1
|
Kryuchkova YV, Neshko AA, Gogoleva NE, Balkin AS, Safronova VI, Kargapolova KY, Shagimardanova EI, Gogolev YV, Burygin GL. Genomics and taxonomy of the glyphosate-degrading, copper-tolerant rhizospheric bacterium Achromobacter insolitus LCu2. Antonie Van Leeuwenhoek 2024; 117:105. [PMID: 39043973 DOI: 10.1007/s10482-024-01989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/15/2024] [Indexed: 07/25/2024]
Abstract
A rhizosphere strain, Achromobacter insolitus LCu2, was isolated from alfalfa (Medicago sativa L.) roots. It was able to degrade of 50% glyphosate as the sole phosphorus source, and was found resistant to 10 mM copper (II) chloride, and 5 mM glyphosate-copper complexes. Inoculation of alfalfa seedlings and potato microplants with strain LCu2 promoted plant growth by 30-50%. In inoculated plants, the toxicity of the glyphosate-copper complexes to alfalfa seedlings was decreased, as compared with the noninoculated controls. The genome of A. insolitus LCu2 consisted of one circular chromosome (6,428,890 bp) and encoded 5843 protein genes and 76 RNA genes. Polyphasic taxonomic analysis showed that A. insolitus LCu2 was closely related to A. insolitus DSM23807T on the basis of the average nucleotide identity of the genomes of 22 type strains and the multilocus sequence analysis. Genome analysis revealed genes putatively responsible for (1) plant growth promotion (osmolyte, siderophore, and 1-aminocyclopropane-1-carboxylate deaminase biosynthesis and auxin metabolism); (2) degradation of organophosphonates (glyphosate oxidoreductase and multiple phn clusters responsible for the transport, regulation and C-P lyase cleavage of phosphonates); and (3) tolerance to copper and other heavy metals, effected by the CopAB-CueO system, responsible for the oxidation of copper (I) in the periplasm, and by the efflux Cus system. The putative catabolic pathways involved in the breakdown of phosphonates are predicted. A. insolitus LCu2 is promising in the production of crops and the remediation of soils contaminated with organophosphonates and heavy metals.
Collapse
Affiliation(s)
- Yelena V Kryuchkova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov, Russia, 410049.
| | - Alexandra A Neshko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov, Russia, 410049
| | - Natalia E Gogoleva
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, 11 Pionerskaya Street, Orenburg, Russia, 460000
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, Russia, 420111
| | - Alexander S Balkin
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, 11 Pionerskaya Street, Orenburg, Russia, 460000
| | - Vera I Safronova
- All-Russia Research Institute for Agricultural Microbiology, 3 Podbelsky Shausse, Pushkin 8, St. Petersburg, Russia, 196608
| | - Kristina Yu Kargapolova
- Faculty of Agronomy, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, 4 Pyotr Stolypin Avenue, Saratov, Russia, 410012
| | - Elena I Shagimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, Russia, 420111
- Moscow Clinical Scientific Center named after Loginov MHD, 1 Novogireevskaya Street, Moscow, Russia, 111123
| | - Yuri V Gogolev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, Russia, 420111
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, Kazan, Russia, 420111
| | - Gennady L Burygin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov, Russia, 410049
- Faculty of Agronomy, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, 4 Pyotr Stolypin Avenue, Saratov, Russia, 410012
- Institute of Chemistry, Chernyshevsky Saratov State University, 83 Astrakhanskaya Street, Saratov, Russia, 410012
| |
Collapse
|
2
|
Chen LX, Yano J. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chem Rev 2024; 124:5421-5469. [PMID: 38663009 DOI: 10.1021/acs.chemrev.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Utilization of renewable energies for catalytically generating value-added chemicals is highly desirable in this era of rising energy demands and climate change impacts. Artificial photosynthetic systems or photocatalysts utilize light to convert abundant CO2, H2O, and O2 to fuels, such as carbohydrates and hydrogen, thus converting light energy to storable chemical resources. The emergence of intense X-ray pulses from synchrotrons, ultrafast X-ray pulses from X-ray free electron lasers, and table-top laser-driven sources over the past decades opens new frontiers in deciphering photoinduced catalytic reaction mechanisms on the multiple temporal and spatial scales. Operando X-ray spectroscopic methods offer a new set of electronic transitions in probing the oxidation states, coordinating geometry, and spin states of the metal catalytic center and photosensitizers with unprecedented energy and time resolution. Operando X-ray scattering methods enable previously elusive reaction steps to be characterized on different length scales and time scales. The methodological progress and their application examples collected in this review will offer a glimpse into the accomplishments and current state in deciphering reaction mechanisms for both natural and synthetic systems. Looking forward, there are still many challenges and opportunities at the frontier of catalytic research that will require further advancement of the characterization techniques.
Collapse
Affiliation(s)
- Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junko Yano
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Rossotti M, Arceri D, Mansuelle P, Bornet O, Durand A, Ouchane S, Launay H, Dorlet P. The green cupredoxin CopI is a multicopper protein able to oxidize Cu(I). J Inorg Biochem 2024; 254:112503. [PMID: 38364337 DOI: 10.1016/j.jinorgbio.2024.112503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Anthropogenic activities in agriculture and health use the antimicrobial properties of copper. This has led to copper accumulation in the environment and contributed to the emergence of copper resistant microorganisms. Understanding bacterial copper homeostasis diversity is therefore highly relevant since it could provide valuable targets for novel antimicrobial treatments. The periplasmic CopI protein is a monodomain cupredoxin comprising several copper binding sites and is directly involved in copper resistance in bacteria. However, its structure and mechanism of action are yet to be determined. To study the different binding sites for cupric and cuprous ions and to understand their possible interactions, we have used mutants of the putative copper binding modules of CopI and spectroscopic methods to characterize their properties. We show that CopI is able to bind a cuprous ion in its central histidine/methionine-rich region and oxidize it thanks to its cupredoxin center. The resulting cupric ion can bind to a third site at the N-terminus of the protein. Nuclear magnetic resonance spectroscopy revealed that the central histidine/methionine-rich region exhibits a dynamic behavior and interacts with the cupredoxin binding region. CopI is therefore likely to participate in copper resistance by detoxifying the cuprous ions from the periplasm.
Collapse
Affiliation(s)
- Melanie Rossotti
- CNRS, Aix Marseille Univ, BIP, Institut de Microbiologie de la Méditerranée (IMM), Marseille, France
| | - Diletta Arceri
- CNRS, Aix Marseille Univ, BIP, Institut de Microbiologie de la Méditerranée (IMM), Marseille, France
| | - Pascal Mansuelle
- CNRS, FR3479, Institut de Microbiologie de la Méditerranée (IMM), Plateforme Protéomique, Marseille Protéomique (MaP), IbiSA Labelled, Aix Marseille Univ, Marseille, France
| | - Olivier Bornet
- CNRS, Aix Marseille Univ, Institut de Microbiologie de la Méditerranée (IMM), Marseille, France
| | - Anne Durand
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Soufian Ouchane
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Hélène Launay
- CNRS, Aix Marseille Univ, BIP, Institut de Microbiologie de la Méditerranée (IMM), Marseille, France
| | - Pierre Dorlet
- CNRS, Aix Marseille Univ, BIP, Institut de Microbiologie de la Méditerranée (IMM), Marseille, France.
| |
Collapse
|
4
|
Roger M, Leone P, Blackburn NJ, Horrell S, Chicano TM, Biaso F, Giudici-Orticoni MT, Abriata LA, Hura GL, Hough MA, Sciara G, Ilbert M. Beyond the coupled distortion model: structural analysis of the single domain cupredoxin AcoP, a green mononuclear copper centre with original features. Dalton Trans 2024; 53:1794-1808. [PMID: 38170898 PMCID: PMC10804444 DOI: 10.1039/d3dt03372d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Cupredoxins are widely occurring copper-binding proteins with a typical Greek-key beta barrel fold. They are generally described as electron carriers that rely on a T1 copper centre coordinated by four ligands provided by the folded polypeptide. The discovery of novel cupredoxins demonstrates the high diversity of this family, with variations in terms of copper-binding ligands, copper centre geometry, redox potential, as well as biological function. AcoP is a periplasmic cupredoxin belonging to the iron respiratory chain of the acidophilic bacterium Acidithiobacillus ferrooxidans. AcoP presents original features, including high resistance to acidic pH and a constrained green-type copper centre of high redox potential. To understand the unique properties of AcoP, we undertook structural and biophysical characterization of wild-type AcoP and of two Cu-ligand mutants (H166A and M171A). The crystallographic structures, including native reduced AcoP at 1.65 Å resolution, unveil a typical cupredoxin fold. The presence of extended loops, never observed in previously characterized cupredoxins, might account for the interaction of AcoP with physiological partners. The Cu-ligand distances, determined by both X-ray diffraction and EXAFS, show that the AcoP metal centre seems to present both T1 and T1.5 features, in turn suggesting that AcoP might not fit well to the coupled distortion model. The crystal structures of two AcoP mutants confirm that the active centre of AcoP is highly constrained. Comparative analysis with other cupredoxins of known structures, suggests that in AcoP the second coordination sphere might be an important determinant of active centre rigidity due to the presence of an extensive hydrogen bond network. Finally, we show that other cupredoxins do not perfectly follow the coupled distortion model as well, raising the suspicion that further alternative models to describe copper centre geometries need to be developed, while the importance of rack-induced contributions should not be underestimated.
Collapse
Affiliation(s)
- Magali Roger
- CNRS, Aix-Marseille University, Bioenergetic and Protein Engineering Laboratory, BIP UMR 7281, Mediterranean Institute of Microbiology, 13009 Marseille, France.
| | - Philippe Leone
- CNRS, Aix-Marseille University, Laboratoire d'Ingénierie des Systèmes Macromoléculaires, LISM UMR7255, 13009 Marseille, France
| | - Ninian J Blackburn
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Sam Horrell
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Tadeo Moreno Chicano
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Frédéric Biaso
- CNRS, Aix-Marseille University, Bioenergetic and Protein Engineering Laboratory, BIP UMR 7281, Mediterranean Institute of Microbiology, 13009 Marseille, France.
| | - Marie-Thérèse Giudici-Orticoni
- CNRS, Aix-Marseille University, Bioenergetic and Protein Engineering Laboratory, BIP UMR 7281, Mediterranean Institute of Microbiology, 13009 Marseille, France.
| | - Luciano A Abriata
- Laboratory for Biomolecular Modeling and Protein Purification and Structure Core Facility, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Greg L Hura
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Michael A Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Giuliano Sciara
- CNRS, Aix-Marseille University, Bioenergetic and Protein Engineering Laboratory, BIP UMR 7281, Mediterranean Institute of Microbiology, 13009 Marseille, France.
- Aix Marseille Univ, INRAE, BBF UMR1163, Biodiversité et Biotechnologie Fongiques, 13288 Marseille, France
| | - Marianne Ilbert
- CNRS, Aix-Marseille University, Bioenergetic and Protein Engineering Laboratory, BIP UMR 7281, Mediterranean Institute of Microbiology, 13009 Marseille, France.
| |
Collapse
|
5
|
Structural Analyses of the Multicopper Site of CopG Support a Role as a Redox Enzyme. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1414:97-121. [PMID: 36637718 DOI: 10.1007/5584_2022_753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metal ions can be both essential components of cells as well as potential toxins if present in excess. Organisms utilize a variety of protein systems to maintain the concentration of metal ions within the appropriate range for cellular function, and to avoid concentrations where cellular damage can occur. In bacteria, numerous proteins contribute to copper homeostasis, including copper transporters, chelators, and redox enzymes. The genes that encode these proteins are often found in clusters, thus providing modular components that work together to achieve homeostasis. A better understanding of how these components function and cooperate to achieve metal ion resistance is needed, given the extensive use of metal ions, including copper, as broad-spectrum biocides in a variety of clinical and environmental settings. The copG gene is a common component of such copper resistance clusters, but its contribution to copper resistance is not well understood. In this review the available information about the CopG protein encoded by this gene is summarized. Comparison of the recent structure to diverse copper-containing metallochaperones, metalloenzymes, and electron transfer proteins suggests that CopG is a redox enzyme that uses multiple copper ions as active site redox cofactors to act on additional copper ion substrates. Mechanisms for both oxidase and reductase activity are proposed, and the biological advantages that these activities can contribute in conjunction with existing systems are described.
Collapse
|
6
|
Guo J, Fisher OS. Orchestrating copper binding: structure and variations on the cupredoxin fold. J Biol Inorg Chem 2022; 27:529-540. [PMID: 35994119 DOI: 10.1007/s00775-022-01955-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/07/2022] [Indexed: 11/26/2022]
Abstract
A large number of copper binding proteins coordinate metal ions using a shared three-dimensional fold called the cupredoxin domain. This domain was originally identified in Type 1 "blue copper" centers but has since proven to be a common domain architecture within an increasingly large and diverse group of copper binding domains. The cupredoxin fold has a number of qualities that make it ideal for coordinating Cu ions for purposes including electron transfer, enzyme catalysis, assembly of other copper sites, and copper sequestration. The structural core does not undergo major conformational changes upon metal binding, but variations within the coordination environment of the metal site confer a range of Cu-binding affinities, reduction potentials, and spectroscopic properties. Here, we discuss these proteins from a structural perspective, examining how variations within the overall cupredoxin fold and metal binding sites are linked to distinct spectroscopic properties and biological functions. Expanding far beyond the blue copper proteins, cupredoxin domains are used by a growing number of proteins and enzymes as a means of binding copper ions, with many more likely remaining to be identified.
Collapse
Affiliation(s)
- Jing Guo
- Department of Chemistry, Lehigh University, Bethlehem, PA, USA
| | - Oriana S Fisher
- Department of Chemistry, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|