1
|
Dergai O, Hernandez N. How to Recruit the Correct RNA Polymerase? Lessons from snRNA Genes. Trends Genet 2019; 35:457-469. [PMID: 31040056 DOI: 10.1016/j.tig.2019.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 01/03/2023]
Abstract
Nuclear eukaryotic genomes are transcribed by three related RNA polymerases (Pol), which transcribe distinct gene sets. Specific Pol recruitment is achieved through selective core promoter recognition by basal transcription factors (TFs). Transcription by an inappropriate Pol appears to be rare and to generate mostly unstable products. A collection of short noncoding RNA genes [for example, small nuclear RNA (snRNA) or 7SK RNA genes], which play essential roles in processes such as maturation of RNA molecules or control of Pol II transcription elongation, possess highly similar core promoters, and yet are transcribed for some by Pol II and for others by Pol III as a result of small promoter differences. Here we discuss the mechanisms of selective Pol recruitment to such promoters.
Collapse
Affiliation(s)
- Oleksandr Dergai
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Bannister SC, Wise TG, Cahill DM, Doran TJ. Comparison of chicken 7SK and U6 RNA polymerase III promoters for short hairpin RNA expression. BMC Biotechnol 2007; 7:79. [PMID: 18021456 PMCID: PMC2235858 DOI: 10.1186/1472-6750-7-79] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 11/19/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA polymerase III (pol III) type 3 promoters such as U6 or 7SK are commonly used to express short-hairpin RNA (shRNA) effectors for RNA interference (RNAi). To extend the use of RNAi for studies of development using the chicken as a model system, we have developed a system for expressing shRNAs using the chicken 7SK (ch7SK) promoter. RESULTS We identified and characterised the ch7SK promoter sequence upstream of the full-length 7SK small nuclear RNA (snRNA) sequence in the chicken genome and used this to construct vectors to express shRNAs targeting enhanced green fluorescent protein (EGFP). We transfected chicken DF-1 cells with these constructs and found that anti-EGFP-shRNAs (shEGFP) expressed from the ch7SK promoter could induce efficient knockdown of EGFP expression. We further compared the efficiency of ch7SK-directed knockdown to that of chicken U6 (cU6) promoters and found that the efficiency of the ch7SK promoter was not greater than, but comparable to the efficiency of cU6 promoters. CONCLUSION In this study we have demonstrated that the ch7SK promoter can express shRNAs capable of mediating efficient RNAi in a chicken cell line. However, our finding that RNAi driven by the ch7SK promoter is not more efficient than cU6 promoters contrasts previous comparisons of mammalian U6 and 7SK promoters. Since the ch7SK promoter is the first non-mammalian vertebrate 7SK promoter to be characterised, this finding may be helpful in understanding the divergence of pol III promoter activities between mammalian and non-mammalian vertebrates. This aside, our results clearly indicate that the ch7SK promoter is an efficient alternative to U6-based shRNA expression systems for inducing efficient RNAi activity in chicken cells.
Collapse
Affiliation(s)
- Stephanie C Bannister
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong 3220, Australia
- School of Life and Environmental Sciences, Deakin University, Geelong 3217, Australia
| | - Terry G Wise
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong 3220, Australia
| | - David M Cahill
- School of Life and Environmental Sciences, Deakin University, Geelong 3217, Australia
| | - Timothy J Doran
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong 3220, Australia
| |
Collapse
|
3
|
Hernandez G, Valafar F, Stumph WE. Insect small nuclear RNA gene promoters evolve rapidly yet retain conserved features involved in determining promoter activity and RNA polymerase specificity. Nucleic Acids Res 2006; 35:21-34. [PMID: 17148477 PMCID: PMC1761439 DOI: 10.1093/nar/gkl982] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In animals, most small nuclear RNAs (snRNAs) are synthesized by RNA polymerase II (Pol II), but U6 snRNA is synthesized by RNA polymerase III (Pol III). In Drosophila melanogaster, the promoters for the Pol II-transcribed snRNA genes consist of approximately 21 bp PSEA and approximately 8 bp PSEB. U6 genes utilize a PSEA but have a TATA box instead of the PSEB. The PSEAs of the two classes of genes bind the same protein complex, DmSNAPc. However, the PSEAs that recruit Pol II and Pol III differ in sequence at a few nucleotide positions that play an important role in determining RNA polymerase specificity. We have now performed a bioinformatic analysis to examine the conservation and divergence of the snRNA gene promoter elements in other species of insects. The 5' half of the PSEA is well-conserved, but the 3' half is divergent. Moreover, within each species positions exist where the PSEAs of the Pol III-transcribed genes differ from those of the Pol II-transcribed genes. Interestingly, the specific positions vary among species. Nevertheless, we speculate that these nucleotide differences within the 3' half of the PSEA act similarly to induce conformational alterations in DNA-bound SNAPc that result in RNA polymerase specificity.
Collapse
Affiliation(s)
- Genaro Hernandez
- Department of Chemistry and Biochemistry, San Diego State University5500 Campanile Drive, San Diego, CA 92182-1030, USA
- Department of Computer Science, San Diego State University5500 Campanile Drive, San Diego, CA 92182-1030, USA
| | - Faramarz Valafar
- Department of Computer Science, San Diego State University5500 Campanile Drive, San Diego, CA 92182-1030, USA
| | - William E. Stumph
- Department of Chemistry and Biochemistry, San Diego State University5500 Campanile Drive, San Diego, CA 92182-1030, USA
- To whom correspondence should be addressed. Tel: +1 619 594 5575; Fax: +1 619 594-4634;
| |
Collapse
|
4
|
Cheung CH, Fan QN, Stumph WE. Structural requirements for the functional activity of a U1 snRNA gene enhancer. Nucleic Acids Res 1993; 21:281-7. [PMID: 8441636 PMCID: PMC309104 DOI: 10.1093/nar/21.2.281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The transcriptional enhancer of a chicken U1 small nuclear RNA (snRNA) gene contains a GC-box, an octamer motif, and an SPH motif that are recognized by the transcription factors Sp1, Oct-1, and SBF respectively. Previous work indicated that the octamer and the SPH motifs were both required for U1 gene enhancer activity in frog oocytes when the U1 gene was coinjected with a competing snRNA gene template. Here we show that neither two copies of the octamer motif, nor two copies of the SPH motif, can effectively substitute for the natural combination of octamer and SPH. Furthermore, neither the octamer nor the SPH motif (in the absence of the other) functioned efficiently in combination with a GC-box. Alteration of the spacing between the octamer and SPH motifs also reduced U1 template activity. Several potential cis-acting elements other than the SPH motif, with one possible exception among those tested, were unable to cooperate with the octamer motif to effectively enhance U1 gene expression. These results indicate that rather stringent structural requirements exist with respect to the essential cis-acting motifs present in the U1 enhancer, possibly reflecting the unique properties of the transcription complexes assembled on snRNA gene promoters.
Collapse
Affiliation(s)
- C H Cheung
- Department of Chemistry, San Diego State University, CA 92182
| | | | | |
Collapse
|
5
|
Kunkel G, Danzeiser D. Formation of a template committed complex on the promoter of a gene for the U6 small nuclear RNA from the human requires multiple sequence elements, including the distal region. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49705-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
6
|
Myslinski E, Krol A, Carbon P. Optimal tRNA((Ser)Sec) gene activity requires an upstream SPH motif. Nucleic Acids Res 1992; 20:203-9. [PMID: 1311068 PMCID: PMC310355 DOI: 10.1093/nar/20.2.203] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The X. laevis tRNA((Ser)Sec) gene is different from the other tRNA genes in that its promoter contains two external elements, a PSE and a TATA box functionally equivalent to those of the U6 snRNA gene. Of the two internal promoters governing classical tRNA gene transcription, only subsists the internal B box. In this report, we show that the tRNA((Ser)Sec) contains in addition an activator element (AE) which we have mapped by extensive mutagenesis. Activation is only dependent on a 15 bp fragment residing between -209 and -195 and containing an SPH motif. In vitro, this element forms a complex with a nuclear protein which is different from the TEF-1 transcriptional activator that binds the SV40 Sph motifs. This AE is versatile since it shows capacity of activating a variety of genes in vivo, including U1 and U6 snRNAs and HSV thymidine kinase. Unexpectedly for an snRNA-related gene, the tRNA((Ser)Sec) is deprived of octamer or octamer-like motifs. The X.laevis tRNA((Ser)Sec) gene represents the first example of a Pol III snRNA-type gene whose activation of transcription is completely octamer-independent.
Collapse
Affiliation(s)
- E Myslinski
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | |
Collapse
|
7
|
Miyake JH, Botros IW, Stumph WE. Differential protein-DNA interactions at the promoter and enhancer regions of developmentally regulated U4 snRNA genes. Gene Expr 1992; 2:161-73. [PMID: 1633438 PMCID: PMC6057390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/1992] [Accepted: 02/26/1992] [Indexed: 12/28/2022]
Abstract
In the chicken genome there are two closely-linked genes, U4B and U4X, that code for different sequence variants of U4 small nuclear RNA (snRNA). Both genes are expressed with nearly equal efficiency in the early embryo, but U4X gene expression is specifically down-regulated relative to U4B as development proceeds. At the present time, little is known about the mechanisms that regulate differential expression of snRNA genes. We have now identified a novel chicken factor, PPBF, that binds sequence-specifically in vitro to the proximal regulatory region of the U4X gene, but not to the proximal region of the U4B gene. PPBF is itself regulated during development and may therefore be a key factor involved in differentially regulating U4X gene transcription relative to U4B. The U4X and U4B enhancers contain distinct sequence variants of two essential motifs (octamer and SPH). The Oct-1 transcription factor binds with similar affinities to both the U4X and U4B octamer motifs. However, a second essential snRNA enhancer-binding protein, SBF, has a 20- to 30-fold lower affinity for the SPH motif in the U4X enhancer than for the homologous SPH motif in the U4B enhancer. A potential role therefore exists for SBF, as well as PPBF, in the preferential down-regulation of the U4X RNA gene during chicken development.
Collapse
Affiliation(s)
- J H Miyake
- Department of Chemistry, San Diego State University, CA 92182-0328
| | | | | |
Collapse
|
8
|
Ach RA, Weiner AM. Cooperation between CCAAT and octamer motifs in the distal sequence element of the rat U3 small nucleolar RNA promoter. Nucleic Acids Res 1991; 19:4209-18. [PMID: 1651481 PMCID: PMC328564 DOI: 10.1093/nar/19.15.4209] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mammalian U3 small nucleolar RNA promoters possess a highly conserved distal sequence element (DSE) consisting of CCAAT and octamer motifs separated by 11-12 base pairs. We show here that both motifs are required for transcription of a rat U3D gene in Xenopus oocytes. Deletion of the CCAAT motif leaves residual DSE activity, while removal of the octamer motif does not. Changing the conserved spacing between the two motifs generally inhibits transcription less than deletion of either motif, but increasing the spacing between the motifs by one helical turn of DNA preserves normal levels of transcription. We also show that the rat U3D DSE is functionally equivalent to the human U2 snRNA DSE, which consists of adjacent GC and octamer motifs, and that elements from the Herpes Simplex Virus thymidine kinase promoter can replace part or all of the U3D DSE. These data are apparently paradoxical; despite high evolutionary conservation, the U3 DSE is relatively insensitive to mutation, and other upstream motifs are also able to drive transcription from the U3 basal promoter. We suggest that the conserved structure of the U3 DSE may be required for regulation rather than efficiency of U3 transcription.
Collapse
Affiliation(s)
- R A Ach
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06510
| | | |
Collapse
|
9
|
Zamrod Z, Stumph WE. U4B snRNA gene enhancer activity requires functional octamer and SPH motifs. Nucleic Acids Res 1990; 18:7323-30. [PMID: 2259626 PMCID: PMC332869 DOI: 10.1093/nar/18.24.7323] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Expression of the chicken U4B small nuclear RNA (snRNA) gene is stimulated by a transcriptional enhancer located approximately 190-227 base pairs upstream of the transcription start site. This enhancer is composed of at least two functional motifs: an octamer (binding site for Oct-1) and an SPH motif. We now report that these two motifs functionally cooperate to stimulate U4B snRNA gene expression, and both are required for the formation of a stable transcription complex. Expression in frog oocytes of 24 different point mutant constructions indicates that the functional SPH motif is at least 15 base pairs in length. It is a recognition site for a sequence specific DNA-binding protein, termed SBF, purified from chicken embryonic nuclear extracts. The ability of the mutant SPH motif constructions to be recognized by SBF in vitro correlates with their transcriptional activities, suggesting that SBF mediates the stimulatory effect of the U4B SPH motif. These results are similar to our recent findings on the chicken U1 gene enhancer, which also contains adjacent binding sites for Oct-1 and SBF. These studies, together with evolutionary considerations and sequence comparisons among snRNA gene enhancers, suggest that cooperativity between octamer and SPH motifs could be a widely-employed mechanism for generating vertebrate snRNA gene enhancer activity.
Collapse
Affiliation(s)
- Z Zamrod
- Department of Chemistry, San Diego State University, CA 92182
| | | |
Collapse
|
10
|
McNamara KJ, Stumph WE. Site-directed mutational analysis of a U4 small nuclear RNA gene proximal sequence element. Localization and identification of functional nucleotides. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38731-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
11
|
Octamer and SPH motifs in the U1 enhancer cooperate to activate U1 RNA gene expression. Mol Cell Biol 1990. [PMID: 2294407 DOI: 10.1128/mcb.10.1.341] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional enhancer of a chicken U1 small nuclear RNA gene has been shown to extend over approximately 50 base pairs of DNA sequence located 180 to 230 base pairs upstream of the U1 transcription initiation site. It is composed of multiple functional motifs, including a GC box, an octamer motif, and a novel SPH motif. The contributions of these three distinct sequence motifs to enhancer function were studied with an oocyte expression assay. Under noncompetitive conditions in oocytes, the SPH motif is capable of stimulating U1 RNA transcription in the absence of the other functional motifs, whereas the octamer motif by itself lacks this ability. However, to form a transcription complex that is stable to challenge by a second competing small nuclear RNA transcription unit, both the octamer and SPH motifs are required. The GC box, although required for full enhancer activity, is not essential for stable complex formation in oocytes. Site-directed mutagenesis was used to study the DNA sequence requirements of the SPH motif. Functional activity of the SPH motif is spread throughout a 24-base-pair region 3' of the octamer but is particularly dependent upon sequences near an SphI restriction site located at the center of the SPH motif. Using embryonic chicken tissue as a source material, we identified and partially purified a factor, termed SBF, that binds sequence specifically to the SPH motif of the U1 enhancer. The ability of this factor to recognize and bind to mutant enhancer DNA fragments in vitro correlates with the functional activity of the corresponding enhancer sequences in vivo.
Collapse
|
12
|
Roebuck KA, Szeto DP, Green KP, Fan QN, Stumph WE. Octamer and SPH motifs in the U1 enhancer cooperate to activate U1 RNA gene expression. Mol Cell Biol 1990; 10:341-52. [PMID: 2294407 PMCID: PMC360750 DOI: 10.1128/mcb.10.1.341-352.1990] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The transcriptional enhancer of a chicken U1 small nuclear RNA gene has been shown to extend over approximately 50 base pairs of DNA sequence located 180 to 230 base pairs upstream of the U1 transcription initiation site. It is composed of multiple functional motifs, including a GC box, an octamer motif, and a novel SPH motif. The contributions of these three distinct sequence motifs to enhancer function were studied with an oocyte expression assay. Under noncompetitive conditions in oocytes, the SPH motif is capable of stimulating U1 RNA transcription in the absence of the other functional motifs, whereas the octamer motif by itself lacks this ability. However, to form a transcription complex that is stable to challenge by a second competing small nuclear RNA transcription unit, both the octamer and SPH motifs are required. The GC box, although required for full enhancer activity, is not essential for stable complex formation in oocytes. Site-directed mutagenesis was used to study the DNA sequence requirements of the SPH motif. Functional activity of the SPH motif is spread throughout a 24-base-pair region 3' of the octamer but is particularly dependent upon sequences near an SphI restriction site located at the center of the SPH motif. Using embryonic chicken tissue as a source material, we identified and partially purified a factor, termed SBF, that binds sequence specifically to the SPH motif of the U1 enhancer. The ability of this factor to recognize and bind to mutant enhancer DNA fragments in vitro correlates with the functional activity of the corresponding enhancer sequences in vivo.
Collapse
Affiliation(s)
- K A Roebuck
- Department of Chemistry and Molecular Biology Institute, San Diego State University, California 92182-0328
| | | | | | | | | |
Collapse
|
13
|
Janson L, Weller P, Pettersson U. Nuclear factor I can functionally replace transcription factor Sp1 in a U2 small nuclear RNA gene enhancer. J Mol Biol 1989; 205:387-96. [PMID: 2926813 DOI: 10.1016/0022-2836(89)90349-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Polymerase II transcription of a human gene for the small nuclear RNA U2 is dependent on two different promoter elements: a TATA-equivalent proximal sequence element and a distal enhancer element, which has been shown to contain Sp1- and octamer-binding sites. We have investigated the functional interplay between these transcription factor-binding sites of the enhancer, following transfection of U2 maxigene constructions into HeLa cells. There is a functional non-additive co-operation between the octamer-binding factor and Sp1, which is not dependent on the evolutionally conserved steric arrangement of these binding sites. We demonstrate that the conserved Sp1-binding site of the U2 enhancer can be fully substituted by a nuclear factor I (NFI) binding site, and that the octamer-binding factor functions in stimulating transcription in conjunction with either Sp1 or NFI. Since the octamer-binding factor is most probably the same protein as nuclear factor III (NFIII), the results imply that the NFI/NFIII complex, involved in adenovirus DNA replication, also can function as an efficient activator of transcription.
Collapse
Affiliation(s)
- L Janson
- Department of Medical Genetics, Uppsala University, Biomedical Center, Sweden
| | | | | |
Collapse
|
14
|
|
15
|
Weller P, Bark C, Janson L, Pettersson U. Transcription analysis of a human U4C gene: involvement of transcription factors novel to snRNA gene expression. Genes Dev 1988; 2:1389-99. [PMID: 2850259 DOI: 10.1101/gad.2.11.1389] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have investigated the promoter requirements for in vivo transcription of a human U4C snRNA gene following transfection into HeLa cells. Two elements required for maximal U4C transcription were identified. The first, located upstream of -50, provides a basal level of transcription 2-3% of the full activity, and probably corresponds to the previously identified snRNA gene proximal element. The distal element, centered around -220, acts as a transcriptional enhancer and contains motifs for three previously recognized transcription factors: the octamer-binding protein, NF-A, which binds to motifs in the distal elements of other snRNA genes, and two factors not previously shown to be involved in snRNA gene transcription, cAMP response element binding protein (CREB) and AP-2. The octamer and putative AP-2 motifs are required for maximal transcription of the U4C gene. Specific binding of NF-A and CREB to the motifs in the distal element has been shown in vitro by DNase I and DMS methylation protection footprint competition analyses using HeLa nuclear extracts. The presence of a binding motif for the inducible factor CREB, together with the transcriptional requirement for the putative AP-2 motif, suggests a means by which expression of snRNA genes might be regulated.
Collapse
Affiliation(s)
- P Weller
- Department of Medical Genetics, Biomedical Center, Uppsala, Sweden
| | | | | | | |
Collapse
|