1
|
Galdiero M, Trotta C, Schettino MT, Cirillo L, Sasso FP, Petrillo F, Petrillo A. Normospermic Patients Infected With Ureaplasma parvum: Role of Dysregulated miR-122-5p, miR-34c-5, and miR-141-3p. Pathog Immun 2024; 8:16-36. [PMID: 38223489 PMCID: PMC10783813 DOI: 10.20411/pai.v8i2.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/20/2023] [Indexed: 01/16/2024] Open
Abstract
Background Ureaplasma parvum (UP) is a causative agent of non-gonococcal urethritis, involved in the pathogenesis of prostatitis and epididymitis, and it could impair human fertility. Although UP infection is a frequent cause of male infertility the study evidence assessing their prevalence and the association in patients with infertility is still scarce. The molecular processes leading to defects in spermatozoa quality are not completely investigated. MicroRNAs (miRNAs) have been extensively reported as gene regulatory molecules on post-transcriptional levels involved in various biological processes such as gametogenesis, embryogenesis, and the quality of sperm, oocyte, and embryos. Methods Therefore, the study design was to demonstrate that miRNAs in body fluids like sperm could be utilized as non-invasive diagnostic biomarkers for pathological and physiological conditions such as infertility. A post-hoc bioinformatics analysis was carried out to predict the pathways modulated by the miRNAs dysregulated in the differently motile spermatozoa. Results Here it is shown that normospermic patients infected by UP had spermatozoa with increased quantity of superoxide anions, reduced expression of miR-122-5p, miR-34c-5, and increased miR-141-3p compared with non-infected normospermic patients. This corresponded to a reduction of sperm motility in normospermic infected patients compared with normospermic non-infected ones. A target gene prediction presumed that an essential role of these miRNAs resided in the regulation of lipid kinase activity, accounting for the changes in the constitution of spermatozoa membrane lipids caused by UP. Conclusions Altogether, the data underline the influence of UP on epigenetic mechanisms regulating spermatozoa motility.
Collapse
Affiliation(s)
- Marilena Galdiero
- Department of Experimental Medicine, Section of Microbiology and Virology, University of Campania Luigi Vanvitelli, 80138, Naples, Italy. Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Carolo Trotta
- Department of Gynecology and Obstetrics University of Campania Luigi Vanvitelli Naples Italy
| | - Maria Teresa Schettino
- Department of Gynecology and Obstetrics University of Campania Luigi Vanvitelli Naples Italy
| | - Luigi Cirillo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples Italy
| | | | - Francesco Petrillo
- Department of Experimental Medicine, Section of Microbiology and Virology, University of Campania Luigi Vanvitelli, 80138, Naples, Italy. Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | | |
Collapse
|
2
|
Han X, Li Y, Zong Y, Li D, Yuan J, Yang H, Ma H, Ni A, Wang Y, Zhao J, Chen J, Ma T, Sun Y. Extracellular vesicle-coupled miRNA profiles of chicken seminal plasma and their potential interaction with recipient cells. Poult Sci 2023; 102:103099. [PMID: 37812871 PMCID: PMC10563059 DOI: 10.1016/j.psj.2023.103099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023] Open
Abstract
The presence of EVs in seminal plasma (SPEVs) suggests their involvement on fertility via transmitting information between the original cells and recipient cells. SPEVs-coupled miRNAs have been shown to affect sperm motility, maturation, and capacitation in mammals, but rarely in poultry species. The present study aims to reveal the profile of SPEVs miRNAs and their potential effect on sperm storage and function in poultry. The SPEVs was successfully isolated from 4 different chicken breeds by ultracentrifugation and verified. Deep sequencing of SPEVs small RNA library of each breed identified 1077 miRNAs in total and 563 shared ones. The top 10 abundant miRNAs (such as miR-10-5p, miR-100-5p, and miR-10a-5p etc.) accounted for around 60% of total SPEVs miRNA reads and are highly conserved across species, predisposing their functional significance. Target genes prediction and functional enrichment analysis indicated that the most abundantly expressed miRNAs may regulate pathways like ubiquitin-mediated proteolysis, endocytosis, mitophagy, glycosphingolipid biosynthesis, fatty acid metabolism, and fatty acid elongation. The high abundant SPEVs-coupled miRNAs were found to target 107 and 64 functionally important mRNAs in the potential recipient cells, sperm and sperm storage tubules (SST) cells, respectively. The pathways that enriched by target mRNAs revealed that the SPEVs-coupled miRNA may rule the fertility by affecting the sperm maturation and regulating the female's immune response and lipid metabolism. In summary, this study presents the distinctive repertoire of SPEVs-coupled miRNAs, and extends our understanding about their potential roles in sperm maturation, capacitation, storage, and fertility, and may help to develop new therapeutic strategies for male infertility and sperm storage.
Collapse
Affiliation(s)
- Xintong Han
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China
| | - Yunlei Li
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunhe Zong
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dongli Li
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing, 101206, China
| | - Jingwei Yuan
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hanhan Yang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hui Ma
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Aixin Ni
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuanmei Wang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jinmeng Zhao
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jilan Chen
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tenghe Ma
- College of medicine, Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Yanyan Sun
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
3
|
Gan M, Jing Y, Xie Z, Ma J, Chen L, Zhang S, Zhao Y, Niu L, Wang Y, Li X, Zhu L, Shen L. Potential Function of Testicular MicroRNAs in Heat-Stress-Induced Spermatogenesis Disorders. Int J Mol Sci 2023; 24:ijms24108809. [PMID: 37240155 DOI: 10.3390/ijms24108809] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Spermatogenesis is temperature-dependent, and the increase in testicular temperature seriously affects mammalian spermatogenesis and semen quality. In this study, the testicular heat stress model of mice was made with a 43 °C water bath for 25 min, and the effects of heat stress on semen quality and spermatogenesis-related regulators were analyzed. On the 7th day after heat stress, testis weight shrank to 68.45% and sperm density dropped to 33.20%. High-throughput sequencing analysis showed that 98 microRNAs (miRNAs) and 369 mRNAs were down-regulated, while 77 miRNAs and 1424 mRNAs were up-regulated after heat stress. Through gene ontology (GO) analysis of differentially expressed genes and miRNA-mRNA co-expression networks, it was found that heat stress may be involved in the regulation of testicular atrophy and spermatogenesis disorders by affecting cell meiosis process and cell cycle. In addition, through functional enrichment analysis, co-expression regulatory network, correlation analysis and in vitro experiment, it was found that miR-143-3p may be a representative potential key regulatory factor affecting spermatogenesis under heat stress. In summary, our results enrich the understanding of miRNAs in testicular heat stress and provide a reference for the prevention and treatment of heat-stress-induced spermatogenesis disorders.
Collapse
Affiliation(s)
- Mailin Gan
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunhong Jing
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongwei Xie
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianfeng Ma
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Li
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Silva C, Viana P, Barros A, Sá R, Sousa M, Pereira R. Further Insights on RNA Expression and Sperm Motility. Genes (Basel) 2022; 13:genes13071291. [PMID: 35886074 PMCID: PMC9319021 DOI: 10.3390/genes13071291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
Asthenozoospermia is one of the main causes of male infertility and it is characterized by reduced sperm motility. Several mutations in genes that code for structural or functional constituents of the sperm have already been identified as known causes of asthenozoospermia. In contrast, the role of sperm RNA in regulating sperm motility is still not fully understood. Consequently, here we aim to contribute to the knowledge regarding the expression of sperm RNA, and ultimately, to provide further insights into its relationship with sperm motility. We investigated the expression of a group of mRNAs by using real-time PCR (CATSPER3, CFAP44, CRHR1, HIP1, IQCG KRT34, LRRC6, QRICH2, RSPH6A, SPATA33 and TEKT2) and the highest score corresponding to the target miRNA for each mRNA in asthenozoospermic and normozoospermic individuals. We observed a reduced expression of all mRNAs and miRNAs in asthenozoospermic patients compared to controls, with a more accentuated reduction in patients with progressive sperm motility lower than 15%. Our work provides further insights regarding the role of RNA in regulating sperm motility. Further studies are required to determine how these genes and their corresponding miRNA act regarding sperm motility, particularly KRT34 and CRHR1, which have not previously been seen to play a significant role in regulating sperm motility.
Collapse
Affiliation(s)
- Carolina Silva
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
- Faculty of Medicine, University of Coimbra (FMUC), 3000-370 Coimbra, Portugal
| | - Paulo Viana
- Centre for Reproductive Genetics A. Barros, 4100-012 Porto, Portugal; (P.V.); (A.B.)
| | - Alberto Barros
- Centre for Reproductive Genetics A. Barros, 4100-012 Porto, Portugal; (P.V.); (A.B.)
- Department of Genetics, Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- Institute of Health Research and Innovation (IPATIMUP/i3S), University of Porto, 4200-135 Porto, Portugal
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
| | - Rute Pereira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
- Correspondence:
| |
Collapse
|
5
|
Kochhar P, Dwarkanath P, Ravikumar G, Thomas A, Crasta J, Thomas T, Kurpad AV, Mukhopadhyay A. Placental expression of RNU44, RNU48 and miR-16-5p: stability and relations with fetoplacental growth. Eur J Clin Nutr 2021; 76:722-729. [PMID: 34508256 DOI: 10.1038/s41430-021-01003-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 08/04/2021] [Accepted: 08/24/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES The current study aimed to identify suitable reference miRNA for placental miRNA expression analysis in a set of well-characterized and fetal-sex balanced small- (SGA) and appropriate- (AGA) for gestational age full-term singleton pregnancies. SUBJECTS/METHODS In this retrospective study, placental samples (n = 106) from 35 SGA (19 male and 16 female) and 71 AGA (30 male and 41 female) full-term singleton pregnancies were utilized. Placental transcript abundance of three widely used reference miRNAs [miR-16-5p and Small nucleolar RNAs (snoRNAs) RNU44 and RNU48] were assessed by real-time quantitative PCR. Raw cycle threshold (Ct) analysis and RefFinder tool analysis were conducted for evaluating stability of expression of these miRNAs. RESULTS Raw Ct values of miR-16-5p were similar between SGA and AGA births (P = 0.140) and between male and female births within SGA (P = 0.159) and AGA (P = 0.060) births while that of RNU44 and RNU48 were higher in SGA births (P = 0.008 and 0.006 respectively) and in male births within the SGA group (P = 0.005) for RNU44 and in female births within the AGA group (P = 0.048) for RNU48. Across all 106 samples tested using the RefFinder tool, miR-16-5p and RNU44 were equally stable reference miRNAs. CONCLUSION We recommend miR-16-5p and RNU44 as suitable reference miRNAs for placental samples from settings similar to our study.
Collapse
Affiliation(s)
- P Kochhar
- Division of Nutrition, St. John's Research Institute, A recognized research centre of University of Mysore, Bangalore, Karnataka, India
| | - P Dwarkanath
- Division of Nutrition, St. John's Research Institute, A recognized research centre of University of Mysore, Bangalore, Karnataka, India
| | - G Ravikumar
- Department of Pathology, St John's Medical College Hospital, Bangalore, Karnataka, India
| | - A Thomas
- Department of Obstetrics and Gynaecology, St John's Medical College Hospital, Bangalore, Karnataka, India
| | - J Crasta
- Department of Pathology, St John's Medical College Hospital, Bangalore, Karnataka, India
| | - T Thomas
- Department of Biostatistics, St. John's Medical College Hospital, Bangalore, Karnataka, India
| | - A V Kurpad
- Division of Nutrition, St. John's Research Institute, A recognized research centre of University of Mysore, Bangalore, Karnataka, India
| | - A Mukhopadhyay
- Division of Nutrition, St. John's Research Institute, A recognized research centre of University of Mysore, Bangalore, Karnataka, India.
| |
Collapse
|
6
|
Lanzillotti C, De Mattei M, Mazziotta C, Taraballi F, Rotondo JC, Tognon M, Martini F. Long Non-coding RNAs and MicroRNAs Interplay in Osteogenic Differentiation of Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:646032. [PMID: 33898434 PMCID: PMC8063120 DOI: 10.3389/fcell.2021.646032] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/11/2021] [Indexed: 12/23/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have gained great attention as epigenetic regulators of gene expression in many tissues. Increasing evidence indicates that lncRNAs, together with microRNAs (miRNAs), play a pivotal role in osteogenesis. While miRNA action mechanism relies mainly on miRNA-mRNA interaction, resulting in suppressed expression, lncRNAs affect mRNA functionality through different activities, including interaction with miRNAs. Recent advances in RNA sequencing technology have improved knowledge into the molecular pathways regulated by the interaction of lncRNAs and miRNAs. This review reports on the recent knowledge of lncRNAs and miRNAs roles as key regulators of osteogenic differentiation. Specifically, we described herein the recent discoveries on lncRNA-miRNA crosstalk during the osteogenic differentiation of mesenchymal stem cells (MSCs) derived from bone marrow (BM), as well as from different other anatomical regions. The deep understanding of the connection between miRNAs and lncRNAs during the osteogenic differentiation will strongly improve knowledge into the molecular mechanisms of bone growth and development, ultimately leading to discover innovative diagnostic and therapeutic tools for osteogenic disorders and bone diseases.
Collapse
Affiliation(s)
- Carmen Lanzillotti
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Monica De Mattei
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Mazziotta
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - John Charles Rotondo
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
7
|
Abu-Halima M, Belkacemi A, Ayesh BM, Simone Becker L, Sindiani AM, Fischer U, Hammadeh M, Keller A, Meese E. MicroRNA-targeting in spermatogenesis: Over-expressions of microRNA-23a/b-3p and its affected targeting of the genes ODF2 and UBQLN3 in spermatozoa of patients with oligoasthenozoospermia. Andrology 2021; 9:1137-1144. [PMID: 33784796 DOI: 10.1111/andr.13004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Male infertility is a multifactorial syndrome with diverse phenotypic representations. MicroRNAs (miRNAs) are small, non-coding RNAs that are involved in the post-transcriptional regulation of gene expression. Altered abundance levels of ODF2 and UBQLN3 have been reported in patients with different spermatogenic impairments. However, the transcriptional regulation of these two genes by miR-23a/b-3p is still unclear. OBJECTIVES To investigate experimentally whether miR-23a/b-3p targets the genes ODF2 and UBQLN3 and whether this targeting impacts abundance levels of ODF2 and UBQLN3 in patients with oligoasthenozoospermia. MATERIALS AND METHODS A total of 92 men attending a fertility clinic were included in the study, including 46 oligoasthenozoospermic men and 46 age-matched normozoospermic volunteers who served as controls. Reverse transcription-quantitative PCR (RT-qPCR), Western blot, and dual-luciferase (Firefly-Renilla) assays were used to validate the miRNAs and their target genes. RESULTS RT-qPCR revealed that miR-23a/b-3p was more abundant and ODF2 and UBQLN3 targets were less abundant in men with impaired spermatogenesis. Besides, Western blot shows that ODF2 and UBQLN3 protein levels were reduced in men with impaired spermatogenesis. In silico prediction and dual-luciferase assays revealed that potential links exist between the higher abundance level of miR-23a/b-3p and the lower abundance level of ODF2 and UBQLN3 targets. Mutations in the miR-23a/b-3p-binding site within the 3'UTRs (3'untranslated regions) of ODF2 and UBQLN3 genes resulted in abrogated responsiveness to miR-23a/b-3p. Correlation analysis showed that sperm count, motility, and morphology were negatively correlated with miR-23a/b-3p and positively correlated with the lower abundance level of UBQLN3, while ODF lower abundance level was positively correlated with sperm motility. CONCLUSION Findings indicate that the higher abundance level of miR-23a/b-3p and the lower abundance level of ODF2 and UBQLN3 targets are associated with oligoasthenozoospermia and male subfertility.
Collapse
Affiliation(s)
| | - Anouar Belkacemi
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Center for Molecular Signaling (PZMS), Homburg, Germany
| | - Basim M Ayesh
- Department of Laboratory Medical Sciences, Alaqsa University, Gaza, Palestine
| | | | - Amer M Sindiani
- Department of Obstetrics and Gynecology and IVF, Jordan University of Science and Technology, Irbid, Jordan
| | - Ulrike Fischer
- Institute of Human Genetics, Saarland University, Homburg, Germany
| | - Mohamad Hammadeh
- Department of Obstetrics and Gynecology and IVF, Saarland University, Homburg, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Homburg, Germany
| |
Collapse
|
8
|
Gu YY, Lu FH, Huang XR, Zhang L, Mao W, Yu XQ, Liu XS, Lan HY. Non-Coding RNAs as Biomarkers and Therapeutic Targets for Diabetic Kidney Disease. Front Pharmacol 2021; 11:583528. [PMID: 33574750 PMCID: PMC7870688 DOI: 10.3389/fphar.2020.583528] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic kidney disease (DKD) is the most common diabetic complication and is a leading cause of end-stage kidney disease. Increasing evidence shows that DKD is regulated not only by many classical signaling pathways but also by epigenetic mechanisms involving chromatin histone modifications, DNA methylation, and non-coding RNA (ncRNAs). In this review, we focus on our current understanding of the role and mechanisms of ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the pathogenesis of DKD. Of them, the regulatory role of TGF-β/Smad3-dependent miRNAs and lncRNAs in DKD is highlighted. Importantly, miRNAs and lncRNAs as biomarkers and therapeutic targets for DKD are also described, and the perspective of ncRNAs as a novel therapeutic approach for combating diabetic nephropathy is also discussed.
Collapse
Affiliation(s)
- Yue-Yu Gu
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Fu-Hua Lu
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Lei Zhang
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Mao
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue-Qing Yu
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Xu-Sheng Liu
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Grabia S, Smyczynska U, Pagacz K, Fendler W. NormiRazor: tool applying GPU-accelerated computing for determination of internal references in microRNA transcription studies. BMC Bioinformatics 2020; 21:425. [PMID: 32993488 PMCID: PMC7523363 DOI: 10.1186/s12859-020-03743-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multi-gene expression assays are an attractive tool in revealing complex regulatory mechanisms in living organisms. Normalization is an indispensable step of data analysis in all those studies, since it removes unwanted, non-biological variability from data. In targeted qPCR assays it is typically performed with respect to prespecified reference genes, but the lack of robust strategy of their selection is reported in literature, especially in studies concerning circulating microRNAs (miRNA). Unfortunately, this problem impedes translation of scientific discoveries on miRNA biomarkers into widely available laboratory assays. Previous studies concluded that averaged expressions of multi-miRNA combinations are more stable references than single genes. However, due to the number of such combinations the computational load is considerable and may be hindering for objective reference selection in large datasets. Existing implementations of normalization algorithms (geNorm, NormFinder and BestKeeper) have poor performance and may require days to compute stability values for all potential reference as the evaluation is performed sequentially. RESULTS We designed NormiRazor - an integrative tool which implements those methods in a parallel manner on a graphics processing unit (GPU) using CUDA platform. We tested our approach on publicly available miRNA expression datasets. As a result, the times of executions on 8 datasets containing from 50 to 400 miRNAs (subsets of GSE68314) decreased 18.7 ±0.6 (mean ±SD), 104.7 ±4.2 and 76.5 ±2.2 times for geNorm, BestKeeper and NormFinder with respect to previous Python implementation. To allow for easy access to normalization pipeline for biomedical researchers we implemented NormiRazor as an online platform where a user could normalize their datasets based on the automatically selected references. It is available at norm.btm.umed.pl, together with instruction manual and exemplary datasets. CONCLUSIONS NormiRazor allows for an easy, informed choice of reference genes for qPCR transcriptomic studies. As such it can improve comparability and repeatability of experiments and in longer perspective help translate newly discovered biomarkers into readily available assays.
Collapse
Affiliation(s)
- Szymon Grabia
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 15 Mazowiecka St., Lodz, 92-215 Poland
- Institute of Applied Computer Science, Lodz University of Technology, 18/22 Stefanowskiego St., Lodz, 90-537 Poland
| | - Urszula Smyczynska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 15 Mazowiecka St., Lodz, 92-215 Poland
| | - Konrad Pagacz
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 15 Mazowiecka St., Lodz, 92-215 Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 61 Zwirki i Wigury St., Warsaw, 02-091 Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 15 Mazowiecka St., Lodz, 92-215 Poland
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, 450 Brookline Av., Boston, MA 02215 USA
| |
Collapse
|
10
|
Riesco MF, Valcarce DG, Martínez-Vázquez JM, Martín I, Calderón-García AÁ, Gonzalez-Nunez V, Robles V. Male reproductive dysfunction in Solea senegalensis: new insights into an unsolved question. Reprod Fertil Dev 2020; 31:1104-1115. [PMID: 30944063 DOI: 10.1071/rd18453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Senegalese sole (Solea senegalensis) is a species with a high commercial value that exhibits a reproductive dysfunction in males born and raised in captivity (F1) that hinders their sustainable culture. The present study evaluates the sperm quality and dopaminergic pathway of males born in the wild environment and of F1 males. Traditional sperm analyses were performed, finding only significant differences in curvilinear velocity (VCL) and no significant differences in viability and total motility. No differences in global sperm methylation were observed either in spermatozoa or brain between the two groups (F1 and wild-born males). However, our results point to a different sperm molecular signature between wild fish and fish born in captivity, specifically the differential expression in miR-let7-d and miR-200a-5p between these two groups. miR-let7-d has been correlated with spermatogenesis and sex preferences, whereas the miR-200 family is implied in target innervation of dopaminergic neurons in zebrafish. When we analysed the dopaminergic pathway, no differences were found in terms of different mRNA expression of dopaminergic markers. However, some differences were detected in terms of tyrosine hydroxylase protein expression by western blot analysis, thus suggesting an altered post-transcriptional regulation in F1 males. The results of this study suggest that an altered sperm miRNA signature in F1 males could be one possible mode of transmission of reproductive dysfunction to the progeny.
Collapse
Affiliation(s)
- Marta F Riesco
- Spanish Institute of Oceanography (IEO), Planta de Cultivos el Bocal, Barrio Corbanera, Monte, 39012 Santander, Spain
| | - David G Valcarce
- Spanish Institute of Oceanography (IEO), Planta de Cultivos el Bocal, Barrio Corbanera, Monte, 39012 Santander, Spain
| | - Juan Manuel Martínez-Vázquez
- Spanish Institute of Oceanography (IEO), Planta de Cultivos el Bocal, Barrio Corbanera, Monte, 39012 Santander, Spain
| | - Ignacio Martín
- Spanish Institute of Oceanography (IEO), Planta de Cultivos el Bocal, Barrio Corbanera, Monte, 39012 Santander, Spain
| | - Andrés Ángel Calderón-García
- Instituto de Neurociencias de Castilla y León (INCyL), Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), E-37007 Salamanca, Spain
| | - Verónica Gonzalez-Nunez
- Instituto de Neurociencias de Castilla y León (INCyL), Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), E-37007 Salamanca, Spain
| | - Vanesa Robles
- Spanish Institute of Oceanography (IEO), Planta de Cultivos el Bocal, Barrio Corbanera, Monte, 39012 Santander, Spain; and Corresponding author.
| |
Collapse
|
11
|
Radtke A, Dieckmann KP, Grobelny F, Salzbrunn A, Oing C, Schulze W, Belge G. Expression of miRNA-371a-3p in seminal plasma and ejaculate is associated with sperm concentration. Andrology 2020; 7:469-474. [PMID: 31310058 DOI: 10.1111/andr.12664] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/06/2019] [Accepted: 05/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The microRNAs of the miR-371-3 cluster are novel serum markers for testicular germ cell tumors. Sporadic reports suggested the expression of this miRNA in semen. OBJECTIVES To verify the expression of miR-371a-3p in seminal plasma and unprocessed ejaculate; to compare seminal plasma miRNA levels in germ cell tumors patients with those of controls; to look for an association of miRNA levels with semen quality. MATERIALS AND METHODS The miR-371a-3p expression was analyzed with qPCR. The study population consisted of 100 participants: seminal plasma samples from 20 germ cell tumors patients and 30 controls, serum samples from 12 healthy men, ejaculate samples from 38 men undergoing fertility testing. RESULTS The seminal plasma miR-371a-3p levels of germ cell tumors patients were not different from controls. The miRNA expression was very low in serum but much higher in seminal plasma. In ejaculate samples, the miRNA expression significantly correlated with sperm concentration and the total sperm count. DISCUSSION miR-371-a-3p is present in sperm-containing fluids. Seminal plasma levels cannot be used to distinguish germ cell tumors from controls. The correlation with sperm concentration in ejaculate samples suggests the spermatozoa as possible source of miR-371a-3p production. CONCLUSION The miR-371a-3p levels in ejaculate could represent a novel biomarker for the non-invasive evaluation of male infertility.
Collapse
Affiliation(s)
- A Radtke
- Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - K-P Dieckmann
- Department of Urology, Asklepios Klinik Altona, Hamburg, Germany.,Amedes Group, MVZ Fertility Center GmbH, Hamburg, Germany
| | - F Grobelny
- Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - A Salzbrunn
- Institute of Andrology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - C Oing
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - W Schulze
- Amedes Group, MVZ Fertility Center GmbH, Hamburg, Germany
| | - G Belge
- Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| |
Collapse
|
12
|
Liang M, Wang H, He C, Zhang K, Hu K. LncRNA-Gm2044 is transcriptionally activated by A-MYB and regulates Sycp1 expression as a miR-335-3p sponge in mouse spermatocyte-derived GC-2spd(ts) cells. Differentiation 2020; 114:49-57. [PMID: 32585553 DOI: 10.1016/j.diff.2020.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/26/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been shown to execute key roles in spermatogenesis. However, little is known about how lncRNAs gene expression is itself regulated in the germ cells of testis. We previously demonstrated that high expression of lncRNA-Gm2044 exists in spermatocytes and can regulate male germ cell proliferation. Here, the transcriptional regulation of lnRNA-Gm2044 expression in spermatocytes and the downstream signaling were further explored. A bioinformatics assessment predicted two potential binding-sites for the spermatocyte-specific transcription factor A-MYB in the promoter region of lncRNA-Gm2044. Our results proved that the transcription factor A-MYB promotes the expression of lncRNA-Gm2044 in mouse spermatocyte-derived GC-2spd(ts) cells. ChIP and luciferase assays verified that A-MYB mainly binds to the distal promoter region (-819 bp relative to the transcription start site) of lncRNA-Gm2044 and regulates lncRNA-Gm2044 expression through the -819 bp binding-site. In addition, we confirmed that lncRNA-Gm2044 functions as a miR-335-3p sponge to enhance the levels of miR-335-3p's direct target protein, Sycp1. Furthermore, A-MYB can up-regulate Sycp1 expression and down-regulate GC-2spd(ts) cell proliferation by activating its target, lncRNA-Gm2044. Overexpression of lncRNA-Gm2044 or knockdown of miR-335-3p can, at least partially, rescue the effects of A-MYB on Sycp1 expression and GC-2spd(ts) cell proliferation.Taken together, our results provide new information on the mechanistic roles of lncRNA-miRNA in transcription factor A-MYB regulation of spermatocyte function.
Collapse
Affiliation(s)
- Meng Liang
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, People's Republic of China.
| | - Haiyan Wang
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Chaofan He
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Kejia Zhang
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Ke Hu
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, People's Republic of China.
| |
Collapse
|
13
|
Salas‐Huetos A, James ER, Aston KI, Carrell DT, Jenkins TG, Yeste M. The role of miRNAs in male human reproduction: a systematic review. Andrology 2019; 8:7-26. [DOI: 10.1111/andr.12714] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 12/30/2022]
Affiliation(s)
- A. Salas‐Huetos
- Andrology and IVF Laboratory Division of Urology Department of Surgery University of Utah School of Medicine Salt Lake City UT USA
| | - E. R. James
- Andrology and IVF Laboratory Division of Urology Department of Surgery University of Utah School of Medicine Salt Lake City UT USA
- Department of Human Genetics University of Utah School of Medicine Salt Lake City UT USA
| | - K. I. Aston
- Andrology and IVF Laboratory Division of Urology Department of Surgery University of Utah School of Medicine Salt Lake City UT USA
| | - D. T. Carrell
- Andrology and IVF Laboratory Division of Urology Department of Surgery University of Utah School of Medicine Salt Lake City UT USA
- Department of Human Genetics University of Utah School of Medicine Salt Lake City UT USA
- Department of Obstetrics and Gynecology University of Utah School of Medicine Salt Lake City UT USA
| | - T. G. Jenkins
- Andrology and IVF Laboratory Division of Urology Department of Surgery University of Utah School of Medicine Salt Lake City UT USA
| | - M. Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm) Unit of Cell Biology Department of Biology Faculty of Sciences Institute of Food and Agricultural Technology University of Girona Girona Spain
| |
Collapse
|
14
|
Corral-Vazquez C, Salas-Huetos A, Blanco J, Vidal F, Sarrate Z, Anton E. Sperm microRNA pairs: new perspectives in the search for male fertility biomarkers. Fertil Steril 2019; 112:831-841. [PMID: 31587805 DOI: 10.1016/j.fertnstert.2019.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/06/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To identify candidates of fertility biomarkers among pairs of human sperm microRNAs. DESIGN Expression data of 736 sperm microRNAs from fertile and infertile individuals characterized in previous published studies by means of TaqMan quantitative polymerase chain reaction (PCR) were reexamined. A set of microRNA pairs with the best biomarker potential were selected and validated by means of quantitative real-time (qRT) PCR in an independent cohort. SETTING University laboratory. PATIENT(S) Semen samples were obtained from fertile (n = 10) and infertile (asthenozoospermia, n = 10; teratozoospermia, n = 10; oligozoospermia, n = 10; unexplained male infertility [UMI], n = 8) individuals. The validation cohort included 9 fertile donors and 14 infertile patients with different seminal alterations. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Spearman test was used to select microRNA pairs with a correlated expression in fertile individuals and a noncorrelated expression in each infertile group. The biomarker potential of these pairs was determined with the use of receiver operating characteristic curves. The differential relative expression of each pair in fertile and infertile populations was verified (Mann-Whitney test). Those pairs with best results were validated by qRT-PCR. RESULT(S) Forty-eight pairs showed significant correlations in the fertile group. The pairs that were uncorrelated in the infertile populations and displayed the best biomarker potential were hsa-miR-942-5p/hsa-miR-1208 (asthenozoospermia), hsa-miR-296-5p/hsa-miR-328-3p (teratozoospermia), hsa-miR-139-5p/hsa-miR-1260a (oligozoospermia), and hsa-miR-34b-3p/hsa-miR-93-3p (UMI). The hsa-miR-942-5p/hsa-miR-1208 pair showed the greatest potential for detecting seminal alterations in the validation cohort (85.71% true positives). CONCLUSION(S) The pairs hsa-miR-942-5p/hsa-miR-1208 and hsa-miR-34b-3p/hsa-miR-93-3p have the potential to become new molecular biomarkers that could help to diagnose male infertility, especially in cases of UMI or when seminal parameters are close to the threshold values.
Collapse
Affiliation(s)
- Celia Corral-Vazquez
- Genetics of Male Fertility Group, Unitat de Biologia Cellular, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Albert Salas-Huetos
- Genetics of Male Fertility Group, Unitat de Biologia Cellular, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Joan Blanco
- Genetics of Male Fertility Group, Unitat de Biologia Cellular, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Francesca Vidal
- Genetics of Male Fertility Group, Unitat de Biologia Cellular, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Zaida Sarrate
- Genetics of Male Fertility Group, Unitat de Biologia Cellular, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ester Anton
- Genetics of Male Fertility Group, Unitat de Biologia Cellular, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
15
|
Riesco MF, Valcarce DG, Martínez-Vázquez JM, Robles V. Effect of low sperm quality on progeny: a study on zebrafish as model species. Sci Rep 2019; 9:11192. [PMID: 31371755 PMCID: PMC6671952 DOI: 10.1038/s41598-019-47702-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/22/2019] [Indexed: 12/23/2022] Open
Abstract
Nowadays a decrease tendency in human sperm quality has been reported mainly in developed countries. Reproductive technologies have been very valuable in achieving successful pregnancies with low quality sperm samples. However, considering that spermatozoa molecular contribution is increasingly important in recent studies, it is crucial to study whether fertilization with low sperm quality could leave a molecular mark on progeny. This study explores the consequences that fertilization with low sperm quality may have on progeny, using zebrafish as a model. Good and bad breeders were established attending to sperm quality analyses and were individually tracked. Significant differences in fertilization and malformation rates were obtained in progenies between high and low quality sperm samples. Moreover an altered miR profile was found in the progenies of bad zebrafish breeders (upregulation of miR-141 and miR -122 in 24 hpf embryos) and as a consequence, some of their targets involved in male sex development such as dmrt1, suffered downregulation. Our results indicate that fertilizing with high sperm quality samples becomes relevant from a new perspective: to avoid molecular alterations in the progeny that could remain masked and therefore produce unexpected consequences in it.
Collapse
Affiliation(s)
- Marta F Riesco
- IEO, Spanish Institute of Oceanography, Planta de Cultivos el Bocal, Santander, 39012, Spain
| | - David G Valcarce
- IEO, Spanish Institute of Oceanography, Planta de Cultivos el Bocal, Santander, 39012, Spain
| | | | - Vanesa Robles
- IEO, Spanish Institute of Oceanography, Planta de Cultivos el Bocal, Santander, 39012, Spain.
- MODCELL GROUP, Department of Molecular Biology, Universidad de León, 24071, León, Spain.
| |
Collapse
|
16
|
Salas-Huetos A, Moraleda R, Giardina S, Anton E, Blanco J, Salas-Salvadó J, Bulló M. Effect of nut consumption on semen quality and functionality in healthy men consuming a Western-style diet: a randomized controlled trial. Am J Clin Nutr 2018; 108:953-962. [PMID: 30475967 DOI: 10.1093/ajcn/nqy181] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Human semen quality has declined in industrialized countries. Pollution, smoking, and the consumption of a Western-style diet are all hypothesized as potential causes. OBJECTIVE We evaluated the effect of chronic consumption of nuts on changes in conventional semen parameters and the potential mechanisms implicated. DESIGN The FERTINUTS study was a 14-wk randomized, controlled, parallel trial. A total of 119 healthy men, aged 18-35 y, were allocated to 1 of 2 intervention groups: one group was fed the usual Western-style diet enriched with 60 g of a mixture of nuts/d (nut group), and the other was fed the usual Western-style diet avoiding nuts (control group). Semen and blood samples were collected at baseline and at the end of the intervention. Dietary information was recorded throughout the trial. Changes in conventional semen parameters (pH, volume, sperm count and concentration, motility, and morphology) were determined as primary outcomes. The effect of nut consumption on sperm DNA fragmentation (SDF), reactive oxygen species (ROS) production, chromosome anomalies (X, Y, and 18), total DNA methylation, and microRNA expression were measured in sperm samples as potential causes of the changes in the seminogram. RESULTS Compared with the control group, improvements in total sperm count (P = 0.002) and vitality (P = 0.003), total motility (P = 0.006), progressive motility (P = 0.036), and morphology of sperm (P = 0.008) were observed in the nut group. Participants in the nut group showed an increase in the consumption of total fat, monounsaturated fatty acids, polyunsaturated fatty acids, magnesium, vitamin E, α-linolenic acid, total omega-3 (n-3) and ω-3:ω-6 ratio intake during the intervention. Participants in the nut group showed a significant reduction in SDF (P < 0.001) and in the expression of hsa-miR-34b-3p (P = 0.036). No significant changes in ROS, sperm chromosome anomalies, or DNA methylation were observed between groups. CONCLUSIONS The inclusion of nuts in a Western-style diet significantly improves the total sperm count and the vitality, motility, and morphology of the sperm. These findings could be partly explained by a reduction in the sperm DNA fragmentation. This trial was registered at ISRCTN as ISRCTN12857940.
Collapse
Affiliation(s)
- Albert Salas-Huetos
- Human Nutrition Unit, Biochemistry and Biotechnology Department, Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitària Pere i Virgili, Reus, Spain
- Consorcio CIBER, M.P., Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Moraleda
- Institut d'Investigació Sanitària Pere i Virgili, Reus, Spain
- Hospital Universitari Sant Joan de Reus, Reus, Spain
| | - Simona Giardina
- Human Nutrition Unit, Biochemistry and Biotechnology Department, Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitària Pere i Virgili, Reus, Spain
- Consorcio CIBER, M.P., Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain
| | - Ester Anton
- Genetics of Male Fertility Group, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Blanco
- Genetics of Male Fertility Group, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Salas-Salvadó
- Human Nutrition Unit, Biochemistry and Biotechnology Department, Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitària Pere i Virgili, Reus, Spain
- Consorcio CIBER, M.P., Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain
- Hospital Universitari Sant Joan de Reus, Reus, Spain
| | - Mònica Bulló
- Human Nutrition Unit, Biochemistry and Biotechnology Department, Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitària Pere i Virgili, Reus, Spain
- Consorcio CIBER, M.P., Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|