1
|
Horaruang W, Klejchová M, Carroll W, Silva-Alvim FAL, Waghmare S, Papanatsiou M, Amtmann A, Hills A, Alvim JC, Blatt MR, Zhang B. Engineering a K + channel 'sensory antenna' enhances stomatal kinetics, water use efficiency and photosynthesis. NATURE PLANTS 2022; 8:1262-1274. [PMID: 36266492 DOI: 10.1038/s41477-022-01255-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Stomata of plant leaves open to enable CO2 entry for photosynthesis and close to reduce water loss via transpiration. Compared with photosynthesis, stomata respond slowly to fluctuating light, reducing assimilation and water use efficiency. Efficiency gains are possible without a cost to photosynthesis if stomatal kinetics can be accelerated. Here we show that clustering of the GORK channel, which mediates K+ efflux for stomatal closure in the model plant Arabidopsis, arises from binding between the channel voltage sensors, creating an extended 'sensory antenna' for channel gating. Mutants altered in clustering affect channel gating to facilitate K+ flux, accelerate stomatal movements and reduce water use without a loss in biomass. Our findings identify the mechanism coupling channel clustering with gating, and they demonstrate the potential for engineering of ion channels native to the guard cell to enhance stomatal kinetics and improve water use efficiency without a cost in carbon fixation.
Collapse
Affiliation(s)
- Wijitra Horaruang
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
- Faculty of Science and Arts, Burapha University, Chanthaburi Campus, Chanthaburi, Thailand
| | - Martina Klejchová
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | - William Carroll
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | | | - Sakharam Waghmare
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | - Maria Papanatsiou
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | - Anna Amtmann
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | - Jonas Chaves Alvim
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK.
| | - Ben Zhang
- School of Life Sciences, Shanxi University, Taiyuan City, China
| |
Collapse
|
2
|
Lefoulon C. The bare necessities of plant K+ channel regulation. PLANT PHYSIOLOGY 2021; 187:2092-2109. [PMID: 34618033 PMCID: PMC8644596 DOI: 10.1093/plphys/kiab266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 05/29/2023]
Abstract
Potassium (K+) channels serve a wide range of functions in plants from mineral nutrition and osmotic balance to turgor generation for cell expansion and guard cell aperture control. Plant K+ channels are members of the superfamily of voltage-dependent K+ channels, or Kv channels, that include the Shaker channels first identified in fruit flies (Drosophila melanogaster). Kv channels have been studied in depth over the past half century and are the best-known of the voltage-dependent channels in plants. Like the Kv channels of animals, the plant Kv channels are regulated over timescales of milliseconds by conformational mechanisms that are commonly referred to as gating. Many aspects of gating are now well established, but these channels still hold some secrets, especially when it comes to the control of gating. How this control is achieved is especially important, as it holds substantial prospects for solutions to plant breeding with improved growth and water use efficiencies. Resolution of the structure for the KAT1 K+ channel, the first channel from plants to be crystallized, shows that many previous assumptions about how the channels function need now to be revisited. Here, I strip the plant Kv channels bare to understand how they work, how they are gated by voltage and, in some cases, by K+ itself, and how the gating of these channels can be regulated by the binding with other protein partners. Each of these features of plant Kv channels has important implications for plant physiology.
Collapse
Affiliation(s)
- Cécile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, Scotland
| |
Collapse
|
3
|
Dreyer I, Sussmilch FC, Fukushima K, Riadi G, Becker D, Schultz J, Hedrich R. How to Grow a Tree: Plant Voltage-Dependent Cation Channels in the Spotlight of Evolution. TRENDS IN PLANT SCIENCE 2021; 26:41-52. [PMID: 32868178 DOI: 10.1016/j.tplants.2020.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Phylogenetic analysis can be a powerful tool for generating hypotheses regarding the evolution of physiological processes. Here, we provide an updated view of the evolution of the main cation channels in plant electrical signalling: the Shaker family of voltage-gated potassium channels and the two-pore cation (K+) channel (TPC1) family. Strikingly, the TPC1 family followed the same conservative evolutionary path as one particular subfamily of Shaker channels (Kout) and remained highly invariant after terrestrialisation, suggesting that electrical signalling was, and remains, key to survival on land. We note that phylogenetic analyses can have pitfalls, which may lead to erroneous conclusions. To avoid these in the future, we suggest guidelines for analyses of ion channel evolution in plants.
Collapse
Affiliation(s)
- Ingo Dreyer
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 2 Norte 685, Talca, Chile.
| | - Frances C Sussmilch
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany; School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Kenji Fukushima
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Gonzalo Riadi
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Jörg Schultz
- Department of Bioinformatics, Biozentrum, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany.
| |
Collapse
|
4
|
Hu W, Di Q, Zhang J, Liu J, Shi X. Response of grafting tobacco to low potassium stress. BMC PLANT BIOLOGY 2020; 20:286. [PMID: 32571243 PMCID: PMC7310080 DOI: 10.1186/s12870-020-02481-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In the previous study, we investigated the alleviation effect of grafting on potassium uptake in roots and tobacco growth inhibition under low potassium stress. However, the effect of grafting on the low potassium stress perception and coping mechanism of tobacco at the whole plant level is not clear now. In order to clearly understand the impact of grafting on potassium deficit responding mechanism in tobacco, a mutual grafting experiment has been conducted in two varieties of tobacco ('Wufeng No.2' and 'Yunyan 87') in different K supply level (5 mmol L- 1 and 0.5 mmol L- 1 K). RESULTS The results show that compared with the self-rooted seedlings, grafting significantly increased the potassium content of the whole plant of Yunyan 87 (97.57 and 189.74% under normal potassium and low potassium conditions, respectively), and the increase in shoots was greater. The data of whole plant K content distribution and tobacco hypocotyls net K+ flux demonstrates that potassium stress makes plants more inclined to maintain K+ in the shoot rather than root. In addition, when K deficiency occurs, grafting could reduce the time required for downward net K+ flux in tobacco hypocotyl to decrease to stable levels. The results of net K+ flux in the roots indicated that K channel proteins and transporters play different roles in two rootstocks in terms of potassium tolerance. Transcription level analysis suggested that the increased circulating efficiency of K+ between the shoots and roots in tobacco constitutes one means to low potassium stress adaptation. CONCLUSIONS Grafting can activate more K+ channels in tobacco 'Yunyan 87', this means a more active K+ cycle, higher potassium content in shoot and faster response to low potassium stress signals in grafting tobacco. In addition, grafting can also change the K+ absorption mode of tobacco root from being dominated by HATS to being jointly responsible by HATS and LATS, greatly improving the ability of K+ transmembrane transportation on root surface under low potassium stress. These are undoubtedly the reasons why grafting tobacco performs better in coping with low potassium stress.
Collapse
Affiliation(s)
- Wei Hu
- College of Resources and Environment, Southwest University, Chongqing, 400716 China
- Vegetable and Flower Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Qing Di
- Vegetable and Flower Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Jie Zhang
- Nanchang Institute of Technology, Nanchang, 330099 China
| | - Jia Liu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing, 400716 China
| |
Collapse
|
5
|
Long-Tang H, Li-Na Z, Li-Wei G, Anne-Aliénor V, Hervé S, Yi-Dong Z. Constitutive expression of CmSKOR, an outward K + channel gene from melon, in Arabidopsis thaliana involved in saline tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:492-502. [PMID: 30080639 DOI: 10.1016/j.plantsci.2018.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 05/07/2023]
Abstract
Shaker-like K+ outward rectifying channel (SKOR) is involved in mediating long-distance K+ transport from roots to shoots. In this study, a Shaker-like outward K+ channel gene CmSKOR (GenBank accession number MF447462) was isolated from melon (Cucumis melo L.). Phylogenetic analysis showed that CmSKOR belongs to the SKOR-subfamily in the Shaker-like K+ channel family. Electrophysiological experiments indicated that CmSKOR was a K+-permeable channel with low affinity. Expressed in Xenopus oocytes, CmSKOR displayed classical Shaker-like outwardly rectifying K+ currents. Confocal imaging of a CmSKOR - yellow fluorescent fusion protein (YFP) in transgenic Nicotiana tabacum leaves indicated that CmSKOR was located in the plasma membrane. Transcript analysis showed CmSKOR predominantly expressed in melon roots and with lower abundance in stem and leaves. In addition, both external K+ and NaCl treatment could up-regulate the expression of CmSKOR in melon and enhance the K+ content in shoot. Constitutive overexpressed CmSKOR in Arabidopsis thaliana, the transgenic plants showed changes in root length in MS plates, displayed higher maximum photochemical efficiency of PSII (Fv/Fm), higher fresh and dry weight, and accumulation of K+ in shoot, together with the changes of transcript amount of CmSKOR with NaCl treatments in mixture substrate. In conclusion, it was proposed that CmSKOR may play the role on distributing K+ to the shoot in melon and its constitutive expression in Arabidopsis improved saline tolerance by maintaining K+ homeostasis in the plant.
Collapse
Affiliation(s)
- Huang Long-Tang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai,, 200240 China
| | - Zhao Li-Na
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai,, 200240 China
| | - Gao Li-Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai,, 200240 China
| | - Véry Anne-Aliénor
- Biochimie et Physiologie Moléculaires des Plantes, UMR 5004 CNRS/ UMR 386 INRA/SupAgro-M /UM, Place Viala, 34060 Montpellier Cedex 2, France
| | - Sentenac Hervé
- Biochimie et Physiologie Moléculaires des Plantes, UMR 5004 CNRS/ UMR 386 INRA/SupAgro-M /UM, Place Viala, 34060 Montpellier Cedex 2, France
| | - Zhang Yi-Dong
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai,, 200240 China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China.
| |
Collapse
|
6
|
|
7
|
Kleist TJ, Luan S. Constant change: dynamic regulation of membrane transport by calcium signalling networks keeps plants in tune with their environment. PLANT, CELL & ENVIRONMENT 2016; 39:467-481. [PMID: 26139029 DOI: 10.1111/pce.12599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
Despite substantial variation and irregularities in their environment, plants must conform to spatiotemporal demands on the molecular composition of their cytosol. Cell membranes are the major interface between organisms and their environment and the basis for controlling the contents and intracellular organization of the cell. Membrane transport proteins (MTPs) govern the flow of molecules across membranes, and their activities are closely monitored and regulated by cell signalling networks. By continuously adjusting MTP activities, plants can mitigate the effects of environmental perturbations, but effective implementation of this strategy is reliant on precise coordination among transport systems that reside in distinct cell types and membranes. Here, we examine the role of calcium signalling in the coordination of membrane transport, with an emphasis on potassium transport. Potassium is an exceptionally abundant and mobile ion in plants, and plant potassium transport has been intensively studied for decades. Classic and recent studies have underscored the importance of calcium in plant environmental responses and membrane transport regulation. In reviewing recent advances in our understanding of the coding and decoding of calcium signals, we highlight established and emerging roles of calcium signalling in coordinating membrane transport among multiple subcellular locations and distinct transport systems in plants, drawing examples from the CBL-CIPK signalling network. By synthesizing classical studies and recent findings, we aim to provide timely insights on the role of calcium signalling networks in the modulation of membrane transport and its importance in plant environmental responses.
Collapse
Affiliation(s)
- Thomas J Kleist
- University of California, Berkeley, Department of Plant & Microbial Biology, Berkeley, CA, 94720, USA
| | - Sheng Luan
- University of California, Berkeley, Department of Plant & Microbial Biology, Berkeley, CA, 94720, USA
| |
Collapse
|
8
|
Outward Rectification of Voltage-Gated K+ Channels Evolved at Least Twice in Life History. PLoS One 2015; 10:e0137600. [PMID: 26356684 PMCID: PMC4565715 DOI: 10.1371/journal.pone.0137600] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/15/2015] [Indexed: 11/19/2022] Open
Abstract
Voltage-gated potassium (K+) channels are present in all living systems. Despite high structural similarities in the transmembrane domains (TMD), this K+ channel type segregates into at least two main functional categories—hyperpolarization-activated, inward-rectifying (Kin) and depolarization-activated, outward-rectifying (Kout) channels. Voltage-gated K+ channels sense the membrane voltage via a voltage-sensing domain that is connected to the conduction pathway of the channel. It has been shown that the voltage-sensing mechanism is the same in Kin and Kout channels, but its performance results in opposite pore conformations. It is not known how the different coupling of voltage-sensor and pore is implemented. Here, we studied sequence and structural data of voltage-gated K+ channels from animals and plants with emphasis on the property of opposite rectification. We identified structural hotspots that alone allow already the distinction between Kin and Kout channels. Among them is a loop between TMD S5 and the pore that is very short in animal Kout, longer in plant and animal Kin and the longest in plant Kout channels. In combination with further structural and phylogenetic analyses this finding suggests that outward-rectification evolved twice and independently in the animal and plant kingdom.
Collapse
|
9
|
Lefoulon C, Karnik R, Honsbein A, Gutla PV, Grefen C, Riedelsberger J, Poblete T, Dreyer I, Gonzalez W, Blatt MR. Voltage-sensor transitions of the inward-rectifying K+ channel KAT1 indicate a latching mechanism biased by hydration within the voltage sensor. PLANT PHYSIOLOGY 2014; 166:960-75. [PMID: 25185120 PMCID: PMC4213121 DOI: 10.1104/pp.114.244319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Kv-like (potassium voltage-dependent) K(+) channels at the plasma membrane, including the inward-rectifying KAT1 K(+) channel of Arabidopsis (Arabidopsis thaliana), are important targets for manipulating K(+) homeostasis in plants. Gating modification, especially, has been identified as a promising means by which to engineer plants with improved characteristics in mineral and water use. Understanding plant K(+) channel gating poses several challenges, despite many similarities to that of mammalian Kv and Shaker channel models. We have used site-directed mutagenesis to explore residues that are thought to form two electrostatic countercharge centers on either side of a conserved phenylalanine (Phe) residue within the S2 and S3 α-helices of the voltage sensor domain (VSD) of Kv channels. Consistent with molecular dynamic simulations of KAT1, we show that the voltage dependence of the channel gate is highly sensitive to manipulations affecting these residues. Mutations of the central Phe residue favored the closed KAT1 channel, whereas mutations affecting the countercharge centers favored the open channel. Modeling of the macroscopic current kinetics also highlighted a substantial difference between the two sets of mutations. We interpret these findings in the context of the effects on hydration of amino acid residues within the VSD and with an inherent bias of the VSD, when hydrated around a central Phe residue, to the closed state of the channel.
Collapse
Affiliation(s)
- Cécile Lefoulon
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (C.L., R.K., A.H., P.V.G., C.G., M.R.B.);Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile (J.R., T.P., W.G.);University of Potsdam, Biochemistry and Biology Group BPMBP, D14476 Golm, Germany (J.R., I.D., W.G.); andCentre for Biotechnology and Plant Genomics UPM, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28223 Pozuelo de Alacon, Madrid, Spain (I.D.)
| | - Rucha Karnik
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (C.L., R.K., A.H., P.V.G., C.G., M.R.B.);Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile (J.R., T.P., W.G.);University of Potsdam, Biochemistry and Biology Group BPMBP, D14476 Golm, Germany (J.R., I.D., W.G.); andCentre for Biotechnology and Plant Genomics UPM, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28223 Pozuelo de Alacon, Madrid, Spain (I.D.)
| | - Annegret Honsbein
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (C.L., R.K., A.H., P.V.G., C.G., M.R.B.);Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile (J.R., T.P., W.G.);University of Potsdam, Biochemistry and Biology Group BPMBP, D14476 Golm, Germany (J.R., I.D., W.G.); andCentre for Biotechnology and Plant Genomics UPM, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28223 Pozuelo de Alacon, Madrid, Spain (I.D.)
| | - Paul Vijay Gutla
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (C.L., R.K., A.H., P.V.G., C.G., M.R.B.);Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile (J.R., T.P., W.G.);University of Potsdam, Biochemistry and Biology Group BPMBP, D14476 Golm, Germany (J.R., I.D., W.G.); andCentre for Biotechnology and Plant Genomics UPM, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28223 Pozuelo de Alacon, Madrid, Spain (I.D.)
| | - Christopher Grefen
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (C.L., R.K., A.H., P.V.G., C.G., M.R.B.);Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile (J.R., T.P., W.G.);University of Potsdam, Biochemistry and Biology Group BPMBP, D14476 Golm, Germany (J.R., I.D., W.G.); andCentre for Biotechnology and Plant Genomics UPM, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28223 Pozuelo de Alacon, Madrid, Spain (I.D.)
| | - Janin Riedelsberger
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (C.L., R.K., A.H., P.V.G., C.G., M.R.B.);Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile (J.R., T.P., W.G.);University of Potsdam, Biochemistry and Biology Group BPMBP, D14476 Golm, Germany (J.R., I.D., W.G.); andCentre for Biotechnology and Plant Genomics UPM, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28223 Pozuelo de Alacon, Madrid, Spain (I.D.)
| | - Tomás Poblete
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (C.L., R.K., A.H., P.V.G., C.G., M.R.B.);Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile (J.R., T.P., W.G.);University of Potsdam, Biochemistry and Biology Group BPMBP, D14476 Golm, Germany (J.R., I.D., W.G.); andCentre for Biotechnology and Plant Genomics UPM, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28223 Pozuelo de Alacon, Madrid, Spain (I.D.)
| | - Ingo Dreyer
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (C.L., R.K., A.H., P.V.G., C.G., M.R.B.);Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile (J.R., T.P., W.G.);University of Potsdam, Biochemistry and Biology Group BPMBP, D14476 Golm, Germany (J.R., I.D., W.G.); andCentre for Biotechnology and Plant Genomics UPM, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28223 Pozuelo de Alacon, Madrid, Spain (I.D.)
| | - Wendy Gonzalez
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (C.L., R.K., A.H., P.V.G., C.G., M.R.B.);Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile (J.R., T.P., W.G.);University of Potsdam, Biochemistry and Biology Group BPMBP, D14476 Golm, Germany (J.R., I.D., W.G.); andCentre for Biotechnology and Plant Genomics UPM, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28223 Pozuelo de Alacon, Madrid, Spain (I.D.)
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (C.L., R.K., A.H., P.V.G., C.G., M.R.B.);Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile (J.R., T.P., W.G.);University of Potsdam, Biochemistry and Biology Group BPMBP, D14476 Golm, Germany (J.R., I.D., W.G.); andCentre for Biotechnology and Plant Genomics UPM, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28223 Pozuelo de Alacon, Madrid, Spain (I.D.)
| |
Collapse
|
10
|
Nieves-Cordones M, Gaillard I. Involvement of the S4-S5 linker and the C-linker domain regions to voltage-gating in plant Shaker channels: comparison with animal HCN and Kv channels. PLANT SIGNALING & BEHAVIOR 2014; 9:e972892. [PMID: 25482770 PMCID: PMC4622754 DOI: 10.4161/15592316.2014.972892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Among the different transport systems present in plant cells, Shaker channels constitute the major pathway for K(+) in the plasma membrane. Plant Shaker channels are members of the 6 transmembrane-1 pore (6TM-1P) cation channel superfamily as the animal Shaker (Kv) and HCN channels. All these channels are voltage-gated K(+) channels: Kv channels are outward-rectifiers, opened at depolarized voltages and HCN channels are inward-rectifiers, opened by membrane hyperpolarization. Among plant Shaker channels, we can find outward-rectifiers, inward-rectifiers and also weak-rectifiers, with weak voltage dependence. Despite the absence of crystal structures of plant Shaker channels, functional analyses coupled to homology modeling, mostly based on Kv and HCN crystals, have permitted the identification of several regions contributing to plant Shaker channel gating. In the present mini-review, we make an update on the voltage-gating mechanism of plant Shaker channels which seem to be comparable to that proposed for HCN channels.
Collapse
Affiliation(s)
- Manuel Nieves-Cordones
- Biochimie et Physiologie Moléculaire des Plantes; Institut de Biologie Intégrative des Plantes; Unité Mixte de Recherche 5004 Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386 Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier 2; Montpellier, France
- Correspondence to: Manuel Nieves-Cordones; , Isabelle Gaillard;
| | - Isabelle Gaillard
- Biochimie et Physiologie Moléculaire des Plantes; Institut de Biologie Intégrative des Plantes; Unité Mixte de Recherche 5004 Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386 Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier 2; Montpellier, France
- Correspondence to: Manuel Nieves-Cordones; , Isabelle Gaillard;
| |
Collapse
|
11
|
Abstract
Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K+-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K+ channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.
Collapse
Affiliation(s)
- Rainer Hedrich
- University of Wuerzburg, Institute for Molecular Plant Physiology and Biophysics, Wuerzburg, Germany; and King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
The pH sensor of the plant K+-uptake channel KAT1 is built from a sensory cloud rather than from single key amino acids. Biochem J 2012; 442:57-63. [DOI: 10.1042/bj20111498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The uptake of potassium ions (K+) accompanied by an acidification of the apoplasm is a prerequisite for stomatal opening. The acidification (approximately 2–2.5 pH units) is perceived by voltage-gated inward potassium channels (Kin) that then can open their pores with lower energy cost. The sensory units for extracellular pH in stomatal Kin channels are proposed to be histidines exposed to the apoplasm. However, in the Arabidopsis thaliana stomatal Kin channel KAT1, mutations in the unique histidine exposed to the solvent (His267) do not affect the pH dependency. We demonstrate in the present study that His267 of the KAT1 channel cannot sense pH changes since the neighbouring residue Phe266 shifts its pKa to undetectable values through a cation–π interaction. Instead, we show that Glu240 placed in the extracellular loop between transmembrane segments S5 and S6 is involved in the extracellular acid activation mechanism. Based on structural models we propose that this region may serve as a molecular link between the pH- and the voltage-sensor. Like Glu240, several other titratable residues could contribute to the pH-sensor of KAT1, interact with each other and even connect such residues far away from the voltage-sensor with the gating machinery of the channel.
Collapse
|
13
|
Abstract
Potassium (K(+) ) is the most abundant inorganic cation in plant cells. Unlike animals, plants lack sodium/potassium exchangers. Instead, plant cells have developed unique transport systems for K(+) accumulation and release. An essential role in potassium uptake and efflux is played by potassium channels. Since the first molecular characterization of K(+) channels from Arabidopsis thaliana in 1992, a large number of studies on plant potassium channels have been conducted. Potassium channels are considered to be one of the best characterized class of membrane proteins in plants. Nevertheless, knowledge on plant potassium channels is still incomplete. This minireview focuses on recent developments in the research of potassium transport in plants with a strong focus on voltage-gated potassium channels.
Collapse
Affiliation(s)
- Ingo Dreyer
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain.
| | | |
Collapse
|
14
|
Garcia-Mata C, Wang J, Gajdanowicz P, Gonzalez W, Hills A, Donald N, Riedelsberger J, Amtmann A, Dreyer I, Blatt MR. A minimal cysteine motif required to activate the SKOR K+ channel of Arabidopsis by the reactive oxygen species H2O2. J Biol Chem 2010; 285:29286-94. [PMID: 20605786 DOI: 10.1074/jbc.m110.141176] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Reactive oxygen species (ROS) are essential for development and stress signaling in plants. They contribute to plant defense against pathogens, regulate stomatal transpiration, and influence nutrient uptake and partitioning. Although both Ca(2+) and K(+) channels of plants are known to be affected, virtually nothing is known of the targets for ROS at a molecular level. Here we report that a single cysteine (Cys) residue within the Kv-like SKOR K(+) channel of Arabidopsis thaliana is essential for channel sensitivity to the ROS H(2)O(2). We show that H(2)O(2) rapidly enhanced current amplitude and activation kinetics of heterologously expressed SKOR, and the effects were reversed by the reducing agent dithiothreitol (DTT). Both H(2)O(2) and DTT were active at the outer face of the membrane and current enhancement was strongly dependent on membrane depolarization, consistent with a H(2)O(2)-sensitive site on the SKOR protein that is exposed to the outside when the channel is in the open conformation. Cys substitutions identified a single residue, Cys(168) located within the S3 α-helix of the voltage sensor complex, to be essential for sensitivity to H(2)O(2). The same Cys residue was a primary determinant for current block by covalent Cys S-methioylation with aqueous methanethiosulfonates. These, and additional data identify Cys(168) as a critical target for H(2)O(2), and implicate ROS-mediated control of the K(+) channel in regulating mineral nutrient partitioning within the plant.
Collapse
Affiliation(s)
- Carlos Garcia-Mata
- Laboratory of Plant Physiology and Biophysics, Faculty of Biomedical and Life Sciences, Plant Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sato A, Gambale F, Dreyer I, Uozumi N. Modulation of the Arabidopsis KAT1 channel by an activator of protein kinase C in Xenopus laevis oocytes. FEBS J 2010; 277:2318-28. [DOI: 10.1111/j.1742-4658.2010.07647.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|