1
|
Nevone A, Lattarulo F, Russo M, Panno G, Milani P, Basset M, Avanzini MA, Merlini G, Palladini G, Nuvolone M. A Strategy for the Selection of RT-qPCR Reference Genes Based on Publicly Available Transcriptomic Datasets. Biomedicines 2023; 11:1079. [PMID: 37189697 PMCID: PMC10135859 DOI: 10.3390/biomedicines11041079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
In the next-generation sequencing era, RT-qPCR is still widely employed to quantify levels of nucleic acids of interest due to its popularity, versatility, and limited costs. The measurement of transcriptional levels through RT-qPCR critically depends on reference genes used for normalization. Here, we devised a strategy to select appropriate reference genes for a specific clinical/experimental setting based on publicly available transcriptomic datasets and a pipeline for RT-qPCR assay design and validation. As a proof-of-principle, we applied this strategy to identify and validate reference genes for transcriptional studies of bone-marrow plasma cells from patients with AL amyloidosis. We performed a systematic review of published literature to compile a list of 163 candidate reference genes for RT-qPCR experiments employing human samples. Next, we interrogated the Gene Expression Omnibus to assess expression levels of these genes in published transcriptomic studies on bone-marrow plasma cells from patients with different plasma cell dyscrasias and identified the most stably expressed genes as candidate normalizing genes. Experimental validation on bone-marrow plasma cells showed the superiority of candidate reference genes identified through this strategy over commonly employed "housekeeping" genes. The strategy presented here may apply to other clinical and experimental settings for which publicly available transcriptomic datasets are available.
Collapse
Affiliation(s)
- Alice Nevone
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesca Lattarulo
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Monica Russo
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giada Panno
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Milani
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Marco Basset
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Maria Antonietta Avanzini
- Pediatric Hematology Oncology, Cell Factory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giampaolo Merlini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giovanni Palladini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Mario Nuvolone
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
2
|
Implication of Pseudo Reference Genes in Normalization of Data from Reverse Transcription-Quantitative PCR. Gene 2020; 757:144948. [DOI: 10.1016/j.gene.2020.144948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 01/17/2023]
|
3
|
Zhou X, Wu X, Chu M, Liang C, Ding X, Pei J, Xiong L, Bao P, Guo X, Yan P. Validation of Suitable Reference Genes for Gene Expression Studies on Yak Testis Development. Animals (Basel) 2020; 10:ani10020182. [PMID: 31973196 PMCID: PMC7070506 DOI: 10.3390/ani10020182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Yak (Bos grunniens) provides life materials for herdsmen in high-plateau areas. Improving their low fertility is necessary to meet the demands of the development of the yak industry. The testis is an important organ for male fertility, its development is controlled by a large number of genes. Using real-time reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) to explore the quantitative expression of genes can provide insights for illuminating the molecular mechanisms of testis development, but the RT-qPCR data are influenced by the stability of reference genes (RGs). Unfortunately, no available RGs can normalize the gene expression in yak testis development. In this study, the expression stability of 13 candidate genes in yak testis at different developmental stages was evaluated using five different pieces of software. The results showed that the TATA box-binding protein (TBP) and ubiquitously expressed transcript protein (UXT) exhibited high stability across various developmental stages, TBP and hydroxymethylbilane synthase (HMBS) were the most stably expressed genes in immature stages, and mitochondrial ribosomal protein L39 (MRPL39) and TBP exhibited the most stable expression across mature stages. This study provided suitable RGs for gene expression studies in yak testis development. Abstract Testis has an important function in male reproduction. Its development is regulated by a large number of genes. The real-time reserve transcriptase-quantitative polymerase chain reaction (RT-qPCR) is a useful tool to evaluate the gene expression levels. However, unsuitable reference genes (RGs) can cause the misinterpretation of gene expression levels. Unfortunately, the ideal RGs for yak testis development are yet to be studied. In this study, 13 commonly used RGs were selected to identify the most stable RGs in yak testis at four different developmental stages, including two immature stages (6 months and 18 months) and two mature stages (30 months and 6 years). This study used GeNorm, NormFinder, BestKeeper, ∆Ct, and RefFinder programs to evaluate the stability of 13 candidate genes. The results of RefFinder showed that the stabilities of TATA box-binding protein (TBP) and ubiquitously expressed transcript protein (UXT) were ranked the top two across all developmental stages. TBP and hydroxymethylbilane synthase (HMBS) were stably expressed in immature stages, while mitochondrial ribosomal protein L39 (MRPL39) and TBP had higher stability than other candidate genes in mature stages. This study provided valuable information for gene expression studies to assist further investigation on the molecular mechanisms in underlying yak testis development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xian Guo
- Correspondence: (X.G.); (P.Y.); Tel.: +86-0931-2115257 (X.G.); +86-0931-2115288 (P.Y.)
| | - Ping Yan
- Correspondence: (X.G.); (P.Y.); Tel.: +86-0931-2115257 (X.G.); +86-0931-2115288 (P.Y.)
| |
Collapse
|
4
|
Rebourcet D, Monteiro A, Cruickshanks L, Jeffery N, Smith S, Milne L, O’Shaughnessy PJ, Smith LB. Relationship of transcriptional markers to Leydig cell number in the mouse testis. PLoS One 2019; 14:e0219524. [PMID: 31291327 PMCID: PMC6619764 DOI: 10.1371/journal.pone.0219524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Objectives The current study aims to identify markers that would reflect the number of Leydig cells present in the testis, to help determine whether labour-intensive methods such as stereology are necessary. We used our well-characterised Sertoli cell ablation model in which we have empirically established the size of the Leydig cell population, to try to identify transcriptional biomarkers indicative of population size. Results Following characterisation of the Leydig cell population after Sertoli cell ablation in neonatal life or adulthood, we identified Hsd3b1 transcript levels as a potential indicator of Leydig cell number with utility for informing decision-making on whether to engage in time-consuming stereological cell counting analysis.
Collapse
Affiliation(s)
- Diane Rebourcet
- Faculty of Science, University of Newcastle, Callaghan, NSW, Australia
| | - Ana Monteiro
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Lyndsey Cruickshanks
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, EH, United Kingdom
| | - Nathan Jeffery
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, EH, United Kingdom
| | - Sarah Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, EH, United Kingdom
| | - Laura Milne
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, EH, United Kingdom
| | - Peter J. O’Shaughnessy
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Lee B. Smith
- Faculty of Science, University of Newcastle, Callaghan, NSW, Australia
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, EH, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Alternative (backdoor) androgen production and masculinization in the human fetus. PLoS Biol 2019; 17:e3000002. [PMID: 30763313 PMCID: PMC6375548 DOI: 10.1371/journal.pbio.3000002] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/11/2019] [Indexed: 11/19/2022] Open
Abstract
Masculinization of the external genitalia in humans is dependent on formation of 5α-dihydrotestosterone (DHT) through both the canonical androgenic pathway and an alternative (backdoor) pathway. The fetal testes are essential for canonical androgen production, but little is known about the synthesis of backdoor androgens, despite their known critical role in masculinization. In this study, we have measured plasma and tissue levels of endogenous steroids in second trimester human fetuses using multidimensional and high-resolution mass spectrometry. Results show that androsterone is the principal backdoor androgen in the male fetal circulation and that DHT is undetectable (<1 ng/mL), while in female fetuses, there are significantly lower levels of androsterone and testosterone. In the male, intermediates in the backdoor pathway are found primarily in the placenta and fetal liver, with significant androsterone levels also in the fetal adrenal. Backdoor intermediates, including androsterone, are only present at very low levels in the fetal testes. This is consistent with transcript levels of enzymes involved in the alternate pathway (steroid 5α-reductase type 1 [SRD5A1], aldo-keto reductase type 1C2 [AKR1C2], aldo-keto reductase type 1C4 [AKR1C4], cytochrome P450 17A1 [CYP17A1]), as measured by quantitative PCR (qPCR). These data identify androsterone as the predominant backdoor androgen in the human fetus and show that circulating levels are sex dependent, but also that there is little de novo synthesis in the testis. Instead, the data indicate that placental progesterone acts as substrate for synthesis of backdoor androgens, which occurs across several tissues. Masculinization of the human fetus depends, therefore, on testosterone and androsterone synthesis by both the fetal testes and nongonadal tissues, leading to DHT formation at the genital tubercle. Our findings also provide a solid basis to explain why placental insufficiency is associated with disorders of sex development in humans. Fetal human masculinisation depends on testosterone production by the testes and an alternative “backdoor” androgen. This study shows that this androgen is likely to be androsterone, which is sexually dimorphic in the fetus but does not come from the testes; instead, synthesis probably depends on placental substrates. The human penis starts to develop before birth from a structure called the genital tubercle. This process is dependent on the secretion of testosterone from the fetal testes and subsequent conversion of testosterone into dihydrotestosterone (DHT) by enzymes in the genital tubercle. Recently, an alternative "backdoor" route to the formation of DHT, which does not require testosterone, has also been shown to be essential for normal development of the human penis. In this study we provide evidence indicating that androsterone is the major backdoor androgen involved in human masculinization and that it is produced in nongonadal tissues. Steroid hormone levels were measured in the plasma of second trimester human fetuses, and testosterone and androsterone were the only androgens with higher levels in males than in females. Analysis of tissue steroid levels showed that plasma androsterone did not primarily originate from the testes but, instead, was probably formed in other tissues via metabolism of placental progesterone. These data indicate, therefore, that masculinization of the human fetus depends on steroid hormone secretion from both the testes and the placenta, and would explain why placental dysfunction is associated with disorders of sex development.
Collapse
|
6
|
Soffientini U, Rebourcet D, Abel MH, Lee S, Hamilton G, Fowler PA, Smith LB, O'Shaughnessy PJ. Identification of Sertoli cell-specific transcripts in the mouse testis and the role of FSH and androgen in the control of Sertoli cell activity. BMC Genomics 2017; 18:972. [PMID: 29246116 PMCID: PMC5731206 DOI: 10.1186/s12864-017-4357-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/29/2017] [Indexed: 11/29/2022] Open
Abstract
Background The Sertoli cells act to induce testis differentiation and subsequent development in fetal and post-natal life which makes them key to an understanding of testis biology. As a major step towards characterisation of factors involved in Sertoli cell function we have identified Sertoli cell-specific transcripts in the mouse testis and have used the data to identify Sertoli cell-specific transcripts altered in mice lacking follicle-stimulating hormone receptors (FSHRKO) and/or androgen receptors (AR) in the Sertoli cells (SCARKO). Results Adult iDTR mice were injected with busulfan to ablate the germ cells and 50 days later they were treated with diphtheria toxin (DTX) to ablate the Sertoli cells. RNAseq carried out on testes from control, busulfan-treated and busulfan + DTX-treated mice identified 701 Sertoli-specific transcripts and 4302 germ cell-specific transcripts. This data was mapped against results from microarrays using testicular mRNA from 20 day-old FSHRKO, SCARKO and FSHRKO.SCARKO mice. Results show that of the 534 Sertoli cell-specific transcripts present on the gene chips, 85% were altered in the FSHRKO mice and 94% in the SCARKO mice (mostly reduced in both cases). In the FSHRKO.SCARKO mice additive or synergistic effects were seen for most transcripts. Age-dependent studies on a selected number of Sertoli cell-specific transcripts, showed that the marked effects in the FSHRKO at 20 days had largely disappeared by adulthood although synergistic effects of FSHR and AR knockout were seen. Conclusions These studies have identified the Sertoli cell-specific transcriptome in the mouse testis and have shown that most genes in the transcriptome are FSH- and androgen-dependent at puberty although the importance of FSH diminishes towards adulthood. Electronic supplementary material The online version of this article (10.1186/s12864-017-4357-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- U Soffientini
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, Glasgow, UK
| | - D Rebourcet
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, Glasgow, UK.,MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - M H Abel
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clarke Building, Oxford, OX1 3QX, UK
| | - S Lee
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clarke Building, Oxford, OX1 3QX, UK
| | - G Hamilton
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, Glasgow, UK
| | - P A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - L B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, Newcastle, 2308, Australia
| | - P J O'Shaughnessy
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, Glasgow, UK.
| |
Collapse
|
7
|
Barbierato V, Sala T, Rinaldi P, Bassolino L, Barchi L, Rotino GL, Toppino L. A spiking strategy facilitates housekeeping selection for RT-qPCR analysis under different biotic stresses in eggplant. PROTOPLASMA 2017; 254:2215-2223. [PMID: 28429149 DOI: 10.1007/s00709-017-1111-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/04/2017] [Indexed: 05/27/2023]
Abstract
Endogenous housekeeping genes are traditionally employed to normalize the expression of target genes in RT-qPCR studies. Assuming that a perfect housekeeping suitable for every condition does not exist, expression stability of the chosen reference gene should be evaluated at every new experiment. The housekeeping selection process reveals furthermore complicated and time-consuming when different conditions have to be compared in the same experimental dataset. As an alternative strategy, we spiked an external reference transcript (ERT) into all RNA samples of our dataset (eggplant roots subjected to different biotic stresses), and used it to normalize the expression levels of native candidate housekeeping. ERT expression resulted highly stable across all samples and enabled to indicate glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as the most stable endogenous housekeeping. This result was confirmed by the use of GeNorm, Normfinder, and BestKeeper algorithms. This method might be generally applied to expedite the selection process of the best reference gene.
Collapse
Affiliation(s)
- Valeria Barbierato
- CREA- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Unità di Ricerca per l'Orticoltura, Via Paullese, 28 Montanaso Lombardo, 26836, Lodi, Italy
| | - Tea Sala
- CREA- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Unità di Ricerca per l'Orticoltura, Via Paullese, 28 Montanaso Lombardo, 26836, Lodi, Italy
| | - Paola Rinaldi
- CREA- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Unità di Ricerca per l'Orticoltura, Via Paullese, 28 Montanaso Lombardo, 26836, Lodi, Italy
| | - Laura Bassolino
- CREA- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Unità di Ricerca per l'Orticoltura, Via Paullese, 28 Montanaso Lombardo, 26836, Lodi, Italy
| | - Lorenzo Barchi
- DISAFA Plant Genetics and Breeding, University of Torino, Grugliasco, 10095, Torino, Italy
| | - Giuseppe Leonardo Rotino
- CREA- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Unità di Ricerca per l'Orticoltura, Via Paullese, 28 Montanaso Lombardo, 26836, Lodi, Italy
| | - Laura Toppino
- CREA- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Unità di Ricerca per l'Orticoltura, Via Paullese, 28 Montanaso Lombardo, 26836, Lodi, Italy.
| |
Collapse
|
8
|
Fowler PA, Filis P, Bhattacharya S, le Bizec B, Antignac JP, Morvan ML, Drake AJ, Soffientini U, O'Shaughnessy PJ. Human anogenital distance: an update on fetal smoke-exposure and integration of the perinatal literature on sex differences. Hum Reprod 2016; 31:463-72. [PMID: 26732622 PMCID: PMC4716811 DOI: 10.1093/humrep/dev323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 11/20/2015] [Indexed: 01/08/2023] Open
Abstract
STUDY QUESTION Do sex and maternal smoking effects on human fetal anogenital distance (AGD) persist in a larger study and how do these data integrate with the wider literature on perinatal human AGD, especially with respect to sex differences? SUMMARY ANSWER Second trimester sex differences in AGD are broadly consistent with neonatal and infant measures of AGD and maternal cigarette smoking is associated with a temporary increase in male AGD in the absence of changes in circulating testosterone. WHAT IS KNOWN ALREADY AGD is a biomarker of fetal androgen exposure, a reduced AGD in males being associated with cryptorchidism, hypospadias and reduced penile length. Normative fetal AGD data remain partial and windows of sensitivity of human fetal AGD to disruption are not known. STUDY DESIGN, SIZE, DURATION The effects of fetal sex and maternal cigarette smoking on the second trimester (11–21 weeks of gestation) human fetal AGD were studied, along with measurement of testosterone and testicular transcripts associated with apoptosis and proliferation. PARTICIPANTS/MATERIALS, SETTING METHODS AGD, measured from the centre of the anus to the posterior/caudal root of penis/clitoris (AGDapp) was determined in 56 female and 70 male morphologically normal fetuses. These data were integrated with current literature on perinatal AGD in humans. MAIN RESULTS AND THE ROLE OF CHANCE At 11–13 weeks of gestation male fetal AGDapp was 61% (P< 0.001) longer than in females, increasing to 70% at 17–21 weeks. This sexual dimorphism was independent of growth characteristics (fetal weight, length, gonad weight). We confirmed that at 14–16 weeks of gestation male fetal AGDapp was increased 28% (P < 0.05) by in utero cigarette smoke exposure. Testosterone levels were not affected by smoking. To develop normative data, our findings have been integrated with available data from in vivo ultrasound scans and neonatal studies. Inter-study variations in male/female AGD differences lead to the conclusion that normalization and standardization approaches should be developed to enable confidence in comparing data from different perinatal AGD studies. LIMITATIONS, REASONS FOR CAUTION Sex differences, and a smoking-dependent increase in male fetal AGD at 14–16 weeks, identified in a preliminary study, were confirmed with a larger number of fetuses. However, human fetal AGD should, be re-assessed once much larger numbers of fetuses have been studied and this should be integrated with more detailed analysis of maternal lifestyle. Direct study of human fetal genital tissues is required for further mechanistic insights. WIDER IMPLICATIONS OF THE FINDINGS Fetal exposure to cigarette smoke chemicals is known to lead to reduced fertility in men and women. Integration of our data into the perinatal human AGD literature shows that more work needs to be done to enable reliable inter-study comparisons. STUDY FUNDING/COMPETING INTEREST(S) The study was supported by grants from the Chief Scientist Office (Scottish Executive, CZG/1/109 & CZG/4/742), NHS Grampian Endowments (08/02), the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 212885 and the Medical Research Council, UK (MR/L010011/1). The authors declare they have no competing interests, be it financial, personal or professional.
Collapse
Affiliation(s)
- Paul A Fowler
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Panagiotis Filis
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Siladitya Bhattacharya
- Institute of Applied Health Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Bruno le Bizec
- USC INRA 1329 Laboratoire d'Etude des Résidus et Contaminants dans les Aliments, LUNAM Université, Oniris, Nantes F-44307, France
| | - Jean-Philippe Antignac
- USC INRA 1329 Laboratoire d'Etude des Résidus et Contaminants dans les Aliments, LUNAM Université, Oniris, Nantes F-44307, France
| | - Marie-Line Morvan
- USC INRA 1329 Laboratoire d'Etude des Résidus et Contaminants dans les Aliments, LUNAM Université, Oniris, Nantes F-44307, France
| | - Amanda J Drake
- Endocrinology Unit, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ugo Soffientini
- Institute of Biodiversity, Animal Health & Comparative Medicine (IBAHCM), College of Medical, Veterinary & Life Sciences, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, UK
| | - Peter J O'Shaughnessy
- Institute of Biodiversity, Animal Health & Comparative Medicine (IBAHCM), College of Medical, Veterinary & Life Sciences, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, UK
| |
Collapse
|
9
|
Svingen T, Letting H, Hadrup N, Hass U, Vinggaard AM. Selection of reference genes for quantitative RT-PCR (RT-qPCR) analysis of rat tissues under physiological and toxicological conditions. PeerJ 2015; 3:e855. [PMID: 25825680 PMCID: PMC4375968 DOI: 10.7717/peerj.855] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/05/2015] [Indexed: 11/20/2022] Open
Abstract
In biological research the analysis of gene expression levels in cells and tissues can be a powerful tool to gain insights into biological processes. For this, quantitative RT-PCR (RT-qPCR) is a popular method that often involve the use of constitutively expressed endogenous reference (or ‘housekeeping’) gene for normalization of data. Thus, it is essential to use reference genes that have been verified to be stably expressed within the specific experimental setting. Here, we have analysed the expression stability of 12 commonly used reference genes (Actb, B2m, Gapdh, Hprt, Pgk1, Rn18s, Rpl13a, Rps18, Rps29, Sdha, Tbp and Ubc) across several juvenile and adult rat tissues (liver, adrenal, prostate, fat pad, testis and ovaries), both under normal conditions and following exposure to various chemicals during development. Employing NormFinder and BestKeeper softwares, we found Hprt and Sdha to be amongst the most stable genes across normal and manipulated tissues, with several others also being suitable for most tissues. Tbp and B2m displayed highest variability in transcript levels between tissues and developmental stages. It was also observed that the reference genes were most unstable in liver and testis following toxicological exposure. For future studies, we propose the use of more than one verified reference gene and the continuous monitoring of their suitability under various experimental conditions, including toxicological studies, based on changes in threshold (Ct) values from cDNA samples having been reverse-transcribed from a constant input concentration of RNA.
Collapse
Affiliation(s)
- Terje Svingen
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark , Søborg , Denmark
| | - Heidi Letting
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark , Søborg , Denmark
| | - Niels Hadrup
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark , Søborg , Denmark
| | - Ulla Hass
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark , Søborg , Denmark
| | - Anne Marie Vinggaard
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark , Søborg , Denmark
| |
Collapse
|
10
|
Rebourcet D, O’Shaughnessy PJ, Monteiro A, Milne L, Cruickshanks L, Jeffrey N, Guillou F, Freeman TC, Mitchell RT, Smith LB. Sertoli cells maintain Leydig cell number and peritubular myoid cell activity in the adult mouse testis. PLoS One 2014; 9:e105687. [PMID: 25144714 PMCID: PMC4140823 DOI: 10.1371/journal.pone.0105687] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/23/2014] [Indexed: 01/08/2023] Open
Abstract
The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR) specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health.
Collapse
Affiliation(s)
- Diane Rebourcet
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Peter J. O’Shaughnessy
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Campus, Glasgow, United Kingdom
| | - Ana Monteiro
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Campus, Glasgow, United Kingdom
| | - Laura Milne
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Lyndsey Cruickshanks
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Nathan Jeffrey
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Florian Guillou
- Station de Physiologie de la Reproduction et des Comportements (PRC), Institut National de la Recherche Agronomique, UMR 6073 INRA-CNRS-Université de Tours, Nouzilly, France
| | - Tom C. Freeman
- The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Rod T. Mitchell
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Lee B. Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Svingen T, Jørgensen A, Rajpert-De Meyts E. Validation of endogenous normalizing genes for expression analyses in adult human testis and germ cell neoplasms. Mol Hum Reprod 2014; 20:709-18. [PMID: 24743772 DOI: 10.1093/molehr/gau030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The measurement of gene expression levels in cells and tissues typically depends on a suitable point of reference for inferring biological relevance. For quantitative (or real-time) RT-PCR assays, the method of choice is often to normalize gene expression data to an endogenous gene that is stably expressed across the samples analysed: a so-called normalizing or housekeeping gene. Although this is a valid strategy, the identification of stable normalizing genes has proved challenging and a gene showing stable expression across all cells or tissues is unlikely to exist. Therefore, it is necessary to define suitable normalizing genes for specific cells and tissues. Here, we report on the performance of a panel of nine commonly employed normalizing genes in adult human testis and testicular pathologies. Our analyses revealed significant variability in transcript abundance for commonly used normalizers, highlighting the importance of selecting appropriate normalizing genes as comparative measurements can yield variable results when different normalizing genes are employed. Based on our results, we recommend using RPS20, RPS29 or SRSF4 when analysing relative gene expression levels in human testis and associated testicular pathologies. OCT4 and SALL4 can be used with caution as second-tier normalizers when determining changes in gene expression in germ cells and germ cell tumour components, but the relative transcript abundance appears variable between different germ cell tumour types. We further recommend that such studies should be accompanied by additional assessment of histology and cellularity of each sample.
Collapse
Affiliation(s)
- T Svingen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen DK-2100, Denmark
| | - A Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen DK-2100, Denmark
| | - E Rajpert-De Meyts
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen DK-2100, Denmark
| |
Collapse
|