1
|
Zhuang BM, Cao DD, Li TX, Liu XF, Lyu MM, Wang SD, Cui XY, Wang L, Chen XL, Lin XL, Lee CL, Chiu PCN, Yeung WSB, Yao YQ. Single-cell characterization of self-renewing primary trophoblast organoids as modeling of EVT differentiation and interactions with decidual natural killer cells. BMC Genomics 2023; 24:618. [PMID: 37853336 PMCID: PMC10583354 DOI: 10.1186/s12864-023-09690-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Extravillous trophoblast cell (EVT) differentiation and its communication with maternal decidua especially the leading immune cell type natural killer (NK) cell are critical events for placentation. However, appropriate in vitro modelling system and regulatory programs of these two events are still lacking. Recent trophoblast organoid (TO) has advanced the molecular and mechanistic research in placentation. Here, we firstly generated the self-renewing TO from human placental villous and differentiated it into EVTs (EVT-TO) for investigating the differentiation events. We then co-cultured EVT-TO with freshly isolated decidual NKs for further study of cell communication. TO modelling of EVT differentiation as well as EVT interaction with dNK might cast new aspect for placentation research. RESULTS Single-cell RNA sequencing (scRNA-seq) was applied for comprehensive characterization and molecular exploration of TOs modelling of EVT differentiation and interaction with dNKs. Multiple distinct trophoblast states and dNK subpopulations were identified, representing CTB, STB, EVT, dNK1/2/3 and dNKp. Lineage trajectory and Seurat mapping analysis identified the close resemblance of TO and EVT-TO with the human placenta characteristic. Transcription factors regulatory network analysis revealed the cell-type specific essential TFs for controlling EVT differentiation. CellphoneDB analysis predicted the ligand-receptor complexes in dNK-EVT-TO co-cultures, which relate to cytokines, immunomodulation and angiogenesis. EVT was known to affect the immune properties of dNK. Our study found out that on the other way around, dNKs could exert effects on EVT causing expression changes which are functionally important. CONCLUSION Our study documented a single-cell atlas for TO and its applications on EVT differentiation and communications with dNKs, and thus provide methodology and novel research cues for future study of human placentation.
Collapse
Affiliation(s)
- Bai-Mei Zhuang
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
- Medical school of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Dan-Dan Cao
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China.
| | - Tian-Xi Li
- Geneplus-Shenzhen Institute, Shenzhen, China
| | - Xiao-Feng Liu
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
| | - Min-Min Lyu
- Department of Clinical-Translational and Basic Research Laboratory, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Shenzhen, Futian District, Guangdong, P.R. China
| | - Si-Dong Wang
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
- Medical school of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xin-Yuan Cui
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
| | - Li Wang
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xiao-Lin Chen
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xiao-Li Lin
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Cheuk-Lun Lee
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong S.A.R
| | - Philip C N Chiu
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong S.A.R
| | - William S B Yeung
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong S.A.R
| | - Yuan-Qing Yao
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China.
- Medical school of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China.
- Department of Obstetrics and Gynecology, The First Medical Centre, Chinese People's Liberation Army General Hospital, Beijing, China.
| |
Collapse
|
2
|
Kalaivani V, Krishna MS, Kumar AA, Satheesh G, Jaleel A. O-glycan structures in apo(a) subunit of human lipoprotein(a) suppresses the pro-angiogenic activity of galectin-1 on human umbilical vein endothelial cells. FASEB J 2023; 37:e22813. [PMID: 36809652 DOI: 10.1096/fj.202201001rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/29/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023]
Abstract
Apolipoprotein(a) [apo(a)] is a highly polymorphic O-glycoprotein circulating in human plasma as lipoprotein(a) [Lp(a)]. The O-glycan structures of apo(a) subunit of Lp(a) serve as strong ligands of galectin-1, an O-glycan binding pro-angiogenic lectin abundantly expressed in placental vascular tissues. But the pathophysiological significance of apo(a)-galectin-1 binding is not yet been revealed. Carbohydrate-dependent binding of galectin-1 to another O-glycoprotein, neuropilin-1 (NRP-1) on endothelial cells activates vascular endothelial growth factor receptor 2 (VEGFR2) and mitogen-activated protein kinase (MAPK) signaling. Using apo(a), isolated from human plasma, we demonstrated the potential of the O-glycan structures of apo(a) in Lp(a) to inhibit angiogenic properties such as proliferation, migration, and tube-formation in human umbilical vein endothelial cells (HUVECs) as well as neovascularization in chick chorioallantoic membrane. Further, in vitro protein-protein interaction studies have confirmed apo(a) as a superior ligand to NRP-1 for galectin-1 binding. We also demonstrated that the protein levels of galectin-1, NRP-1, VEGFR2, and downstream proteins in MAPK signaling were reduced in HUVECs in the presence of apo(a) with intact O-glycan structures compared to that of de-O-glycosylated apo(a). In conclusion, our study shows that apo(a)-linked O-glycans prevent the binding of galectin-1 to NRP-1 leading to the inhibition of galectin-1/neuropilin-1/VEGFR2/MAPK-mediated angiogenic signaling pathway in endothelial cells. As higher plasma Lp(a) level in women is an independent risk factor for pre-eclamsia, a pregnancy-associated vascular complication, we propose that apo(a) O-glycans-mediated inhibition of the pro-angiogenic activity of galectin-1 may be one of the underlying molecular mechanism of pathogenesis of Lp(a) in pre-eclampsia.
Collapse
Affiliation(s)
- Vasantha Kalaivani
- Diabetes Biology Laboratory, Division of Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Mahesh S Krishna
- Diabetes Biology Laboratory, Division of Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Asokan Aneesh Kumar
- Diabetes Biology Laboratory, Division of Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Gopika Satheesh
- Diabetes Biology Laboratory, Division of Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Abdul Jaleel
- Diabetes Biology Laboratory, Division of Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
3
|
Grazier JJ, Sylvester PW. Role of Galectins in Metastatic Breast Cancer. Breast Cancer 2022. [DOI: 10.36255/exon-publications-breast-cancer-galectins] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Renaud SJ, Jeyarajah MJ. How trophoblasts fuse: an in-depth look into placental syncytiotrophoblast formation. Cell Mol Life Sci 2022; 79:433. [PMID: 35859055 PMCID: PMC11072895 DOI: 10.1007/s00018-022-04475-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/07/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
In humans, cell fusion is restricted to only a few cell types under normal conditions. In the placenta, cell fusion is a critical process for generating syncytiotrophoblast: the giant multinucleated trophoblast lineage containing billions of nuclei within an interconnected cytoplasm that forms the primary interface separating maternal blood from fetal tissue. The unique morphology of syncytiotrophoblast ensures that nutrients and gases can be efficiently transferred between maternal and fetal tissue while simultaneously restricting entry of potentially damaging substances and maternal immune cells through intercellular junctions. To maintain integrity of the syncytiotrophoblast layer, underlying cytotrophoblast progenitor cells terminate their capability for self-renewal, upregulate expression of genes needed for differentiation, and then fuse into the overlying syncytium. These processes are disrupted in a variety of obstetric complications, underscoring the importance of proper syncytiotrophoblast formation for pregnancy health. Herein, an overview of key mechanisms underlying human trophoblast fusion and syncytiotrophoblast development is discussed.
Collapse
Affiliation(s)
- Stephen J Renaud
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada.
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada
| |
Collapse
|
5
|
Lavu N, Richardson L, Radnaa E, Kechichian T, Urrabaz-Garza R, Sheller-Miller S, Bonney E, Menon R. Oxidative stress-induced downregulation of glycogen synthase kinase 3 beta in fetal membranes promotes cellular senescence†. Biol Reprod 2020; 101:1018-1030. [PMID: 31292604 DOI: 10.1093/biolre/ioz119] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/30/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Oxidative stress (OS)-induced stress signaler p38 mitogen-activated protein kinase (p38MAPK) activation and fetal membrane senescence are associated with parturition. This study determined changes in glycogen synthase kinase 3 beta (GSK3β) and its regulation by p38MAPK in effecting senescence to further delineate the molecular mechanism involved in senescence. METHODS Primary human amnion epithelial cells and amnion mesenchymal cells were treated with cigarette smoke extract (CSE, OS inducer). Expression of total and phosphorylated GSK3β and p38MAPK, and that of GSK3β's downstream targets: beta-catenin (β-Cat) and nuclear factor erythroid 2-related factor 2 (Nrf2) (western blot analysis), cell cycle regulation and senescence (flow cytometry) were determined. The specificity of GSK3β and p38MAPK's mechanistic role was tested by co-treating cells with their respective inhibitors, CHIR99021 and SB203580. Exosomal secretion of β-Cat from OS-induced cells was confirmed by immunofluorescence confocal microscopy and western blot. RESULTS OS induced by CSE resulted in phosphorylation of GSK3β (inactivation) and p38MAPK (activation) that was associated with cell cycle arrest and senescence. Inhibitors to GSK3β and p38MAPK verified their roles. Glycogen synthase kinase 3 beta inactivation was associated with nuclear translocation of antioxidant Nrf2 and exosomal secretion of β-Cat. CONCLUSIONS OS-induced P-p38MAPK activation is associated with functional downregulation of GSK3β and arrest of cell cycle progression and senescence of amnion cells. Lack of nuclear translocation of β-Cat and its excretion via exosomes further supports the postulation that GSK3β down-regulation by p38MAPK may stop cell proliferation preceding cell senescence. A better understanding of molecular mechanisms of senescence will help develop therapeutic strategies to prevent preterm birth.
Collapse
Affiliation(s)
- Narmada Lavu
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA.,Department of Neuroscience, Cell Biology & Anatomy, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Lauren Richardson
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA.,Department of Neuroscience, Cell Biology & Anatomy, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Enkhtuya Radnaa
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Talar Kechichian
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Rheanna Urrabaz-Garza
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Samantha Sheller-Miller
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Elizabeth Bonney
- Department of Obstetrics and Gynecology, University of Vermont, Burlington, Vermont, USA
| | - Ramkumar Menon
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
6
|
The role of Galectin-1 in HIV associated preeclampsia. Eur J Obstet Gynecol Reprod Biol 2020; 246:138-144. [PMID: 32018196 DOI: 10.1016/j.ejogrb.2020.01.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE In this study, the role of Gal1, a regulatory protein involved in receptor binding and gene transcription within trophoblast cells, in the pathophysiology of HIV associated preeclampsia was determined by immunolocalizing its expression in the placenta of a South African cohort. STUDY DESIGN this is an analytical study carried out at the Optics and Imaging Center, Neslon R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa. A hundred and twenty HIV negative or positive, Black African primigrad or multigravid women with pre-eclamptic and normotensive pregnancies were involved in the study. Post-delivery, full thickness of centrally located placental tissue obtained was fixed for immunohistochemistry. The expression of Gal1 was immunolocalized using immunohistochemical assay kit and further quantified with using AxioVision Image analysis software package. Student t-test was used to compare the levels of the analytes while One-way ANOVA was used for comparison across the groups. RESULTS Gal1 immunoreactivity was observed within the Hofbauer cells, cytotrophoblast, syncytial knots and in the endothelial cells lining blood vessels in both exchange and conducting villi of both normotensive and preeclamptic pregnancies regardless of HIV status. There was a down regulation in Gal1 immunoreactivity in both the exchange and conducting villi of preeclamptic compared to normotensive pregnancies. However, there was no significant effect of HIV infection on Gal1 immunostaining in both villi types. CONCLUSION The down regulation of Gal1 in preeclampsia may be due to the inhibition of the MAPK pathway. Since Gal1 influences differentiation and migration, the defective trophoblast invasion in preeclampsia may emanate from its decreased immunoexpression. This highlights the role of Gal1 in angiogenesis and placentation.
Collapse
|
7
|
Toudic C, Vargas A, Xiao Y, St-Pierre G, Bannert N, Lafond J, Rassart É, Sato S, Barbeau B. Galectin-1 interacts with the human endogenous retroviral envelope protein syncytin-2 and potentiates trophoblast fusion in humans. FASEB J 2019; 33:12873-12887. [PMID: 31499012 DOI: 10.1096/fj.201900107r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Syncytin (Syn)-2 is an important fusogenic protein that contributes to the formation of the placental syncytiotrophoblast. Galectin (Gal)-1, a soluble lectin, is also involved in trophoblast cell fusion and modulates the interaction of certain retroviral envelopes with their cellular receptor. This study aimed to investigate the association between Syn-2 and Gal-1 during human trophoblast cell fusion. This association was evaluated in vitro on primary villous cytotrophoblasts (vCTBs) and cell lines using recombinant Gal-1 and Syn-2-pseudotyped viruses. Using lactose, a Gal antagonist, and Gal-1-specific small interfering RNA (siRNA) transfections, we confirmed the implication of Gal-1 in vCTBs and BeWo cell fusion, although RT-PCR and ELISA analyses suggested that Gal-1 alone did not induce syncytialization. Infection assays showed a specific and significant effect of Gal-1 on the infectivity of Syn-2-pseudotyped viruses that depended on the expression of major facilitator superfamily domain-containing 2A (MFSD2a). Moreover, Gal-3, another placental Gal, did not modulate the infectivity of Syn-2-positive viruses, strengthening the specific association between Gal-1 and Syn-2. Interestingly, Gal-1 significantly reduced the infectivity of Syn-1-pseudotyped viruses, suggesting the opposite effects of Gal-1 on Syn-1 and -2. Finally, coimmunoprecipitation experiments showed a glycan-dependent interaction between Syn-2-bearing virions and Gal-1. We conclude that Gal-1 specifically interacts with Syn-2 and possibly regulates Syn-2/MFSD2a interaction during syncytialization of trophoblastic cells.-Toudic, C., Vargas, A., Xiao, Y., St-Pierre, G., Bannert, N., Lafond, J., Rassart, É., Sato, S., Barbeau, B. Galectin-1 interacts with the human endogenous retroviral envelope protein syncytin-2 and potentiates trophoblast fusion in humans.
Collapse
Affiliation(s)
- Caroline Toudic
- Département des Sciences Biologiques, Centre de Recherche BioMed, Université du Quebec à Montréal, Montreal, Quebec, Canada
| | - Amandine Vargas
- Département des Sciences Biologiques, Centre de Recherche BioMed, Université du Quebec à Montréal, Montreal, Quebec, Canada
| | - Yong Xiao
- Département des Sciences Biologiques, Centre de Recherche BioMed, Université du Quebec à Montréal, Montreal, Quebec, Canada
| | - Guillaume St-Pierre
- Glycobiology and Bioimaging Laboratory, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | | | - Julie Lafond
- Département des Sciences Biologiques, Centre de Recherche BioMed, Université du Quebec à Montréal, Montreal, Quebec, Canada
| | - Éric Rassart
- Département des Sciences Biologiques, Centre de Recherche BioMed, Université du Quebec à Montréal, Montreal, Quebec, Canada
| | - Sachiko Sato
- Glycobiology and Bioimaging Laboratory, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Benoit Barbeau
- Département des Sciences Biologiques, Centre de Recherche BioMed, Université du Quebec à Montréal, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Wilsher S, Newcombe JR, Allen WRT. The immunolocalization of Galectin-1 and Progesterone-Induced Blocking Factor (PIBF) in equine trophoblast: Possible roles in trophoblast invasion and the immunological protection of pregnancy. Placenta 2019; 85:32-39. [PMID: 31445347 DOI: 10.1016/j.placenta.2019.08.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION The proteins galectin-1 and Progesterone Induced Blocking Factor (PIBF) are present on human and murine trophoblast and are thought to influence both immunomodulation and trophoblast invasion. In equids, the invasive component of the placenta, the endometrial cups, stimulate maternal cell-mediated and humoral immune responses. It was therefore of interest to know if galectin-1 or PIBF could be immunolocalised to the invasive and/or non-invasive components of the equine placenta. MATERIALS Horse and mule (♀ horse X ♂ donkey) embryos and placental tissues between Days 12 and 124 of gestation were stained immunohistochemically with antibodies raised against galectin-1 and PIBF. RESULTS Galectin-1 stained the non-invasive trophoblast between Days 15 and 20 but thereafter stained only the invasive trophoblast cells of the chorionic girdle, both before and after they invaded the endometrium to form the endometrial cups. PIBF, on the other hand, stained both the invasive and non-invasive trophoblast throughout the period of gestation studied. Of particular interest was the relative lack of staining of the endometrial cup cells in mule compared to horse pregnancies for galectin-1 and PIBF prior to the earlier and more rapid death and desquamation of the mule cup cells. DISCUSSION The expression of galectin-1 and PIBF proteins in equine trophoblast and the marked difference in lifespan between the endometrial cups in intraspecies horse versus interspecies mule pregnancies support a likely role for these two proteins protecting the fetal trophoblast from maternal immune attack and/or modulation of the invasiveness of endometrial cup cells.
Collapse
Affiliation(s)
- Sandra Wilsher
- Sharjah Equine Hospital, Al Daid Road, Bridge No.6, Al Atain Area, Sharjah, United Arab Emirates; The Paul Mellon Laboratory of Equine Reproduction, "Brunswick", Newmarket, Suffolk, CB8 9BJ, UK.
| | - J R Newcombe
- Newcombe and East Veterinary Surgeons, Brownhills, West Midlands, WS8 6LS, UK
| | - W R Twink Allen
- Sharjah Equine Hospital, Al Daid Road, Bridge No.6, Al Atain Area, Sharjah, United Arab Emirates; The Paul Mellon Laboratory of Equine Reproduction, "Brunswick", Newmarket, Suffolk, CB8 9BJ, UK
| |
Collapse
|
9
|
Loss of Stromal Galectin-1 Enhances Multiple Myeloma Development: Emphasis on a Role in Osteoclasts. Cancers (Basel) 2019; 11:cancers11020261. [PMID: 30813402 PMCID: PMC6406775 DOI: 10.3390/cancers11020261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 01/27/2023] Open
Abstract
Multiple myeloma osteolytic disease is caused by an uncoupled bone-remodelling process with an increased osteoclast activity. Disease development relies on interactions between myeloma cells and bone marrow stromal cells. Recent findings suggest a role for glycan-binding proteins in myeloma microenvironment. Here, we investigated lectins involved in osteoclastogenesis and their role in myeloma bone disease. Microarray data analysis showed a lower expression of galectin-1 (gal-1) in mature osteoclasts compared to monocytic progenitor cells, confirmed at the RNA and protein levels in osteoclast cultures. Confocal microscopy showed that gal-1 localised predominantly in the sealing zone of mature osteoclasts. Although equal differentiated-osteoclast numbers, gal-1−/− osteoclasts showed a higher resorption activity compared to wild-type controls. Micro-computed tomography showed an aberrant bone phenotype with decreased bone densities in gal-1−/− mice. In vivo, tumour progression was faster in gal-1−/− mice and associated with a marked bone loss. Additionally, myeloma cells were found to decrease gal-1 expression in osteoclasts. Our results demonstrate that galectin-1 regulates osteoclast activity with an increased resorption by gal-1−/− osteoclasts and decreased bone densities in gal-1−/− mice. We observed an enhanced tumour development in gal-1−/− mice compared to wild-type mice, suggesting that galectin-1 has a functional role in stromal cells in myeloma microenvironment.
Collapse
|
10
|
Manley GCA, Parker LC, Zhang Y. Emerging Regulatory Roles of Dual-Specificity Phosphatases in Inflammatory Airway Disease. Int J Mol Sci 2019; 20:E678. [PMID: 30764493 PMCID: PMC6387402 DOI: 10.3390/ijms20030678] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammatory airway disease, such as asthma and chronic obstructive pulmonary disease (COPD), is a major health burden worldwide. These diseases cause large numbers of deaths each year due to airway obstruction, which is exacerbated by respiratory viral infection. The inflammatory response in the airway is mediated in part through the MAPK pathways: p38, JNK and ERK. These pathways also have roles in interferon production, viral replication, mucus production, and T cell responses, all of which are important processes in inflammatory airway disease. Dual-specificity phosphatases (DUSPs) are known to regulate the MAPKs, and roles for this family of proteins in the pathogenesis of airway disease are emerging. This review summarizes the function of DUSPs in regulation of cytokine expression, mucin production, and viral replication in the airway. The central role of DUSPs in T cell responses, including T cell activation, differentiation, and proliferation, will also be highlighted. In addition, the importance of this protein family in the lung, and the necessity of further investigation into their roles in airway disease, will be discussed.
Collapse
Affiliation(s)
- Grace C A Manley
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore 117597, Singapore.
| | - Lisa C Parker
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
11
|
Lavu N, Richardson L, Bonney E, Menon R. Glycogen synthase kinase (GSK) 3 in pregnancy and parturition: a systematic review of literature. J Matern Fetal Neonatal Med 2019; 33:1946-1957. [PMID: 30278798 DOI: 10.1080/14767058.2018.1531843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Multiple factors and pathways have been reported as critical machineries for cell differentiation and survival during pregnancy; a number of them involve glycogen synthase kinase (GSK) 3a/β. Several reports on GSK3's functional role exist; however, the specific role of GSK3 in reproductive tissues and its contribution to normal or abnormal parturition are still unclear. To fill this knowledge gap, a systematic review of literature was conducted to better understand the functional role of GSK3 in various intrauterine tissues during implantation, pregnancy, and parturition.Methods: We conducted a systematic review of literature on GSK3's expression and function reported between 1980 and 2017 in reproductive tissues during pregnancy using three electronic databases (Web of Science, Medline, and ClinicalTrials.gov). Study selection, data extraction, quality assessment and analyses were performed in duplicate by two independent reviewers.Results: A total of 738 citations were identified; 80 were selected for full text evaluation and 25 were included for final review. GSK3's regulation and function were mostly studied in tissues and cells from placentas (12), fetuses (8), uteruses (6), and ovaries (2). GSK3 is primarily reported as a downstream responder of protein kinase B (AKT)-, Wnt-, and reactive oxygen species (ROS)-related pathways where it plays a critical role in cell survival and growth in reproductive tissues.Conclusions: Though GSK3 has been functionally linked to a number of biological processes in reproductive tissues, it has primarily been studied as a secondary signaler of various conserved cell signaling pathways. Lack of scientific rigor in studying GSK3's role in reproductive tissues makes this molecule's function still obscure. No studies have reported GSK3 in the cervix, and very few reports exist in myometrium and decidua. This systematic review suggests more functional and mechanistic studies focusing on GSK3 need to be conducted in reproductive biology.
Collapse
Affiliation(s)
- Narmada Lavu
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, the University of Texas Medical Branch at Galveston, Galveston, Texas, USA.,Department of Neuroscience, Cell Biology & Anatomy, the University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Lauren Richardson
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, the University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Elizabeth Bonney
- Department of Obstetrics and Gynecology, University of Vermont, Burlington, Vermont, USA
| | - Ramkumar Menon
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, the University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
12
|
Hutter S, Morales-Prieto DM, Andergassen U, Tschakert L, Kuhn C, Hofmann S, Markert UR, Jeschke U. Gal-1 silenced trophoblast tumor cells (BeWo) show decreased syncytium formation and different miRNA production compared to non-target silenced BeWo cells. Cell Adh Migr 2015; 10:28-38. [PMID: 26418280 DOI: 10.1080/19336918.2015.1089377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Galectin-1 (gal-1), a member of the mammalian β-galactoside-binding proteins, exerts biological effects by recognition of glycan ligands, including those involved in cell adhesion and growth regulation. In previous studies, we demonstrated that gal-1 induces cell differentiation processes on the membrane of choriocarcinoma cells BeWo, including the receptor tyrosine kinases (RTKs) REarranged during Transfection (RET), Janus Kinase 2 (JAK2) and Vascular endothelial growth factor receptor 3 (VEGFR3). Furthermore, Mitogen-Activated Protein Kinases (MAPK) and serine/threonine kinases were phosphorylated by gal-1. In addition, gal-1 in trophoblast cells in vitro induced syncytium formation especially after concentration dependent stimulation of the cells with this galectin. This is in contrast to MAPK-inhibitor U0126 that reduced syncytium formation of BeWo cells. The aim of this study was to analyze the syncytium formation abilities of BeWo cells that were gal-1 silenced. We found a significantly reduced syncytium formation rate in gal-1 silenced BeWo cells. In addition, these cells show a different miRNA expression profile. In summary, we found that gal-1 is a major trigger for fusion processes in BeWo cells. This function is accompanied by different regulation of miRNA synthesis in the BeWo cell culture model.
Collapse
Affiliation(s)
- Stefan Hutter
- a Ludwig Maximilians University of Munich , Department of Obstetrics and Gynecology , Munich , Germany
| | | | - Ulrich Andergassen
- a Ludwig Maximilians University of Munich , Department of Obstetrics and Gynecology , Munich , Germany
| | - Lisa Tschakert
- a Ludwig Maximilians University of Munich , Department of Obstetrics and Gynecology , Munich , Germany
| | - Christina Kuhn
- a Ludwig Maximilians University of Munich , Department of Obstetrics and Gynecology , Munich , Germany
| | - Simone Hofmann
- a Ludwig Maximilians University of Munich , Department of Obstetrics and Gynecology , Munich , Germany
| | - Udo R Markert
- b University Hospital Jena , Department of Obstetrics , Placenta Lab , Jena , Germany
| | - Udo Jeschke
- a Ludwig Maximilians University of Munich , Department of Obstetrics and Gynecology , Munich , Germany
| |
Collapse
|
13
|
ADAM12-directed ectodomain shedding of E-cadherin potentiates trophoblast fusion. Cell Death Differ 2015; 22:1970-84. [PMID: 25909890 DOI: 10.1038/cdd.2015.44] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/02/2015] [Accepted: 03/13/2015] [Indexed: 12/11/2022] Open
Abstract
Trophoblasts, placental cells of epithelial lineage, undergo extensive differentiation to form the cellular components of the placenta. Trophoblast progenitor cell differentiation into the multinucleated syncytiotrophoblast is a key developmental process required for placental function, where defects in syncytiotrophoblast formation and turnover associate with placental pathologies and link to poor pregnancy outcomes. The cellular and molecular processes governing syncytiotrophoblast formation are poorly understood, but require the activation of pathways that direct cell fusion. The protease, A Disintegrin and Metalloproteinase 12 (ADAM12), controls cell fusion in myoblasts and is highly expressed in the placenta localizing to multiple trophoblast populations. However, the importance of ADAM12 in regulating trophoblast fusion is unknown. Here, we describe a function for ADAM12 in regulating trophoblast fusion. Using two distinct trophoblast models of cell fusion, we show that ADAM12 is dynamically upregulated and is under the transcriptional control of protein kinase A. siRNA-directed loss of ADAM12 impedes spontaneous fusion of primary cytotrophoblasts, whereas overexpression of the secreted variant, ADAM12S, potentiates cell fusion in the Bewo trophoblast cell line. Mechanistically, both ectopic and endogenous levels of ADAM12 were shown to control trophoblast fusion through E-cadherin ectodomain shedding and remodeling of intercellular boundaries. This study describes a novel role for ADAM12 in placental development, specifically highlighting its importance in controlling the differentiation of villous cytotrophoblasts into multinucleated cellular structures. Moreover, this work identifies E-cadherin as a novel ADAM12 substrate, and highlights the significance that cell adhesion molecule ectodomain shedding has in normal development.
Collapse
|
14
|
Zhou Z, Wang R, Yang X, Lu XY, Zhang Q, Wang YL, Wang H, Zhu C, Lin HY, Wang H. The cAMP-responsive element binding protein (CREB) transcription factor regulates furin expression during human trophoblast syncytialization. Placenta 2014; 35:907-18. [PMID: 25175744 DOI: 10.1016/j.placenta.2014.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The multinucleated syncytiotrophoblast is formed and maintained by cytotrophoblast cell fusion and serves multiple functions to ensure a successful pregnancy. We have previously reported that the proprotein convertase furin is required for trophoblast syncytialization by processing type 1 insulin-like growth factor receptor (IGF1R). METHODS Utilizing trophoblast cell fusion models including induced fusion of choriocarcinoma BeWo cells and spontaneous fusion of primary cultured term cytotrophoblast cells, the expression of furin was evaluated by quantitative real-time PCR, Western blotting and immunofluorescence. The key transcription factor regulating the FUR gene promoter and critical responsive elements were identified by luciferase reporter assays, truncated mutants analysis, site-directed mutagenesis and ChIP. RESULTS We demonstrated that the levels of FUR mRNA were significantly stimulated by cAMP/PKA signaling pathway during spontaneous fusion of cytotrophoblast cells and forskolin-induced fusion of BeWo cells. cAMP-responsive element binding protein (CREB) was proven to be the key transcription factor which regulated the FUR P1 promoter during forskolin-induced BeWo cell fusion, and two critical cAMP-responsive elements (CREs) in the P1 promoter were further identified. Finally, we showed that CREB mediated endogenous furin activation and that CREB siRNA attenuated forskolin-induced furin expression and cell fusion in BeWo cells. DISCUSSION This provides the first evidence of the upstream regulator of furin during trophoblast cell fusion. CONCLUSIONS The above results suggest that the FUR transcription is activated by CREB-dependent stimulation of the FUR P1 promoter during human trophoblast syncytialization.
Collapse
Affiliation(s)
- Z Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, PR China
| | - R Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, PR China
| | - X Yang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, PR China
| | - X-Y Lu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, PR China
| | - Q Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Y-L Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - H Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - C Zhu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - H-Y Lin
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - H Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
15
|
Galectin-1 has potential prognostic significance and is implicated in clear cell renal cell carcinoma progression through the HIF/mTOR signaling axis. Br J Cancer 2014; 110:1250-9. [PMID: 24496460 PMCID: PMC3950857 DOI: 10.1038/bjc.2013.828] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/28/2013] [Accepted: 12/17/2013] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Metastatic clear cell renal cell carcinoma (ccRCC) patients have <9% 5-year survival rate, do not respond well to targeted therapy and eventually develop resistance. A better understanding of molecular pathways of RCC metastasis is the basis for the discovery of novel prognostic markers and targeted therapies. METHODS We investigated the biological impact of galectin-1 (Gal-1) in RCC cell lines by migration and invasion assays. Effect of Gal-1 expression on the mitogen-activated protein kinase pathway was assessed by proteome array. RESULTS Increased expression of Gal-1 increased cell migration while knocking down Gal-1 expression by siRNA resulted in reduced cellular migration (P<0.001) and invasion (P<0.05). Gal-1 overexpression increased phosphorylation of Akt, mTOR and p70 kinase. Upon hypoxia and increased HIF-1α, Gal-1 increased in a dose-dependent manner. We also found miR-22 overexpression resulted in decreased Gal-1 and HIF-1α. Immunohistochemistry analysis showed that high Gal-1 protein expression was associated with larger size tumor (P=0.034), grades III/IV tumors (P<0.001) and shorter disease-free survival (P=0.0013). Using the Cancer Genome Atlas data set, we found that high Gal-1 mRNA expression was associated with shorter overall survival (41 vs 78 months; P<0.01). CONCLUSIONS Our data suggest Gal-1 mediates migration and invasion through the HIF-1α-mTOR signaling axis and is a potential prognostic marker and therapeutic target.
Collapse
|
16
|
Barrientos G, Freitag N, Tirado-González I, Unverdorben L, Jeschke U, Thijssen VL, Blois SM. Involvement of galectin-1 in reproduction: past, present and future. Hum Reprod Update 2013; 20:175-93. [DOI: 10.1093/humupd/dmt040] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
17
|
Expression and function of galectins in the endometrium and at the human feto-maternal interface. Placenta 2013; 34:863-72. [PMID: 23911101 DOI: 10.1016/j.placenta.2013.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 12/12/2022]
Abstract
Galectins are classified as lectins that share structural similarities and bind β-galactosides via a conserved carbohydrate recognition domain. So far 16 out of 19 identified galectins were shown to be present in humans and numerous studies revealed galectins as pivotal modulators of cell death, differentiation and growth. Galectins were highlighted to interact with both the adaptive and innate immune response. In the field of reproductive medicine and placenta research different roles for galectins have been proposed. Several galectins, being abundantly present at the human feto-maternal interphase and endometrium, were hypothesized to significantly contribute to endometrial receptivity and pregnancy physiology. Hence, this review outlines selected aspects of galectin action within endometrial function and at the feto-maternal interphase. Further current knowledge on galectins in reproductive and pregnancy disorders like endometriosis, abortion or preeclampsia is summarized.
Collapse
|
18
|
Blidner AG, Rabinovich GA. ‘Sweetening’ Pregnancy: Galectins at the Fetomaternal Interface. Am J Reprod Immunol 2013; 69:369-82. [DOI: 10.1111/aji.12090] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ada G. Blidner
- Instituto de Oncología Ángel H. Roffo; Universidad de Buenos Aires; Buenos Aires; Argentina
| | | |
Collapse
|
19
|
Ramhorst RE, Giribaldi L, Fraccaroli L, Toscano MA, Stupirski JC, Romero MD, Durand ES, Rubinstein N, Blaschitz A, Sedlmayr P, Genti-Raimondi S, Fainboim L, Rabinovich GA. Galectin-1 confers immune privilege to human trophoblast: implications in recurrent fetal loss. Glycobiology 2012; 22:1374-86. [PMID: 22752006 DOI: 10.1093/glycob/cws104] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mechanisms accounting for the protection of the fetal semi-allograft from maternal immune cells remain incompletely understood. In previous studies, we showed that galectin-1 (Gal1), an immunoregulatory glycan-binding protein, hierarchically triggers a cascade of tolerogenic events at the mouse fetomaternal interface. Here, we show that Gal1 confers immune privilege to human trophoblast cells through the modulation of a number of regulatory mechanisms. Gal1 was mainly expressed in invasive extravillous trophoblast cells of human first trimester and term placenta in direct contact with maternal tissue. Expression of Gal1 by the human trophoblast cell line JEG-3 was primarily controlled by progesterone and pro-inflammatory cytokines and impaired T-cell responses by limiting T cell viability, suppressing the secretion of Th1-type cytokines and favoring the expansion of CD4(+)CD25(+)FoxP3(+) regulatory T (T(reg)) cells. Targeted inhibition of Gal1 expression through antibody (Ab)-mediated blockade, addition of the specific disaccharide lactose or retroviral-mediated siRNA strategies prevented these immunoregulatory effects. Consistent with a homeostatic role of endogenous Gal1, patients with recurrent pregnancy loss showed considerably lower levels of circulating Gal1 and had higher frequency of anti-Gal1 auto-Abs in their sera compared with fertile women. Thus, endogenous Gal1 confers immune privilege to human trophoblast cells by triggering a broad tolerogenic program with potential implications in threatened pregnancies.
Collapse
Affiliation(s)
- Rosanna E Ramhorst
- Laboratory of Immunopharmacology, Department of Biological Chemistry, Faculty of Exact and Natural Sciences, University of Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hirota Y, Burnum KE, Acar N, Rabinovich GA, Daikoku T, Dey SK. Galectin-1 markedly reduces the incidence of resorptions in mice missing immunophilin FKBP52. Endocrinology 2012; 153:2486-93. [PMID: 22416080 PMCID: PMC3339653 DOI: 10.1210/en.2012-1035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Progesterone (P(4)) signaling is critical for pregnancy. We previously showed that immunopilin FK506 binding protein (FKBP)52 serves as a cochaperone to optimize progesterone receptor (PR) function in the uterus, and its deficiency leads to P(4) resistance in a pregnancy stage-specific and genetic background-dependent manner in mice. In particular, sc placement of SILASTIC implants carrying P(4) rescued implantation failure in CD1 Fkbp52(-/-) mice, but the resorption rate was substantially high at midgestation due to reduced P(4) responsiveness. Because downstream targets of P(4)-FKBP52-PR signaling in the uterus to support pregnancy are not clearly understood, we performed proteomic analysis using Fkbp52(-/-), PR-deficient (Pgr(-/-)), and wild-type (WT) uteri. We found that the expression of galectin-1 (Gal1), an evolutionarily conserved glycan-binding protein, was significantly down-regulated in both Fkbp52(-/-) and Pgr(-/-) uteri compared with WT uteri. During early gestation, Lgals1, which encodes Gal1, was distinctly expressed in stromal and decidual cells. Lgals1 expression was much lower in d 4 Fkbp52(-/-) uteri compared with WT uteri, and this reduction was reversed by P(4) supplementation. More interestingly, concomitant supplementation of recombinant Gal1 significantly suppressed the high resorption rate and leukocyte infiltration at implantation sites in CD1 Fkbp52(-/-) females carrying P(4) SILASTIC implants. These findings suggest that uterine Gal1 is an important downstream target of P(4)-FKBP52-PR signaling in the uterus to support P(4) responsiveness during pregnancy.
Collapse
Affiliation(s)
- Yasushi Hirota
- Department of Obstetrics and Gynecology, University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | |
Collapse
|