1
|
Iwai K, Nagasawa K, Akaike T, Oshima T, Kato T, Minamisawa S. CCN3 secreted by prostaglandin E 2 inhibits intimal cushion formation in the rat ductus arteriosus. Biochem Biophys Res Commun 2018; 503:3242-3247. [PMID: 30149912 DOI: 10.1016/j.bbrc.2018.08.138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 08/22/2018] [Indexed: 11/29/2022]
Abstract
The ductus arteriosus (DA), an essential fetal shunt between the pulmonary trunk and the descending aorta, changes its structure during development. Our previous studies have demonstrated that prostaglandin E2 (PGE2)-EP4 signaling promotes intimal cushion formation (ICF) by activating the migration of DA smooth muscle cells via the secretion of hyaluronan. We hypothesized that, in addition to hyaluronan, PGE2 may secrete other proteins that also regulate vascular remodeling in the DA. In order to detect PGE2 stimulation-secreted proteins, we found that CCN3 protein was increased in the culture supernatant in the presence of PGE2 in a dose-dependent manner by nano-flow liquid chromatography coupled with tandem mass spectrometry analysis and enzyme-linked immunosorbent assay. Quantitative RT-PCR analysis revealed that PGE2 stimulation tended to increase the expression levels of CCN3 mRNA in DA smooth muscle cells. Immunohistochemical analysis revealed that CCN3 was highly localized in the entire smooth muscle layers and the endothelium of the DA. Furthermore, exogenous CCN3 inhibited PGE2-induced ICF in the ex vivo DA tissues. These results suggest that CCN3 is a secreted protein of the DA smooth muscle cells induced by PGE2 to suppress ICF of the DA. The present study indicates that CCN3 could be a novel negative regulator of ICF in the DA to fine-tune the PGE2-mediated DA remodeling.
Collapse
Affiliation(s)
- Kenji Iwai
- Graduate School of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Kazumichi Nagasawa
- Graduate School of Science and Engineering, Bioscience and Biomedical Engineering, Waseda Univeristy, Tokyo, Japan
| | - Toru Akaike
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Toshio Oshima
- Graduate School of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Takashi Kato
- Graduate School of Science and Engineering, Bioscience and Biomedical Engineering, Waseda Univeristy, Tokyo, Japan
| | - Susumu Minamisawa
- Graduate School of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan; Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
2
|
Islam MS, Akhtar MM, Segars JH, Castellucci M, Ciarmela P. Molecular targets of dietary phytochemicals for possible prevention and therapy of uterine fibroids: Focus on fibrosis. Crit Rev Food Sci Nutr 2018; 57:3583-3600. [PMID: 28609115 DOI: 10.1080/10408398.2016.1245649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Uterine fibroids (myomas or leiomyomas) are common benign tumors of reproductive aged women. Fibroids are clinically apparent in 20-50% of women, and cause abnormal uterine bleeding, abdominal pain and discomfort, pregnancy complications and infertility. Unfortunately, limited numbers of medical treatment are available but no effective preventive strategies exist. Moreover, the benefits of medical treatments are tempered by lack of efficacy or serious adverse side effects. Fibrosis has recently been recognized as a key pathological event in leiomyoma development and growth. It is defined by the excessive deposition of extracellular matrix (ECM). ECM plays important role in making bulk structure of leiomyoma, and ECM-rich rigid structure is believed to be a cause of abnormal bleeding and pelvic pain/pressure. Dietary phytochemicals are known to regulate fibrotic process in different biological systems, and being considered as potential tool to manage human health. At present, very few dietary phytochemicals have been studied in uterine leiomyoma, and they are mostly known for their antiproliferative effects. Therefore, in this review, our aim was to introduce some dietary phytochemicals that could target fibrotic processes in leiomyoma. Thus, this review could serve as useful resource to develop antifibrotic drugs for possible prevention and treatment of uterine fibroids.
Collapse
Affiliation(s)
- Md Soriful Islam
- a Department of Experimental and Clinical Medicine , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy.,b Biotechnology and Microbiology Laboratory, Department of Botany , University of Rajshahi , Rajshahi , Bangladesh
| | - Most Mauluda Akhtar
- a Department of Experimental and Clinical Medicine , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy.,c Department of Clinical and Molecular Sciences , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy
| | - James H Segars
- d Howard W. and Georgeanna Seegar Jones Division of Reproductive Sciences, Department of Gynecology and Obstetrics , Johns Hopkins School of Medicine , Baltimore , Maryland , USA
| | - Mario Castellucci
- a Department of Experimental and Clinical Medicine , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy
| | - Pasquapina Ciarmela
- a Department of Experimental and Clinical Medicine , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy.,e Department of Information Engineering , Università Politecnica delle Marche , Ancona , Italy
| |
Collapse
|
3
|
Islam MS, Segars JH, Castellucci M, Ciarmela P. Dietary phytochemicals for possible preventive and therapeutic option of uterine fibroids: Signaling pathways as target. Pharmacol Rep 2017; 69:57-70. [DOI: 10.1016/j.pharep.2016.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 02/07/2023]
|
4
|
van Setten GB, Trost A, Schrödl F, Kaser-Eichberger A, Bogner B, van Setten M, Heindl LM, Grabner G, Reitsamer HA. Immunohistochemical Detection of CTGF in the Human Eye. Curr Eye Res 2016; 41:1571-1579. [DOI: 10.3109/02713683.2016.1143014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Andrea Trost
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Falk Schrödl
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
- Department of Anatomy, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Barbara Bogner
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | | | - Ludwig M. Heindl
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Günther Grabner
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Herbert A. Reitsamer
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| |
Collapse
|
5
|
Li J, Ye L, Owen S, Weeks HP, Zhang Z, Jiang WG. Emerging role of CCN family proteins in tumorigenesis and cancer metastasis (Review). Int J Mol Med 2015; 36:1451-63. [PMID: 26498181 PMCID: PMC4678164 DOI: 10.3892/ijmm.2015.2390] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/07/2015] [Indexed: 12/28/2022] Open
Abstract
The CCN family of proteins comprises the members CCN1, CCN2, CCN3, CCN4, CCN5 and CCN6. They share four evolutionarily conserved functional domains, and usually interact with various cytokines to elicit different biological functions including cell proliferation, adhesion, invasion, migration, embryonic development, angiogenesis, wound healing, fibrosis and inflammation through a variety of signalling pathways. In the past two decades, emerging functions for the CCN proteins (CCNs) have been identified in various types of cancer. Perturbed expression of CCNs has been observed in a variety of malignancies. The aberrant expression of certain CCNs is associated with disease progression and poor prognosis. Insight into the detailed mechanisms involved in CCN-mediated regulation may be useful in understanding their roles and functions in tumorigenesis and cancer metastasis. In this review, we briefly introduced the functions of CCNs, especially in cancer.
Collapse
Affiliation(s)
- Jun Li
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Institute of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Sioned Owen
- Cardiff China Medical Research Collaborative, Institute of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Hoi Ping Weeks
- Cardiff China Medical Research Collaborative, Institute of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Institute of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
6
|
Growth factors and pathogenesis. Best Pract Res Clin Obstet Gynaecol 2015; 34:25-36. [PMID: 26527305 DOI: 10.1016/j.bpobgyn.2015.08.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/27/2015] [Indexed: 12/25/2022]
Abstract
Growth factors are relatively small and stable, secreted or membrane-bound polypeptide ligands, which play an important role in proliferation, differentiation, angiogenesis, survival, inflammation, and tissue repair, or fibrosis. They exert multiple effects through the activation of signal transduction pathways by binding to their receptors on the surface of target cells. A number of studies have demonstrated the central role of growth factors and their signaling pathways in the pathogenesis of uterine leiomyomas. Numerous differentially expressed growth factors have been identified in leiomyoma and myometrial cells. These growth factors can activate multiple signaling pathways (Smad 2/3, ERK 1/2, PI3K, and β-catenin) and regulate major cellular processes, including inflammation, proliferation, angiogenesis, and fibrosis which are linked to uterine leiomyoma development and growth. In this chapter, we discuss the role of growth factors and their signaling pathways in the pathogenesis of uterine leiomyomas.
Collapse
|
7
|
Li Q. Transforming growth factor β signaling in uterine development and function. J Anim Sci Biotechnol 2014; 5:52. [PMID: 25478164 PMCID: PMC4255921 DOI: 10.1186/2049-1891-5-52] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/28/2014] [Indexed: 12/16/2022] Open
Abstract
Transforming growth factor β (TGFβ) superfamily is evolutionarily conserved and plays fundamental roles in cell growth and differentiation. Mounting evidence supports its important role in female reproduction and development. TGFBs1-3 are founding members of this growth factor family, however, the in vivo function of TGFβ signaling in the uterus remains poorly defined. By drawing on mouse and human studies as a main source, this review focuses on the recent progress on understanding TGFβ signaling in the uterus. The review also considers the involvement of dysregulated TGFβ signaling in pathological conditions that cause pregnancy loss and fertility problems in women.
Collapse
Affiliation(s)
- Qinglei Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
8
|
Winterhager E, Gellhaus A. The role of the CCN family of proteins in female reproduction. Cell Mol Life Sci 2014; 71:2299-311. [PMID: 24448904 PMCID: PMC11113566 DOI: 10.1007/s00018-014-1556-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/20/2013] [Accepted: 01/02/2014] [Indexed: 01/05/2023]
Abstract
The CCN family of proteins consists of six high homologous matricellular proteins which act predominantly by binding to heparin sulphate proteoglycan and a variety of integrins. Interestingly, CCN proteins are regulated by ovarian steroid hormones and are able to adapt to changes in oxygen concentration, which is a necessary condition for successful implantation. CCN1 is involved in processes of angiogenesis within reproductive systems, thereby potentially contributing to diseases such as endometriosis and disturbed angiogenesis in the placenta and fetus. In the ovary, CCN2 is the key factor for follicular development, ovulation and corpora luteal luteolysis, and its deletion leads to fertility defects. CCN1, CCN2 and CCN3 seem to be regulators for human trophoblast proliferation and migration, but with CCN2 acting as a counterweight. Alterations in the expression of these three proteins could contribute to the shallow invasion properties observed in preeclampsia. Little is known about the role of CCN4-6 in the reproductive organs. The ability of CCN1, CCN2 and CCN3 to interact with numerous receptors enables them to adapt their biological function rapidly to the continuous remodelling of the reproductive organs and in the development of the placenta. The CCN proteins mediate their specific cell physiological function through the receptor type of their binding partner followed by a defined signalling cascade. Because of their partly overlapping expression patterns, they could act in a concert synergistically or in an opposite way within the reproductive organs. Imbalances in their expression levels are correlated to different human reproductive diseases, such as endometriosis and preeclampsia.
Collapse
Affiliation(s)
- Elke Winterhager
- Institute of Molecular Biology, University Clinic Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany,
| | | |
Collapse
|
9
|
Islam MS, Catherino WH, Protic O, Janjusevic M, Gray PC, Giannubilo SR, Ciavattini A, Lamanna P, Tranquilli AL, Petraglia F, Castellucci M, Ciarmela P. Role of activin-A and myostatin and their signaling pathway in human myometrial and leiomyoma cell function. J Clin Endocrinol Metab 2014; 99:E775-85. [PMID: 24606069 PMCID: PMC4010707 DOI: 10.1210/jc.2013-2623] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT Uterine leiomyomas are highly prevalent benign tumors of premenopausal women and the most common indication for hysterectomy. However, the exact etiology of this tumor is not fully understood. OBJECTIVE The objective of the study was to evaluate the role of activin-A and myostatin and their signaling pathways in human myometrial and leiomyoma cells. DESIGN This was a laboratory study. SETTING Myometrial and leiomyoma cells (primary and cell lines) were cultured in vitro. PATIENTS The study included premenopausal women who were admitted to the hospital for myomectomy or hysterectomy. INTERVENTIONS Primary myometrial and leiomyoma cells and/or cell lines were treated with activin-A (4 nM) and myostatin (4 nM) for different days of interval (to measure proliferation rate) or 30 minutes (to measure signaling molecules) or 48 hours to measure proliferating markers, extracellular matrix mRNA, and/or protein expression by real-time PCR, Western blot, and/or immunocytochemistry. RESULTS We found that activin-A and myostatin significantly reduce cell proliferation in primary myometrial cells but not in leiomyoma cells as measured by a CyQUANT cell proliferation assay kit. Reduced expression of proliferating cell nuclear antigen and Ki-67 were also observed in myometrial cells in response to activin-A and myostatin treatment. Activin-A also significantly increased mRNA expression of fibronectin, collagen1A1, and versican in primary leiomyoma cells. Finally, we found that activin-A and myostatin activate Smad-2/3 signaling but do not affect ERK or p38 signaling in both myometrial and leiomyoma cells. CONCLUSIONS This study results suggest that activin-A and myostatin can exert antiproliferative and/or fibrotic effects on these cell types via Smad-2/3 signaling.
Collapse
|
10
|
Hou P, Zhao L, Li Y, Luo F, Wang S, Song J, Bai J. Comparative expression of thioredoxin-1 in uterine leiomyomas and myometrium. Mol Hum Reprod 2013; 20:148-54. [DOI: 10.1093/molehr/gat069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
11
|
Islam MS, Protic O, Stortoni P, Grechi G, Lamanna P, Petraglia F, Castellucci M, Ciarmela P. Complex networks of multiple factors in the pathogenesis of uterine leiomyoma. Fertil Steril 2013; 100:178-93. [DOI: 10.1016/j.fertnstert.2013.03.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 01/07/2023]
|
12
|
Ciarmela P, Islam MS, Reis FM, Gray PC, Bloise E, Petraglia F, Vale W, Castellucci M. Growth factors and myometrium: biological effects in uterine fibroid and possible clinical implications. Hum Reprod Update 2011; 17:772-90. [PMID: 21788281 DOI: 10.1093/humupd/dmr031] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Growth factors are proteins secreted by a number of cell types that are capable of modulating cellular growth, proliferation and cellular differentiation. It is well accepted that uterine cellular events such as proliferation and differentiation are regulated by sex steroids and their actions in target tissues are mediated by local production of growth factors acting through paracrine and/or autocrine mechanisms. Myometrial mass is ultimately modified in pregnancy as well as in tumour conditions such as leiomyoma and leiomyosarcoma. Leiomyomas, also known as fibroids, are benign tumours of the uterus, considered to be one of the most frequent causes of infertility in reproductive years in women. METHODS For this review, we searched the database MEDLINE and Google Scholar for articles with content related to growth factors acting on myometrium; the findings are hereby reviewed and discussed. RESULTS Different growth factors such as epidermal growth factor (EGF), transforming growth factor-α (TGF-α), heparin-binding EGF (HB-EGF), acidic fibroblast growth factor (aFGF), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet-derived growth factor (PDGF) and TGF-β perform actions in myometrium and in leiomyomas. In addition to these growth factors, activin and myostatin have been recently identified in myometrium and leiomyoma. CONCLUSIONS Growth factors play an important role in the mechanisms involved in myometrial patho-physiology.
Collapse
Affiliation(s)
- Pasquapina Ciarmela
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Polytechnic University of Marche, via Tronto 10/a, 60020 Ancona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lin Z, Natesan V, Shi H, Hamik A, Kawanami D, Hao C, Mahabaleshwar GH, Wang W, Jin ZG, Atkins GB, Firth SM, Rittié L, Perbal B, Jain MK. A novel role of CCN3 in regulating endothelial inflammation. J Cell Commun Signal 2010; 4:141-53. [PMID: 21063504 DOI: 10.1007/s12079-010-0095-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 07/22/2010] [Indexed: 12/11/2022] Open
Abstract
The vascular endothelium plays a fundamental role in the health and disease of the cardiovascular system. The molecular mechanisms regulating endothelial homeostasis, however, remain incompletely understood. CCN3, a member of the CCN (Cyr61, Ctgf, Nov) family of cell growth and differentiation regulators, has been shown to play an important role in numerous cell types. The function of CCN3 in endothelial cells has yet to be elucidated. Immunohistochemical analysis of CCN3 expression in mouse tissues revealed robust immunoreactivity in the endothelium of large arteries, small resistance vessels, and veins. We found that CCN3 expression in human umbilical vein endothelial cells (HUVECs) is transcriptionally induced by laminar shear stress (LSS) and HMG CoA-reductase inhibitors (statins). Promoter analyses identified the transcription factor Kruppel-like factor 2 (KLF2) as a direct regulator of CCN3 expression. In contrast to LSS, proinflammatory cytokines reduced CCN3 expression. Adenoviral overexpression of CCN3 in HUVEC markedly inhibited the cytokine-mediated induction of vascular adhesion molecule-1 (VCAM-1). Consistent with this observation, CCN3 significantly reduced monocyte adhesion. Conversely, CCN3 knockdown in HUVECs resulted in enhancement of cytokine-induced VCAM-1 expression. Concordant effects were observed on monocyte adhesion. Gain and loss-of-function mechanistic studies demonstrated that CCN3 negatively regulates nuclear factor kappaB (NF-κB) activity by reducing its translocation into the nucleus and subsequent binding to the VCAM-1 promoter, suggesting that CCN3's anti-inflammatory effects occur secondary to inhibition of NF-κB nuclear accumulation. This study identifies CCN3 as a novel regulator of endothelial proinflammatory activation.
Collapse
|
14
|
Chegini N. Proinflammatory and profibrotic mediators: principal effectors of leiomyoma development as a fibrotic disorder. Semin Reprod Med 2010; 28:180-203. [PMID: 20414842 DOI: 10.1055/s-0030-1251476] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Leiomyomas are believed to derive from the transformation of myometrial smooth muscle cells/connective tissue fibroblasts. Although the identity of the molecule(s) that initiate such cellular transformation and orchestrate subsequent growth is still unknown, conventional evidence indicates that ovarian steroids are essential for leiomyoma growth. Ovarian steroid action in their target cell/tissue is mediated in part through local expression of various growth factors, cytokines, and chemokines. These autocrine/paracrine molecules with proinflammatory and profibrotic activities serve as major contributing factors in regulating cellular transformation, cell growth and apoptosis, angiogenesis, cellular hypertrophy, and excess tissue turnover, events central to leiomyoma growth. This review addresses the key regulatory functions of proinflammatory and profibrotic mediators and their molecular mechanisms, downstream signaling that regulates cellular events that result in transformation, and commitments of specific cells into forming a cellular environment with a possible role in development and subsequent growth of leiomyomas.
Collapse
Affiliation(s)
- Nasser Chegini
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Florida, Gainesville, Florida 32610, USA.
| |
Collapse
|
15
|
Joseph DS, Malik M, Nurudeen S, Catherino WH. Myometrial cells undergo fibrotic transformation under the influence of transforming growth factor β-3. Fertil Steril 2010; 93:1500-8. [DOI: 10.1016/j.fertnstert.2009.01.081] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 01/15/2009] [Accepted: 01/16/2009] [Indexed: 01/08/2023]
|
16
|
Pan Q, Luo X, Chegini N. microRNA 21: response to hormonal therapies and regulatory function in leiomyoma, transformed leiomyoma and leiomyosarcoma cells. Mol Hum Reprod 2009; 16:215-27. [PMID: 19906824 PMCID: PMC2816170 DOI: 10.1093/molehr/gap093] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aberrant expression of microRNAs (miRNAs), including miR-21, and alteration of their target genes stability have been associated with cellular transformation and tumorigenesis. We investigated the expression, regulation and function of miR-21 in leiomyomas which develop from myometrial cellular transformation. The results indicated that miR-21 is over-expressed in leiomyomas with specific elevation during the secretory phase of the menstrual cycle and in women who received Depo-Provera and oral contraceptives, but reduced due to GnRHa therapy (P < 0.05). Bioinformatic analysis of microarray gene expression profiles previously obtained from the above cohorts, and myometrial smooth muscle cells (MSMC) and leiomyoma smooth muscle cells (LSMC) treated with GnRHa, transforming growth factor (TGF)-β and TGF-β receptor type II (TGF-βRII) antisense oligomer, indicated that a number of miR-21-predicted target genes were co-expressed and differentially regulated in these cohorts. Gain- and loss-of-function of miR-21 in MSMC, LSMC, transformed LSMC and leiomyosarcoma cell line (SKLM-S1) resulted in differential expression of many genes, including some of the miR-21-predicted/validated target genes, PTEN, PDCD4 and E2F1, and TGF-βRII, in a cell-specific manner. Gain-of miR-21 function in MSMC and LSMC reduced TGF-β-induced expression of fibromodulin and TGF-β-induced factor (P < 0.05), and moderately altered the rate of cell growth and caspase-3/7 activity in these cells. We concluded that miR-21 is aberrantly expressed and hormonally regulated in leiomyomas where, through functional interaction with ovarian steroids and the TGF-β signaling pathway, either directly or indirectly regulates a number of genes whose products are critical in leiomyoma growth and regression as well as their potential cellular transformation.
Collapse
Affiliation(s)
- Qun Pan
- Department of OB/GYN, University of Florida, Box 100294, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
17
|
Norian JM, Malik M, Parker CY, Joseph D, Leppert PC, Segars JH, Catherino WH. Transforming growth factor beta3 regulates the versican variants in the extracellular matrix-rich uterine leiomyomas. Reprod Sci 2009; 16:1153-64. [PMID: 19700613 DOI: 10.1177/1933719109343310] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Uterine leiomyoma are common, benign tumors that are enriched in extracellular matrix. The tumors are characterized by a disoriented and loosely packed collagen fibril structure similar to other diseases with disrupted Transforming growth factor beta (TGF-beta) signaling. Here we characterized TGF-beta3 signaling and the expression patterns of the critical extracellular matrix component versican in leiomyoma and myometrial tissue and cell culture. We also demonstrate the regulation of the versican variants by TGF-beta3. Using leiomyoma and matched myometrium from 15 patients, messenger RNA (mRNA) from leiomyoma and myometrium was analyzed by semiquantitative real time reverse transcription-polymerase chain reaction (RT-PCR), while protein analysis was done by western blot. Transforming growth factor beta3 transcripts were increased 4-fold in leiomyoma versus matched myometrium. Phosphorylated-TGF-beta RII and phosphorylated-Smad 2/3 complex were greater in leiomyoma as documented by Western blot. The inhibitor Smad7 transcripts were decreased 0.44-fold. The glycosaminoglycan (GAG)-rich versican variants were elevated in leiomyoma versus myometrial tissue: specifically V0 (4.27 +/- 1.12) and V1 (2.01 +/- 0.27). Treatment of leiomyoma and myometrial cells with TGF-beta3 increased GAG-rich versican variant expression 7 to 12 fold. Neutralizing TGF-beta3 antibody decreased the expression of the GAG-rich versican variants 2 to 8 fold in leiomyoma cells. Taken together, the aberrant production of excessive and disorganized extracellular matrix that defines the leiomyoma phenotype involves the activation of the TGF-beta signaling pathway and excessive production of GAG-rich versican variants.
Collapse
Affiliation(s)
- John M Norian
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Luo X, Chegini N. The expression and potential regulatory function of microRNAs in the pathogenesis of leiomyoma. Semin Reprod Med 2008; 26:500-14. [PMID: 18951332 PMCID: PMC2710997 DOI: 10.1055/s-0028-1096130] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Leiomyomas are benign uterine tumors considered to arise from transformation of myometrial cells. What initiates the conversion of myometrial cells into leiomyoma is unknown, however cytogenetic analysis often shows occurrence of nonrandom chromosomal abnormalities that may account for their establishment. It is clear that ovarian steroids are essential for leiomyoma growth, and local expression of many autocrine/paracrine mediators serving as key regulators of cell-cycle progression, cellular hypertrophy, extracellular matrix accumulation, and apoptosis appear to play central roles in this capacity. However, the stability of the expression of these genes represents the hallmarks of leiomyoma establishment, growth, and regression. With the emergence of microRNA (miRNA) as a key regulator of gene expression stability, in this review we present evidence for the expression and potential regulatory functions on miRNAs in leiomyoma with particular emphasis on the expression of their selective target genes whose products influence various cellular activities critical to pathogenesis of leiomyomas.
Collapse
Affiliation(s)
- Xiaoping Luo
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Florida, Gainesville, Florida 32610, USA.
| | | |
Collapse
|
19
|
Dimitrova IK, Richer JK, Rudolph MC, Spoelstra NS, Reno EM, Medina TM, Bradford AP. Gene expression profiling of multiple leiomyomata uteri and matched normal tissue from a single patient. Fertil Steril 2008; 91:2650-63. [PMID: 18672237 DOI: 10.1016/j.fertnstert.2008.03.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 03/24/2008] [Accepted: 03/24/2008] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To identify differentially expressed genes between fibroid and adjacent normal myometrium in an identical hormonal and genetic background. DESIGN Array analysis of three leiomyomata and matched adjacent normal myometrium in a single patient. SETTING University of Colorado Hospital. PATIENT(S) A single female undergoing medically indicated hysterectomy for symptomatic fibroids. INTERVENTIONS(S) mRNA isolation and microarray analysis, reverse-transcriptase polymerase chain reaction, Western blotting, and immunohistochemistry. MAIN OUTCOME MEASURE(S) Changes in mRNA and protein levels in leiomyomata and matched normal myometrium. RESULT(S) Expression of 197 genes was increased and 619 decreased significantly by at least twofold, in leiomyomata relative to normal myometrium. Expression profiles between tumors were similar and normal myometrial samples showed minimal variation. Changes in, and variation of, expression of selected genes were confirmed in additional normal and leiomyoma samples from multiple patients. CONCLUSION(S) Analysis of multiple tumors from a single patient confirmed changes in expression of genes described in previous, apparently disparate, studies, and identified novel targets. Gene expression profiles in leiomyomata are consistent with increased activation of mitogenic pathways and inhibition of apoptosis. Down-regulation of genes implicated in invasion and metastasis, of cancers, was observed in fibroids. This expression pattern may underlie the benign nature of uterine leiomyomata and may aid in the differential diagnosis of leiomyosarcoma.
Collapse
Affiliation(s)
- Irina K Dimitrova
- Department of Obstetrics and Gynecology, University of Colorado Health Sciences Center, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Zaitseva M, Vollenhoven BJ, Rogers PA. Retinoids regulate genes involved in retinoic acid synthesis and transport in human myometrial and fibroid smooth muscle cells. Hum Reprod 2008; 23:1076-86. [DOI: 10.1093/humrep/den083] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
21
|
Vallacchi V, Daniotti M, Ratti F, Di Stasi D, Deho P, De Filippo A, Tragni G, Balsari A, Carbone A, Rivoltini L, Parmiani G, Lazar N, Perbal B, Rodolfo M. CCN3/nephroblastoma overexpressed matricellular protein regulates integrin expression, adhesion, and dissemination in melanoma. Cancer Res 2008; 68:715-23. [PMID: 18245471 DOI: 10.1158/0008-5472.can-07-2103] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CCN3/nephroblastoma overexpressed belongs to the CCN family of genes that encode secreted proteins associated with the extracellular matrix (ECM) and exert regulatory effects at the cellular level. Overexpression of CCN3 was shown in metastatic melanoma cells compared with cells of the primary tumor from the same patient. Analysis of short-term cultures from 50 primary and metastatic melanomas revealed a heterogeneous expression pattern of both the 46-kDa full-length cytoplasmic/secreted protein and the 32-kDa nuclear-truncated form. The different protein expression patterns were not associated with gene alterations or polymorphisms. Like the metastatic cells expressing high levels of the 46-kDa CCN3, cells transfected to overexpress CCN3 showed increased adhesion to ECM proteins, whereas inhibition of CCN3 expression by small interfering RNA decreased adhesion to laminin and vitronectin. CCN3 overexpression induced increased expression of laminin and vitronectin integrin receptors alpha 7 beta 1 and alpha v beta 5 by increasing their mRNA production. Moreover, CCN3 secreted by melanoma cells acted as an adhesion matrix protein for melanoma cells themselves. Analysis of CCN3 protein expression with respect to melanoma progression detected the protein in all visceral metastases tested and in most nodal metastases from relapsing patients but in only a few nodal metastases from nonrelapsing patients and cutaneous metastases. Consistently, xenotransplantation in immunodeficient mice showed a higher metastatic potential of melanoma cells overexpressing CCN3. Together, these data indicate a role for CCN3 in melanoma cell interaction with the ECM by regulating integrin expression, resulting in altered cell adhesion and leading melanoma progression to aggressive disease.
Collapse
Affiliation(s)
- Viviana Vallacchi
- Unit of Immunotherapy of Human Tumors, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Luo X, Pan Q, Liu L, Chegini N. Genomic and proteomic profiling II: comparative assessment of gene expression profiles in leiomyomas, keloids, and surgically-induced scars. Reprod Biol Endocrinol 2007; 5:35. [PMID: 17718906 PMCID: PMC2039739 DOI: 10.1186/1477-7827-5-35] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 08/24/2007] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Leiomyoma have often been compared to keloids because of their fibrotic characteristic and higher rate of occurrence among African Americans as compared to other ethnic groups. To evaluate such a correlation at molecular level this study comparatively analyzed leiomyomas with keloids, surgical scars and peritoneal adhesions to identify genes that are either commonly and/or individually distinguish these fibrotic disorders despite differences in the nature of their development and growth. METHODS Microarray gene expression profiling and realtime PCR. RESULTS The analysis identified 3 to 12% of the genes on the arrays as differentially expressed among these tissues based on P ranking at greater than or equal to 0.005 followed by 2-fold cutoff change selection. Of these genes about 400 genes were identified as differentially expressed in leiomyomas as compared to keloids/incisional scars, and 85 genes as compared to peritoneal adhesions (greater than or equal to 0.01). Functional analysis indicated that the majority of these genes serve as regulators of cell growth (cell cycle/apoptosis), tissue turnover, transcription factors and signal transduction. Of these genes the expression of E2F1, RUNX3, EGR3, TBPIP, ECM-2, ESM1, THBS1, GAS1, ADAM17, CST6, FBLN5, and COL18A was confirmed in these tissues using quantitative realtime PCR based on low-density arrays. CONCLUSION the results indicated that the molecular feature of leiomyomas is comparable but may be under different tissue-specific regulatory control to those of keloids and differ at the levels rather than tissue-specific expression of selected number of genes functionally regulating cell growth and apoptosis, inflammation, angiogenesis and tissue turnover.
Collapse
Affiliation(s)
- Xiaoping Luo
- Department of Obstetrics and Gynecology, University of Florida, College of Medicine, Gainesville, Florida 32610, USA
| | - Qun Pan
- Department of Obstetrics and Gynecology, University of Florida, College of Medicine, Gainesville, Florida 32610, USA
| | - Li Liu
- Interdisciplinary Center for Biotechnology Research, University of Florida, College of Medicine, Gainesville, Florida 32610, USA
| | - Nasser Chegini
- Department of Obstetrics and Gynecology, University of Florida, College of Medicine, Gainesville, Florida 32610, USA
| |
Collapse
|
23
|
Pan Q, Luo X, Chegini N. Genomic and proteomic profiling I: leiomyomas in African Americans and Caucasians. Reprod Biol Endocrinol 2007; 5:34. [PMID: 17716379 PMCID: PMC2063502 DOI: 10.1186/1477-7827-5-34] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 08/23/2007] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Clinical observations indicate that leiomyomas occur more frequently in African Americans compared to other ethnic groups with unknown etiology. To identify the molecular basis for the difference we compared leiomyomas form A. Americans with Caucasians using genomic and proteomic strategies. METHODS Microarray, realtime PCR, 2D-PAGE, mass spectrometry, Western blotting and immunohistochemistry. RESULTS Using Affymetrix U133A array and analysis based on P ranking (P < 0.01) 1470 genes were identified as differentially expressed in leiomyomas compared to myometrium regardless of ethnicity. Of these, 268 genes were either over-expressed (177 genes) or under-expressed (91 genes) based on P < 0.01 followed by 2-fold cutoff selection in leiomyomas of A. Americans as compared to Caucasians. Among them, the expression E2F1, RUNX3, EGR3, TBPIP, ECM2, ESM1, THBS1, GAS1, ADAM17, CST6, CST7, FBLN5, ICAM2, EDN1 and COL18 was validated using realtime PCR low-density arrays. 2D PAGE coupled with image analysis identified 332 protein spots of which the density/volume of 31 varied by greater than or equal to 1.5 fold in leiomyomas as compared to myometrium. The density/volume of 34 protein-spots varied by greater than or equal to 1.5 fold (26 increased and 8 decreased) in leiomyomas of A. Americans as compared to Caucasians. Tandem mass spectrometric analysis of 15 protein spots identified several proteins whose transcripts were also identified by microarray, including 14-3-3 beta and mimecan, whose expression was confirmed using western blotting and immunohistochemistry. CONCLUSION These findings imply that the level rather than the ethnic-specific expression of a number of genes and proteins may account for the difference between leiomyomas and possibly myometrium, in A. Americans and Caucasians. Further study using larger sample size is required to confirm these findings.
Collapse
Affiliation(s)
- Qun Pan
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, Florida 32610, USA
| | - Xiaoping Luo
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, Florida 32610, USA
| | - Nasser Chegini
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
24
|
Yanagita T, Kubota S, Kawaki H, Kawata K, Kondo S, Takano-Yamamoto T, Tanaka S, Takigawa M. Expression and physiological role of CCN4/Wnt-induced secreted protein 1 mRNA splicing variants in chondrocytes. FEBS J 2007; 274:1655-1665. [PMID: 17381509 DOI: 10.1111/j.1742-4658.2007.05709.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
CCN4/Wnt-induced secreted protein 1 (WISP1) is one of the CCN (CTGF/Cyr61/Nov) family proteins. CCN members have typical structures composed of four conserved cysteine-rich modules and their variants lacking certain modules, generated by alternative splicing or gene mutations, have been described in various pathological conditions. Several previous reports described a CCN4/WISP1 variant (WISP1v) lacking the second module in a few malignancies, but no information concerning the production of WISP1 variants in normal tissue is currently available. The expression of CCN4/WISP1 mRNA and its variants were analyzed in a human chondrosarcoma-derived chondrocytic cell line, HCS-2/8, and primary rabbit growth cartilage (RGC) chondrocytes. First, we found WISP1v and a novel variant of WISP1 (WISP1vx) to be expressed in HCS-2/8, as well as full-length WISP1 mRNA. This new variant was lacking the coding regions for the second and third modules and a small part of the first module. To monitor the expression of CCN4/WISP1 mRNA along chondrocyte differentiation, RGC cells were cultured and sampled until they were mineralized. As a result, we identified a WISP1v ortholog in normal RGC cells. Interestingly, the WISP1v mRNA level increased dramatically along with terminal differentiation. Furthermore, overexpression of WISP1v provoked expression of an alkaline phosphatase gene that is a marker of terminal differentiation in HCS-2/8 cells. These findings indicate that WISP1v thus plays a critical role in chondrocyte differentiation toward endochondral ossification, whereas HCS-2/8-specific WISP1vx may be associated with the transformed phenotypes of chondrosarcomas.
Collapse
Affiliation(s)
- Takeshi Yanagita
- Department of Biochemistry & Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Levens E, Luo X, Ding L, Williams RS, Chegini N. Fibromodulin is expressed in leiomyoma and myometrium and regulated by gonadotropin-releasing hormone analogue therapy and TGF-β through Smad and MAPK-mediated signalling. ACTA ACUST UNITED AC 2005; 11:489-94. [PMID: 16123076 DOI: 10.1093/molehr/gah187] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Microarray gene expression profiling revealed fibromodulin (FMOD) is among differentially expressed genes in leiomyoma (L) and myometrium. Using realtime PCR, western blotting and immunohistochemistry, we validated the expression of FMOD in paired leiomyoma and myometrium (N = 20) during the menstrual cycle, from women who received gonadotropin-releasing hormone analogue (GnRHa) therapy (N = 7) and in leiomyoma and myometrial (M) smooth muscle cells (SMC) due to transforming growth factor (TGF)-beta and GnRHa treatment. The results indicated that FMOD is expressed at significantly higher levels in leiomyoma as compared to myometrium from proliferative phase (two- to three-folds; P < 0.05), but not the secretory phase of the menstrual cycle, whereas GnRHa therapy reduced FMOD expression to levels detected in myometrium from proliferative phase (P = 0.05). By using western blotting and immunohistochemistry immunoreactive FMOD was detected in leiomyoma and myometrial tissue-extract and in LSMC and MSMC, connective tissue fibroblasts and arterial walls. In a time- and cell-dependent manner, TGF-beta1 (2.5 ng/ml) increased the expression of FMOD in MSMC, whereas GnRHa (0.1 microM) inhibited that in MSMC and LSMC (P < 0.05). The effect of TGF-beta and GnRHa on FMOD expression was reversed following pretreatment of LSMC and MSMC with Smad3 SiRNA and U0126 (MEK1/2 inhibitor), respectively. In summary, menstrual cycle-dependent expression of FMOD and suppression following GnRHa therapy in leiomyoma and myometrium, as well as differential regulation by TGF-beta and GnRHa in vitro suggests that FMOD, a key regulator of tissue organization, plays a critical role in leiomyoma fibrotic characteristics.
Collapse
Affiliation(s)
- Eric Levens
- Department of OB/GYN, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|