrion degradation, new insight into zygotic centrosome origins and function, and the contributions of sperm-delivered RNA cargos to early embryo development. In concluding remarks, the unresolved issues, and clinical and biotechnological implications of sperm-vectored paternal inheritance are discussed.
Collapse
Affiliation(s)
- Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States; Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, United States.
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Filip Tirpak
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
2
|
Ghodrati F, Parivar K, Amiri I, Roodbari NH. Exploring miR-34a, miR-449, and ADAM2/ADAM7 Expressions as Potential Biomarkers in Male Infertility: A Combined In Silico and Experimental Approach. Biochem Genet 2025:10.1007/s10528-025-11050-1. [PMID: 39928278 DOI: 10.1007/s10528-025-11050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
miR-34a and miR-449 are key miRNAs involved in sperm function and male fertility, with their dysregulation potentially contributing to male infertility. ADAM proteins, specifically ADAM2 and ADAM7, are also implicated in sperm function. This study investigates the interactions between miR-34a, miR-449, and ADAM2/ADAM7, exploring their roles in male infertility through both experimental analyses and molecular docking. In this case-control study, 15 infertile males and 15 healthy controls were included. Gene expression levels of miR-34a, miR-449, and SOX30 were measured using real-time PCR, while protein levels of ADAM7 and ADAM2 in sperm were assessed through western blotting. Additionally, molecular docking was performed to analyze the binding affinities between miR-34a/miR-449 and ADAM2/ADAM7, with docking scores and confidence levels evaluated. Expression levels of ADAM7 and ADAM2 proteins in sperm from the infertile group showed significant differences compared with the control group (P ≤ 0.05). A significant difference was observed in the expression of miR-449, miR-34a, and SOX30 genes between the control and infertile groups (P < 0.05). A significant correlation between miR-34a expression, ADAM7 protein expression, and sperm morphology was observed. However, no statistically significant correlation was found between miR-34a expression and sperm motility, sperm count, blastocyst, or embryo rates in ICSI and IVF (P ≥ 0.05). Molecular docking and dynamics studies revealed strong interactions between miR-34a/miR-449 and ADAM proteins. The ADAM7/miR-34a complex showed the highest binding affinity with a docking score of - 372.40 and a confidence score of 0.9884, followed by ADAM7/miR-449. Hydrogen bond analysis indicated stable binding, with 9 bonds for ADAM2/miR-34a and 7 for ADAM7/miR-34a. These interactions suggest a significant role in regulating sperm morphology and function.miR-34a, miR-449, ADAM7, and ADAM2 protein expression appear to be involved in the molecular mechanisms of male infertility. These parameters show potential as biomarkers in assisted reproductive technology techniques, particularly by influencing sperm morphology and function.
Collapse
Affiliation(s)
- Fariba Ghodrati
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Iraj Amiri
- Department of Anatomy and Embryology, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Jönsson J, Perfilyev A, Kugelberg U, Skog S, Lindström A, Ruhrmann S, Ofori JK, Bacos K, Rönn T, Öst A, Ling C. Impact of excess sugar on the whole genome DNA methylation pattern in human sperm. Epigenomics 2025; 17:89-104. [PMID: 39707713 PMCID: PMC11792836 DOI: 10.1080/17501911.2024.2439782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
AIMS, PATIENTS & METHODS Dietary factors may regulate the epigenome. We aimed to explore whether a diet intervention, including excess sugar, affects the methylome in human sperm, and to describe the sperm methylome. We used Whole Genome Bisulfite Sequencing (WGBS) to analyze DNA methylation in sperm taken at three time points from 15 males during a diet intervention; i) at baseline, ii) after one week on a standardized diet, and iii) after an additional week on a high-sugar diet providing 150% of their estimated total energy expenditure. RESULTS We identified seven nominal diet-associated differentially methylated regions in sperm (p < 0.05). The diet was nominally associated with methylation of 143 sites linked to fertility (e.g. AHRR, GNAS, and HDAC4), 313 sites in imprinted genes (e.g. GLIS3, PEG10, PEG3, and SNURF), and 42 sites in top 1%-expressed genes (e.g. CHD2) (p < 0.05). In sperm, 3'UTRs and introns had the highest levels of methylation, while 5'UTRs and CpG islands had the lowest levels. Non-expressed genes in human sperm were hypomethylated in exons compared with transcribed genes. CONCLUSIONS In human sperm, DNA methylation levels were linked to gene expression, and excess sugar had modest effects on methylation on imprinted and highly expressed genes, and genes affecting fertility.
Collapse
Affiliation(s)
- Josefine Jönsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Unn Kugelberg
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Signe Skog
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Axel Lindström
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Sabrina Ruhrmann
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Jones K. Ofori
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Anita Öst
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
4
|
Navarrete-López P, Asselstine V, Maroto M, Lombó M, Cánovas Á, Gutiérrez-Adán A. RNA Sequencing of Sperm from Healthy Cattle and Horses Reveals the Presence of a Large Bacterial Population. Curr Issues Mol Biol 2024; 46:10430-10443. [PMID: 39329972 PMCID: PMC11430805 DOI: 10.3390/cimb46090620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
RNA molecules within ejaculated sperm can be characterized through whole-transcriptome sequencing, enabling the identification of pivotal transcripts that may influence reproductive success. However, the profiling of sperm transcriptomes through next-generation sequencing has several limitations impairing the identification of functional transcripts. In this study, we explored the nature of the RNA sequences present in the sperm transcriptome of two livestock species, cattle and horses, using RNA sequencing (RNA-seq) technology. Through processing of transcriptomic data derived from bovine and equine sperm cell preparations, low mapping rates to the reference genomes were observed, mainly attributed to the presence of ribosomal RNA and bacteria in sperm samples, which led to a reduced sequencing depth of RNAs of interest. To explore the presence of bacteria, we aligned the unmapped reads to a complete database of bacterial genomes and identified bacteria-associated transcripts which were characterized. This analysis examines the limitations associated with sperm transcriptome profiling by reporting the nature of the RNA sequences among which bacterial RNA was found. These findings can aid researchers in understanding spermatozoal RNA-seq data and pave the way for the identification of molecular markers of sperm performance.
Collapse
Affiliation(s)
| | - Victoria Asselstine
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - María Maroto
- Department of Animal Reproduction, INIA-CSIC, 28040 Madrid, Spain
| | - Marta Lombó
- Department of Animal Reproduction, INIA-CSIC, 28040 Madrid, Spain
| | - Ángela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alfonso Gutiérrez-Adán
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
5
|
Budrewicz J, Chavez SL. Insights into embryonic chromosomal instability: mechanisms of DNA elimination during mammalian preimplantation development. Front Cell Dev Biol 2024; 12:1344092. [PMID: 38374891 PMCID: PMC10875028 DOI: 10.3389/fcell.2024.1344092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
Mammalian preimplantation embryos often contend with aneuploidy that arose either by the inheritance of meiotic errors from the gametes, or from mitotic mis-segregation events that occurred following fertilization. Regardless of the origin, mis-segregated chromosomes become encapsulated in micronuclei (MN) that are spatially isolated from the main nucleus. Much of our knowledge of MN formation comes from dividing somatic cells during tumorigenesis, but the error-prone cleavage-stage of early embryogenesis is fundamentally different. One unique aspect is that cellular fragmentation (CF), whereby small subcellular bodies pinch off embryonic blastomeres, is frequently observed. CF has been detected in both in vitro and in vivo-derived embryos and likely represents a response to chromosome mis-segregation since it only appears after MN formation. There are multiple fates for MN, including sequestration into CFs, but the molecular mechanism(s) by which this occurs remains unclear. Due to nuclear envelope rupture, the chromosomal material contained within MN and CFs becomes susceptible to double stranded-DNA breaks. Despite this damage, embryos may still progress to the blastocyst stage and exclude chromosome-containing CFs, as well as non-dividing aneuploid blastomeres, from participating in further development. Whether these are attempts to rectify MN formation or eliminate embryos with poor implantation potential is unknown and this review will discuss the potential implications of DNA removal by CF/blastomere exclusion. We will also extrapolate what is known about the intracellular pathways mediating MN formation and rupture in somatic cells to preimplantation embryogenesis and how nuclear budding and DNA release into the cytoplasm may impact overall development.
Collapse
Affiliation(s)
- Jacqueline Budrewicz
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Shawn L. Chavez
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, United States
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, United States
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
6
|
Zhang L, Sun H, Chen X. Long noncoding RNAs in human reproductive processes and diseases. Mol Reprod Dev 2024; 91:e23728. [PMID: 38282314 DOI: 10.1002/mrd.23728] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024]
Abstract
Infertility has become a global disease burden. Although assisted reproductive technologies are widely used, the assisted reproduction birth rate is no more than 30% worldwide. Therefore, understanding the mechanisms of reproduction can provide new strategies to improve live birth rates and clinical outcomes of enhanced implantation. Long noncoding RNAs (lncRNAs) have been reported to exert regulatory roles in various biological processes and diseases in many species. In this review, we especially focus on the role of lncRNAs in human reproduction. We summarize the function and mechanisms of lncRNAs in processes vital to reproduction, such as spermatogenesis and maturation, sperm motility and morphology, follicle development and maturation, embryo development and implantation. Then, we highlight the importance and diverse potential of lncRNAs as good diagnostic molecular biomarkers and therapeutic targets for infertility treatment.
Collapse
Affiliation(s)
- Le Zhang
- Center for Reproductive Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hailong Sun
- Center for Reproductive Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiujuan Chen
- Center for Reproductive Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
7
|
Becker LS, Al Smadi MA, Koch H, Abdul-Khaliq H, Meese E, Abu-Halima M. Towards a More Comprehensive Picture of the MicroRNA-23a/b-3p Impact on Impaired Male Fertility. BIOLOGY 2023; 12:800. [PMID: 37372085 PMCID: PMC10294816 DOI: 10.3390/biology12060800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
The expression levels of various genes involved in human spermatogenesis are influenced by microRNAs (miRNAs), specifically microRNA-23a/b-3p. While certain genes are essential for spermatogenesis and male germ cell function, the regulation of their expression remains unclear. This study aimed to investigate whether microRNA-23a/b-3p targets genes involved in spermatogenesis and the impact of this targeting on the expression levels of these genes in males with impaired fertility. In-silico prediction and dual-luciferase assays were used to determine the potential connections between microRNA-23a/b-3p overexpression and reduced expression levels of 16 target genes. Reverse transcription-quantitative PCR (RT-qPCR) was conducted on 41 oligoasthenozoospermic men receiving infertility treatment and 41 age-matched normozoospermic individuals to verify the lower expression level of target genes. By employing dual-luciferase assays, microRNA-23a-3p was found to directly target eight genes, namely NOL4, SOX6, GOLGA6C, PCDHA9, G2E3, ZNF695, CEP41, and RGPD1, while microRNA-23b-3p directly targeted three genes, namely SOX6, GOLGA6C, and ZNF695. The intentional alteration of the microRNA-23a/b binding site within the 3' untranslated regions (3'UTRs) of the eight genes resulted in the loss of responsiveness to microRNA-23a/b-3p. This confirmed that NOL4, SOX6, GOLGA6C, PCDHA9, and CEP41 are direct targets for microRNA-23a-3p, while NOL4, SOX6, and PCDHA9 are direct targets for microRNA-23b-3p. The sperm samples of oligoasthenozoospermic men had lower expression levels of target genes than age-matched normozoospermic men. Correlation analysis indicated a positive correlation between basic semen parameters and lower expression levels of target genes. The study suggests that microRNA-23a/b-3p plays a significant role in spermatogenesis by controlling the expression of target genes linked to males with impaired fertility and has an impact on basic semen parameters.
Collapse
Affiliation(s)
- Lea Simone Becker
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Mohammad A. Al Smadi
- Reproductive Endocrinology and IVF Unit, King Hussein Medical Centre, Amman 11855, Jordan
| | - Hanna Koch
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Hashim Abdul-Khaliq
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Masood Abu-Halima
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421 Homburg, Germany
| |
Collapse
|
8
|
Chan SY, Wan CWT, Law TYS, Chan DYL, Fok EKL. The Sperm Small RNA Transcriptome: Implications beyond Reproductive Disorder. Int J Mol Sci 2022; 23:15716. [PMID: 36555356 PMCID: PMC9779749 DOI: 10.3390/ijms232415716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Apart from the paternal half of the genetic material, the male gamete carries assorted epigenetic marks for optimal fertilization and the developmental trajectory for the early embryo. Recent works showed dynamic changes in small noncoding RNA (sncRNA) in spermatozoa as they transit through the testicular environment to the epididymal segments. Studies demonstrated the changes to be mediated by epididymosomes during the transit through the adluminal duct in the epididymis, and the changes in sperm sncRNA content stemmed from environmental insults significantly altering the early embryo development and predisposing the offspring to metabolic disorders. Here, we review the current knowledge on the establishment of the sperm sncRNA transcriptome and their role in male-factor infertility, evidence of altered offspring health in response to the paternal life experiences through sperm sncRNA species and, finally, their implications in assisted reproductive technology in terms of epigenetic inheritance.
Collapse
Affiliation(s)
- Sze Yan Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Crystal Wing Tung Wan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tin Yu Samuel Law
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - David Yiu Leung Chan
- Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ellis Kin Lam Fok
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu 610017, China
| |
Collapse
|
9
|
Guo J, Yang F, Wang L, Xuan X, Zhao J, He L. A novel promising diagnostic candidate selected by screening the transcriptome of Babesia gibsoni (Wuhan isolate) asexual stages in infected beagles. Parasit Vectors 2022; 15:362. [PMID: 36217160 PMCID: PMC9549657 DOI: 10.1186/s13071-022-05468-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Babesia gibsoni is one of the causative agents of canine babesiosis worldwide. Some dogs infected with B. gibsoni show severe clinical signs with progressive anemia, hemoglobinuria and splenomegaly. However, most infected dogs present a state of chronic infection and thereby may be a persistent pathogen carrier, increasing the risk of pathogen spreading. To date, little is known about this pathogen, with genomic and transcriptomic data in particular generally unavailable. This lack of knowledge extensively limits the development of effective diagnostic strategies and vaccines. METHODS High-throughput RNA sequencing of total RNA of B. gibsoni asexual stages collected from infected beagles was performed. The unigenes were annotated in seven databases. The genes were sorted according to their fragments per kilobase per million (FPKM) value, which was used as an indicator for expression level. The gene with the highest FPKM value was cloned from the genome of B. gibsoni and further tested for immunogenicity, cellular localization and efficacy as a potential diagnostic candidate for detecting B. gibsoni in sera collected from beagles. RESULTS A total of 62,580,653 clean reads were screened from the 64,336,475 raw reads, and the corresponding 70,134 transcripts and 36,587 unigenes were obtained. The gene with the highest FPKM value was screened from the unigenes; its full length was 1276 bp, and it was named BgP30. The BgP30 gene comprised three exons and two introns, with a 786-bp open reading frame, and encoded 261 amino acids with a predicted molecular weight of 30 kDa. The cellular localization assay confirmed the existence of P30 protein in B. gibsoni parasites. Moreover, P30 was detected in the serum of experimentally B. gibsoni-infected beagles, from 15 days up to 422 days post-infection, suggesting its usefulness as a diagnostic candidate for both acute and chronic infections. CONCLUSIONS We sequenced the transcriptome of B. gibsoni asexual stages for the first time. The BgP30 gene was highly expressed in the transcriptome screening experiments, with further studies demonstrating that it could induce immune response in B. gibsoni-infected dogs. These results lead us to suggest that bgP30 may be a good diagnostic candidate marker to detect both acute and chronic B. gibsoni infections.
Collapse
Affiliation(s)
- Jiaying Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China.,Northeast Agricultural University, Harbin, 150000, Heilongjiang, China
| | - Furong Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Lingna Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China.
| |
Collapse
|
10
|
Liu M, Liu P, Chang Y, Xu B, Wang N, Qin L, Zheng J, Liu Y, Wu L, Yan H. Genome-wide DNA methylation profiles and small noncoding RNA signatures in sperm with a high DNA fragmentation index. J Assist Reprod Genet 2022; 39:2255-2274. [PMID: 36190595 PMCID: PMC9596664 DOI: 10.1007/s10815-022-02618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND A growing number of studies have reported that sperm DNA fragmentation (SDF) is associated with male infertility. However, no studies have compared genome-wide DNA methylation profiles and sncRNA signatures between sperm with high and low sperm DNA fragmentation indices (DFIs). METHODS Whole-genome bisulfite sequencing (WGBS) was performed on sperm samples from a weak group (DFI ≥ 30%, n = 6) and normal group (DFI ≤ 15%, n = 7). Small noncoding RNA (sncRNA) deep sequencing was conducted for sperm samples from the weak (DFI ≥ 30%, n = 13) and normal (DFI ≤ 15%, n = 17) groups. RESULTS A total of 4939 differentially methylated regions (DMRs) were identified in the weak group sperm samples relative to normal group sperm samples, with 2072 (41.95%) of them located in promoter regions. The percentages of hypermethylated DMRs were higher than those of hypomethylated DMRs in all seven examined gene annotation groups. Hypermethylated DMRs were significantly enriched in terms associated with neurons and microtubules. Compared with the normal group, the global DNA methylation level of the weak group sperm showed a downward trend, with lower correlation for methylation in the weak group sperm; therefore, the chromosomes of high-DFI sperm may be loose. On average, 40.5% of sncRNAs were annotated as rsRNAs, 19.3% as tsRNAs, 10.4% as yRNAs, and 7.1% as miRNAs. A total of 27 miRNAs, 151 tsRNAs, and 70 rsRNAs were differentially expressed between the two groups of sperm samples. Finally, 7 sncRNAs were identified as candidate sperm quality biomarkers, and the target genes of the differentially expressed miRNAs are involved in nervous system development. CONCLUSION Our findings suggest that genome-wide DNA methylation profiles and sncRNA signatures are significantly altered in high-DFI sperm. Our study provides potential biomarkers for sperm quality.
Collapse
Affiliation(s)
- Minghua Liu
- Reproductive Medical Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Peiru Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunjian Chang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Beiying Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Nengzhuang Wang
- Reproductive Medical Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lina Qin
- Reproductive Medical Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jufen Zheng
- Reproductive Medical Center, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Hongli Yan
- Reproductive Medical Center, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
11
|
Castro-Arnau J, Chauvigné F, Gómez-Garrido J, Esteve-Codina A, Dabad M, Alioto T, Finn RN, Cerdà J. Developmental RNA-Seq transcriptomics of haploid germ cells and spermatozoa uncovers novel pathways associated with teleost spermiogenesis. Sci Rep 2022; 12:14162. [PMID: 35986060 PMCID: PMC9391476 DOI: 10.1038/s41598-022-18422-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/10/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractIn non-mammalian vertebrates, the molecular mechanisms involved in the transformation of haploid germ cells (HGCs) into spermatozoa (spermiogenesis) are largely unknown. Here, we investigated this process in the marine teleost gilthead seabream (Sparus aurata) through the examination of the changes in the transcriptome between cell-sorted HGCs and ejaculated sperm (SPZEJ). Samples were collected under strict quality controls employing immunofluorescence microscopy as well as by determining the sperm motion kinematic parameters by computer-assisted sperm analysis. Deep sequencing by RNA-seq identified a total of 7286 differentially expressed genes (DEGs) (p-value < 0.01) between both cell types, of which nearly half were upregulated in SPZEJ compared to HCGs. In addition, approximately 9000 long non-coding RNAs (lncRNAs) were found, of which 56% were accumulated or emerged de novo in SPZEJ. The upregulated transcripts are involved in transcriptional and translational regulation, chromatin and cytoskeleton organization, metabolic processes such as glycolysis and oxidative phosphorylation, and also include a number of ion and water channels, exchangers, transporters and receptors. Pathway analysis conducted on DEGs identified 37 different signaling pathways enriched in SPZEJ, including 13 receptor pathways, from which the most predominant correspond to the chemokine and cytokine, gonadotropin-releasing hormone receptor and platelet derived growth factor signaling pathways. Our data provide new insight into the mRNA and lncRNA cargos of teleost spermatozoa and uncover the possible involvement of novel endocrine mechanisms during the differentiation and maturation of spermatozoa.
Collapse
|
12
|
Mańkowska A, Gilun P, Zasiadczyk Ł, Sobiech P, Fraser L. Expression of TXNRD1, HSPA4L and ATP1B1 Genes Associated with the Freezability of Boar Sperm. Int J Mol Sci 2022; 23:9320. [PMID: 36012584 PMCID: PMC9409117 DOI: 10.3390/ijms23169320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Cryopreservation is associated with increased oxidative stress, which is responsible for sperm damage. We analyzed the effect of cryopreservation on mRNA and protein expression of thioredoxin reductase 1 (TXNRD1), heat shock protein family A (HSP 70) member 4 like (HSPA4L) and sodium/potassium-transporting ATPase subunit beta-1 (ATP1B1) genes in boar sperm with different freezability. Boars were classified as having good and poor semen freezability (GSF and PSF, respectively), according to the assessment of post-thaw sperm motility. Total RNA was isolated from fresh pre-freeze (PF) and frozen-thawed (FT) sperm from five boars of the GSF and PSF groups, respectively. Quantification of TXNRD1, HSPA4L and ATP1B1 gene expression was performed by RT-qPCR analysis. Proteins extracted from sperm were subjected to Western blotting and SDS-PAGE analyses. Poor freezability ejaculates were characterized by significantly higher relative mRNA expression levels of TXNRD1 and HSPA4L in FT sperm compared with the fresh PF sperm. Furthermore, the relative mRNA expression level of ATP1B1 was significantly higher in the fresh PF sperm of the GSF group. Western blotting analysis revealed significantly higher relative expression of TXNRD1 protein in the fresh PF sperm of the GSF group, while HSPA4L protein expression was markedly increased in FT sperm of the PSF group. Electrophoretic and densitometric analyses revealed a higher number of proteins in the fresh PF and FT sperm of the PSF and GSF groups, respectively. The results of this study indicate that ATP1B1 mRNA expression in the fresh PF sperm is a promising cryotolerance marker, while the variations of TXNRD1 and HSPA4L protein expression in the fresh PF or FT sperm provide useful information that may help to elucidate their biological significance in cryo-damage.
Collapse
Affiliation(s)
- Anna Mańkowska
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Przemysław Gilun
- Department of Local Physiological Regulations, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Bydgoska 7, 10-243 Olsztyn, Poland
| | - Łukasz Zasiadczyk
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Przemysław Sobiech
- Internal Disease Unit, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Leyland Fraser
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
13
|
AITKEN RJ, GIBB Z. Sperm oxidative stress in the context of male infertility: current evidence, links with genetic and epigenetic factors and future clinical needs. Minerva Endocrinol (Torino) 2022; 47:38-57. [DOI: 10.23736/s2724-6507.21.03630-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Cannarella R, Mancuso F, Arato I, Lilli C, Bellucci C, Gargaro M, Curto R, Aglietti MC, La Vignera S, Condorelli RA, Luca G, Calogero AE. Sperm-carried IGF2 downregulated the expression of mitogens produced by Sertoli cells: A paracrine mechanism for regulating spermatogenesis? Front Endocrinol (Lausanne) 2022; 13:1010796. [PMID: 36523595 PMCID: PMC9744929 DOI: 10.3389/fendo.2022.1010796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Insulin-like growth factor 2 (IGF2) mRNA has been found in human and mouse spermatozoa. It is currently unknown whether the IGF2 protein is expressed in human spermatozoa and, if so, its possible role in the cross-talk between germ and Sertoli cells (SCs) during spermatogenesis. METHODS To accomplish this, we analyzed sperm samples from four consecutive Caucasian men. Furthermore, to understand its role during the spermatogenetic process, porcine SCs were incubated with increasing concentrations (0.33, 3.33, and 10 ng/mL) of recombinant human IGF2 (rhIGF2) for 48 hours. Subsequently, the experiments were repeated by pre-incubating SCs with the non-competitive insulin-like growth factor 1 receptor (IGF1R) inhibitor NVP-AEW541. The following outcomes were evaluated: 1) Gene expression of the glial cell-line derived neurotrophic factor (GDNF), fibroblast growth factor 2 (FGF2), and stem cell factor (SCF) mitogens; 2) gene and protein expression of follicle-stimulating hormone receptor (FSHR), anti-Müllerian hormone (AMH), and inhibin B; 3) SC proliferation. RESULTS We found that the IGF2 protein was present in each of the sperm samples. IGF2 appeared as a cytoplasmic protein localized in the equatorial and post-acrosomal segment and with a varying degree of expression in each cell. In SCs, IGF2 significantly downregulated GDNF gene expression in a concentration-dependent manner. FGF2 and SCF were downregulated only by the highest concentration of IGF2. Similarly, IGF2 downregulated the FSHR gene and FSHR, AMH, and inhibin B protein expression. Finally, IGF2 significantly suppressed the SC proliferation rate. All these findings were reversed by pre-incubation with NVP-AEW541, suggesting an effect mediated by the interaction of IGF2 with the IGFR. CONCLUSION In conclusion, sperm IGF2 seems to downregulate the expression of mitogens, which are known to be physiologically released by the SCs to promote gonocyte proliferation and spermatogonial fate adoption. These findings suggest the presence of paracrine regulatory mechanisms acting on the seminiferous epithelium during spermatogenesis, by which germ cells can influence the amount of mitogens released by the SCs, their sensitivity to FSH, and their rate of proliferation.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
- *Correspondence: Rossella Cannarella,
| | - Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Iva Arato
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Cinzia Lilli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Catia Bellucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Roberto Curto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria C. Aglietti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A. Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovani Luca
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
15
|
Sahoo B, Choudhary RK, Sharma P, Choudhary S, Gupta MK. Significance and Relevance of Spermatozoal RNAs to Male Fertility in Livestock. Front Genet 2021; 12:768196. [PMID: 34956322 PMCID: PMC8696160 DOI: 10.3389/fgene.2021.768196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Livestock production contributes to a significant part of the economy in developing countries. Although artificial insemination techniques brought substantial improvements in reproductive efficiency, male infertility remains a leading challenge in livestock. Current strategies for the diagnosis of male infertility largely depend on the evaluation of semen parameters and fail to diagnose idiopathic infertility in most cases. Recent evidences show that spermatozoa contains a suit of RNA population whose profile differs between fertile and infertile males. Studies have also demonstrated the crucial roles of spermatozoal RNA (spRNA) in spermatogenesis, fertilization, and early embryonic development. Thus, the spRNA profile may serve as unique molecular signatures of fertile sperm and may play pivotal roles in the diagnosis and treatment of male fertility. This manuscript provides an update on various spRNA populations, including protein-coding and non-coding RNAs, in livestock species and their potential role in semen quality, particularly sperm motility, freezability, and fertility. The contribution of seminal plasma to the spRNA population is also discussed. Furthermore, we discussed the significance of rare non-coding RNAs (ncRNAs) such as long ncRNAs (lncRNAs) and circular RNAs (circRNAs) in spermatogenic events.
Collapse
Affiliation(s)
- Bijayalaxmi Sahoo
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Ratan K. Choudhary
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Paramajeet Sharma
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Shanti Choudhary
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|