1
|
Ceramella J, Catalano A, Mariconda A, D’Amato A, Aquila S, Saturnino C, Rosano C, Sinicropi MS, Longo P. Silver N-Heterocyclic Carbene (NHC) Complexes as Antimicrobial and/or Anticancer Agents. Pharmaceuticals (Basel) 2024; 18:9. [PMID: 39861072 PMCID: PMC11768138 DOI: 10.3390/ph18010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
The strict connections/interactions between microbial infections and cancer are nowadays widely accepted. Hence, the dual (or multiple) targeting of microbial infections and cancer is an essential issue to be addressed. In this context, metal complexes have gained considerable importance and effectiveness in medicinal chemistry. Particularly, N-heterocyclic carbene (NHC) complexes with transition metals have emerged as very promising compounds. Among the myriad of NHC-metal complexes, those bearing silver will be the subject of this review. Numerous Ag(I)-NHC complexes have revealed high antibacterial and/or anticancer properties, even higher than those of reference drugs. Herein, we summarize the most recent studies while also discussing the proposed mechanism of action and offering an interesting remark about the research in this field. Literature databases (PubMed/MEDLINE, Scopus, and Google Scholar) were used as sources to search the literature, referring to the last five years.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, via Pietro Bucci, 87036 Arcavacata di Rende, Italy; (J.C.); (S.A.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Via Orabona, 4, 70126 Bari, Italy
| | - Annaluisa Mariconda
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy;
| | - Assunta D’Amato
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.D.); (P.L.)
| | - Saveria Aquila
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, via Pietro Bucci, 87036 Arcavacata di Rende, Italy; (J.C.); (S.A.)
| | - Carmela Saturnino
- Department of Health Sciences, University of Basilicata, Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy;
| | - Camillo Rosano
- U.O. Proteomica e Spettrometria di Massa, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy;
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, via Pietro Bucci, 87036 Arcavacata di Rende, Italy; (J.C.); (S.A.)
| | - Pasquale Longo
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.D.); (P.L.)
| |
Collapse
|
4
|
Comito M, Monguzzi R, Tagliapietra S, Palmisano G, Cravotto G. Towards Antibiotic Synthesis in Continuous-Flow Processes. Molecules 2023; 28:molecules28031421. [PMID: 36771086 PMCID: PMC9919330 DOI: 10.3390/molecules28031421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Continuous-flow chemistry has become a mainstream process and a notable trend among emerging technologies for drug synthesis. It is routinely used in academic and industrial laboratories to generate a wide variety of molecules and building blocks. The advantages it provides, in terms of safety, speed, cost efficiency and small-equipment footprint compared to analog batch processes, have been known for some time. What has become even more important in recent years is its compliance with the quality objectives that are required by drug-development protocols that integrate inline analysis and purification tools. There can be no doubt that worldwide government agencies have strongly encouraged the study and implementation of this innovative, sustainable and environmentally friendly technology. In this brief review, we list and evaluate the development and applications of continuous-flow processes for antibiotic synthesis. This work spans the period of 2012-2022 and highlights the main cases in which either active ingredients or their intermediates were produced under continuous flow. We hope that this manuscript will provide an overview of the field and a starting point for a deeper understanding of the impact of flow chemistry on the broad panorama of antibiotic synthesis.
Collapse
Affiliation(s)
- Marziale Comito
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
- Research and Development, ACS Dobfar SpA, Via Paullo 9, 20067 Tribiano, Italy
| | - Riccardo Monguzzi
- Research and Development, ACS Dobfar SpA, Via Paullo 9, 20067 Tribiano, Italy
| | - Silvia Tagliapietra
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Giovanni Palmisano
- Dipartimento di Scienza e Alta Tecnologia, University of Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
- Correspondence: ; Tel.: +39-011-670-7183
| |
Collapse
|
5
|
Chen H, Lu Q, An H, Li J, Shen S, Zheng X, Chen W, Wang L, Li J, Du Y, Wang Y, Liu X, Baumann M, Tacke M, Zou L, Wang J. The synergistic activity of SBC3 in combination with Ebselen against Escherichia coli infection. Front Pharmacol 2022; 13:1080281. [PMID: 36588729 PMCID: PMC9797518 DOI: 10.3389/fphar.2022.1080281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Escherichia coli ranks as the number one clinical isolate in the past years in China according to The China Antimicrobial Surveillance Network (CHINET), and its multidrug-resistant (MDR) pathogenic strains account for over 160 million cases of dysentery and one million deaths per year. Here, our work demonstrates that E. coli is highly sensitive to the synergistic combination of SBC3 [1,3-Dibenzyl-4,5-diphenyl-imidazol-2-ylidene silver (I) acetate] and Ebselen, which shows no synergistic toxicity on mammalian cells. The proposed mechanism for the synergistic antibacterial effect of SBC3 in combination with Ebselen is based on directly inhibiting E. coli thioredoxin reductase and rapidly depleting glutathione, resulting in the increase of reactive oxygen species that cause bacterial cell death. Furthermore, the bactericidal efficacy of SBC3 in combination with Ebselen has been confirmed in mild and acute peritonitis mice. In addition, the five most difficult to treat Gram-negative bacteria (including E. coli, Acinetobacter baumannii, Enterobacter cloacae, Klebsiella pneumoniae, and Pseudomonas aeruginosa) are also highly sensitive to a synergistic combination of SBC3 and Ebselen. Thus, SBC3 in combination with Ebselen has potential as a treatment for clinically important Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Hao Chen
- The Second People’s Hospital of China Three Gorges University, Yichang, Hubei, China,The Second People’s Hospital of Yichang, Yichang, Hubei, China
| | - Qianqian Lu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Haoyue An
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Juntong Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Shuchu Shen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Xi Zheng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Wei Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Lu Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Jihong Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Youqin Du
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Yueqing Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Xiaowen Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Marcus Baumann
- The School of Chemistry, University College Dublin, Belfield, Dublin, Ireland
| | - Matthias Tacke
- The School of Chemistry, University College Dublin, Belfield, Dublin, Ireland,*Correspondence: Lili Zou, ; Jun Wang, ; Matthias Tacke,
| | - Lili Zou
- The Second People’s Hospital of China Three Gorges University, Yichang, Hubei, China,The Second People’s Hospital of Yichang, Yichang, Hubei, China,Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,*Correspondence: Lili Zou, ; Jun Wang, ; Matthias Tacke,
| | - Jun Wang
- The People’s Hospital of China Three Gorges University, Yichang, Hubei, China,*Correspondence: Lili Zou, ; Jun Wang, ; Matthias Tacke,
| |
Collapse
|
7
|
Piatek M, O'Beirne C, Beato Z, Tacke M, Kavanagh K. Exposure of Candida parapsilosis to the silver(I) compound SBC3 induces alterations in the proteome and reduced virulence. Metallomics 2022; 14:mfac046. [PMID: 35751649 PMCID: PMC9348618 DOI: 10.1093/mtomcs/mfac046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/23/2022] [Indexed: 11/14/2022]
Abstract
The antimicrobial properties of silver have been exploited for many centuries and continue to gain interest in the fight against antimicrobial drug resistance. The broad-spectrum activity and low toxicity of silver have led to its incorporation into a wide range of novel antimicrobial agents, including N-heterocyclic carbene (NHC) complexes. The antimicrobial activity and in vivo efficacy of the NHC silver(I) acetate complex SBC3, derived from 1,3-dibenzyl-4,5-diphenylimidazol-2-ylidene (NHC*), have previously been demonstrated, although the mode(s) of action of SBC3 remains to be fully elucidated. Label-free quantitative proteomics was applied to analyse changes in protein abundance in the pathogenic yeast Candida parapsilosis in response to SBC3 treatment. An increased abundance of proteins associated with detoxification and drug efflux were indicative of a cell stress response, whilst significant decreases in proteins required for protein and amino acid biosynthesis offer potential insight into the growth-inhibitory mechanisms of SBC3. Guided by the proteomic findings and the prolific biofilm and adherence capabilities of C. parapsilosis, our studies have shown the potential of SBC3 in reducing adherence to epithelial cells and biofilm formation and hence decrease fungal virulence.
Collapse
Affiliation(s)
- Magdalena Piatek
- Department of Biology, SSPC Pharma Research Centre, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Cillian O'Beirne
- School of School of Chemistry, University College Dublin, Belfield, Stillorgan, Dublin 4, Ireland
| | - Zoe Beato
- School of School of Chemistry, University College Dublin, Belfield, Stillorgan, Dublin 4, Ireland
| | - Matthias Tacke
- School of School of Chemistry, University College Dublin, Belfield, Stillorgan, Dublin 4, Ireland
| | - Kevin Kavanagh
- Department of Biology, SSPC Pharma Research Centre, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
8
|
Antimicrobial Properties of Amino-Acid-Derived N-Heterocyclic Carbene Silver Complexes. Pharmaceutics 2022; 14:pharmaceutics14040748. [PMID: 35456582 PMCID: PMC9024828 DOI: 10.3390/pharmaceutics14040748] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Complexes {Ag[NHCMes,R]}n (R = H, 2a; Me, 2b and 2b’; iPr, 2c; iBu, 2d), were prepared by treatment of imidazolium precursor compounds [ImMes,R] (2-(3-mesityl-1H-imidazol-3-ium-1-yl)acetate, 1a, (S)-2-alkyl(3-mesityl-1H-imidazol-3-ium-1-yl)acetate, 1b–d, and (R)-2-methyl(3-mesityl-1H-imidazol-3-ium-1-yl)acetate, 1b’, with Ag2O under appropriate conditions. They were characterised by analytical, spectroscopic (IR, 1H, and 13C NMR and polarimetry), and X-ray methods (2a). In the solid state, 2a is a one-dimensional coordination polymer, in which the silver(I) cation is bonded to the carbene ligand and to the carboxylate group of a symmetry-related Ag[NHCMes,H] moiety. The coordination environment of the silver centre is well described by the DFT study of the dimeric model {Ag[NHCMes,H]}2. The antimicrobial properties of these complexes were evaluated versus Gram-negative bacteria E. coli and P. aeruginosa. From the observed MIC and MBC values (minimal inhibitory concentration and minimal bactericidal concentration, respectively), complex 2b’ showed the best antimicrobial properties (eutomer), which were significantly better than those of its enantiomeric derivative 2b (distomer). Additionally, analysis of MIC and MBC values of 2a–d reveal a clear structure–antimicrobial effect relationship. Antimicrobial activity decreases when the steric properties of the R alkyl group in {Ag[NHCMes,R]}n increase.
Collapse
|