1
|
Krawczyk K, Kosyl E, Częścik-Łysyszyn K, Wyszomirski T, Maleszewski M. Developmental capacity is unevenly distributed among single blastomeres of 2-cell and 4-cell stage mouse embryos. Sci Rep 2021; 11:21422. [PMID: 34728646 PMCID: PMC8563712 DOI: 10.1038/s41598-021-00834-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022] Open
Abstract
During preimplantation development, mammalian embryo cells (blastomeres) cleave, gradually losing their potencies and differentiating into three primary cell lineages: epiblast (EPI), trophectoderm (TE), and primitive endoderm (PE). The exact moment at which cells begin to vary in their potency for multilineage differentiation still remains unknown. We sought to answer the question of whether single cells isolated from 2- and 4-cell embryos differ in their ability to generate the progenitors and cells of blastocyst lineages. We revealed that twins were often able to develop into blastocysts containing inner cell masses (ICMs) with PE and EPI cells. Despite their capacity to create a blastocyst, the twins differed in their ability to produce EPI, PE, and TE cell lineages. In contrast, quadruplets rarely formed normal blastocysts, but instead developed into blastocysts with ICMs composed of only one cell lineage or completely devoid of an ICM altogether. We also showed that quadruplets have unequal capacities to differentiate into TE, PE, and EPI lineages. These findings could explain the difficulty of creating monozygotic twins and quadruplets from 2- and 4-cell stage mouse embryos.
Collapse
Affiliation(s)
- Katarzyna Krawczyk
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Ewa Kosyl
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Karolina Częścik-Łysyszyn
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Tomasz Wyszomirski
- Department of Ecology and Environmental Protection, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Marek Maleszewski
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
2
|
Casser E, Wdowik S, Israel S, Witten A, Schlatt S, Nordhoff V, Boiani M. Differences in blastomere totipotency in 2-cell mouse embryos are a maternal trait mediated by asymmetric mRNA distribution. Mol Hum Reprod 2020; 25:729-744. [PMID: 31504820 PMCID: PMC6884417 DOI: 10.1093/molehr/gaz051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/05/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
It is widely held that the first two blastomeres of mammalian embryos are equally totipotent and that this totipotency belongs to the group of regulative properties. However, this interpretation neglects an important aspect: evidence only came from successful monozygotic twins which can speak only for those pairs of half-embryos that are able to regulate in the first place. Are the frequently occurring incomplete pairs simply an artefact, or do they represent a real difference, be it in the imperfect blastomere's ability to regulate growth or in the distribution of any compound X that constrains regulation? Using the model system of mouse embryos bisected at the 2-cell stage after fertilization, we present evidence that the interblastomere differences evade regulation by external factors and are already latent in oocytes. Specifically, an interblastomere imbalance of epiblast production persists under the most diverse culture conditions and applies to the same extent in parthenogenetic counterparts. As a result, cases in which twin blastocysts continued to develop in only one member account for 65 and 57% of zygotic and parthenogenetic pairs, respectively. The interblastomere imbalance is related to the subcellular distribution of gene products, as documented for the epiblast-related gene Cops3, using mRNA FISH in super-resolution mode confocal microscopy. Blastomere patterns of Cops3 mRNA distribution are α-amanitin-resistant. Thus, the imbalance originates not from de novo transcription, but from influences which are effective before fertilisation. These data expose previously unrecognized limits of regulative capacities of 2-cell stage blastomeres and point to aspects of cytoplasmic organization of the mouse oocyte that segregate unequally to blastomeres during cleavage.
Collapse
Affiliation(s)
- E Casser
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - S Wdowik
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - S Israel
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - A Witten
- Core Genomic Facility, University Hospital Muenster, Muenster, Germany
| | - S Schlatt
- Centre for Reproductive Medicine and Andrology, University Hospital Muenster, Muenster, Germany
| | - V Nordhoff
- Centre for Reproductive Medicine and Andrology, University Hospital Muenster, Muenster, Germany
| | - M Boiani
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| |
Collapse
|