1
|
Nudler E. Transcription-coupled global genomic repair in E. coli. Trends Biochem Sci 2023; 48:873-882. [PMID: 37558547 DOI: 10.1016/j.tibs.2023.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
The nucleotide excision repair (NER) pathway removes helix-distorting lesions from DNA in all organisms. Escherichia coli has long been a model for understanding NER, which is traditionally divided into major and minor subpathways known as global genome repair (GGR) and transcription-coupled repair (TCR), respectively. TCR has been assumed to be mediated exclusively by Mfd, a DNA translocase of minimal NER phenotype. This review summarizes the evidence that shaped the traditional view of NER in bacteria, and reviews data supporting a new model in which GGR and TCR are inseparable. In this new model, RNA polymerase serves both as the essential primary sensor of bulky DNA lesions genome-wide and as the delivery platform for the assembly of functional NER complexes in living cells.
Collapse
Affiliation(s)
- Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
2
|
Erlandson A, Gade P, Menikpurage IP, Kim CY, Mera PE. The UvrA-like protein Ecm16 requires ATPase activity to render resistance against echinomycin. Mol Microbiol 2022; 117:1434-1446. [PMID: 35534931 PMCID: PMC9328131 DOI: 10.1111/mmi.14918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 12/02/2022]
Abstract
Bacteria use various strategies to become antibiotic resistant. The molecular details of these strategies are not fully understood. We can increase our understanding by investigating the same strategies found in antibiotic‐producing bacteria. In this work, we characterize the self‐resistance protein Ecm16 encoded by echinomycin‐producing bacteria. Ecm16 is a structural homolog of the nucleotide excision repair protein UvrA. Expression of ecm16 in the heterologous system Escherichia coli was sufficient to render resistance against echinomycin. Ecm16 binds DNA (double‐stranded and single‐stranded) using a nucleotide‐independent binding mode. Ecm16’s binding affinity for DNA increased by 1.7‐fold when the DNA is intercalated with echinomycin. Ecm16 can render resistance against echinomycin toxicity independently of the nucleotide excision repair system. Similar to UvrA, Ecm16 has ATPase activity, and this activity is essential for Ecm16’s ability to render echinomycin resistance. Notably, UvrA and Ecm16 were unable to complement each other's function. Together, our findings identify new mechanistic details of how a refurbished DNA repair protein Ecm16 can specifically render resistance to the DNA intercalator echinomycin.
Collapse
Affiliation(s)
- Amanda Erlandson
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Molecular Biology Program, New Mexico State University, Las Cruces, NM, USA
| | - Priyanka Gade
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, USA
| | - Inoka P Menikpurage
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chu-Young Kim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, USA.,Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, USA
| | - Paola E Mera
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
3
|
Kraithong T, Hartley S, Jeruzalmi D, Pakotiprapha D. A Peek Inside the Machines of Bacterial Nucleotide Excision Repair. Int J Mol Sci 2021; 22:ijms22020952. [PMID: 33477956 PMCID: PMC7835731 DOI: 10.3390/ijms22020952] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Double stranded DNA (dsDNA), the repository of genetic information in bacteria, archaea and eukaryotes, exhibits a surprising instability in the intracellular environment; this fragility is exacerbated by exogenous agents, such as ultraviolet radiation. To protect themselves against the severe consequences of DNA damage, cells have evolved at least six distinct DNA repair pathways. Here, we review recent key findings of studies aimed at understanding one of these pathways: bacterial nucleotide excision repair (NER). This pathway operates in two modes: a global genome repair (GGR) pathway and a pathway that closely interfaces with transcription by RNA polymerase called transcription-coupled repair (TCR). Below, we discuss the architecture of key proteins in bacterial NER and recent biochemical, structural and single-molecule studies that shed light on the lesion recognition steps of both the GGR and the TCR sub-pathways. Although a great deal has been learned about both of these sub-pathways, several important questions, including damage discrimination, roles of ATP and the orchestration of protein binding and conformation switching, remain to be addressed.
Collapse
Affiliation(s)
- Thanyalak Kraithong
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Silas Hartley
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA;
- Doctor of Philosophy Programs in Biochemistry, Biology and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA;
- Doctor of Philosophy Programs in Biochemistry, Biology and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Correspondence: (D.J.); (D.P.)
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (D.J.); (D.P.)
| |
Collapse
|
4
|
Kraithong T, Sucharitakul J, Buranachai C, Jeruzalmi D, Chaiyen P, Pakotiprapha D. Real-time investigation of the roles of ATP hydrolysis by UvrA and UvrB during DNA damage recognition in nucleotide excision repair. DNA Repair (Amst) 2020; 97:103024. [PMID: 33302090 DOI: 10.1016/j.dnarep.2020.103024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 10/22/2022]
Abstract
Nucleotide excision repair (NER) stands out among other DNA repair systems for its ability to process a diverse set of unrelated DNA lesions. In bacteria, NER damage detection is orchestrated by the UvrA and UvrB proteins, which form the UvrA2-UvrB2 (UvrAB) damage sensing complex. The highly versatile damage recognition is accomplished in two ATP-dependent steps. In the first step, the UvrAB complex samples the DNA in search of lesion. Subsequently, the presence of DNA damage is verified within the UvrB-DNA complex after UvrA has dissociated. Although the mechanism of bacterial NER damage detection has been extensively investigated, the role of ATP binding and hydrolysis by UvrA and UvrB during this process remains incompletely understood. Here, we report a pre-steady state kinetics Förster resonance energy transfer (FRET) study of the real-time interaction between UvrA, UvrB, and damaged DNA during lesion detection. By using UvrA and UvrB mutants harboring site-specific mutations in the ATP binding sites, we show for the first time that the dissociation of UvrA from the UvrAB-DNA complex does not require ATP hydrolysis by UvrB. We find that ATP hydrolysis by UvrA is not essential, but somehow facilitates the formation of UvrB-DNA complex, with ATP hydrolysis at the proximal site of UvrA playing a more critical role. Consistent with previous reports, our results indicated that the ATPase activity of UvrB is essential for the formation of UvrB-DNA complex but is not required for the binding of the UvrAB complex to DNA.
Collapse
Affiliation(s)
- Thanyalak Kraithong
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Jeerus Sucharitakul
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Thailand; Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chittanon Buranachai
- Department of Physics, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA; Doctor of Philosophy Programs in Biochemistry, Biology, and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Pimchai Chaiyen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
5
|
Thakur M, Agarwal A, Muniyappa K. The intrinsic ATPase activity of Mycobacterium tuberculosis UvrC is crucial for its damage-specific DNA incision function. FEBS J 2020; 288:1179-1200. [PMID: 32602194 DOI: 10.1111/febs.15465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/04/2020] [Accepted: 06/24/2020] [Indexed: 11/28/2022]
Abstract
To ensure genome stability, bacteria have evolved a network of DNA repair mechanisms; among them, the UvrABC-dependent nucleotide excision repair (NER) pathway is essential for the incision of a variety of bulky adducts generated by exogenous chemicals, UV radiation and by-products of cellular metabolism. However, very little is known about the enzymatic properties of Mycobacterium tuberculosis UvrABC excinuclease complex. Furthermore, the biochemical properties of Escherichia coli UvrC (EcUvrC) are not well understood (compared to UvrA and UvrB), perhaps due to its limited availability and/or activity instability in vitro. In addition, homology modelling of M. tuberculosis UvrC (MtUvrC) revealed the presence of a putative ATP-binding pocket, although its function remains unknown. To elucidate the biochemical properties of UvrC, we constructed and purified wild-type MtUvrC and its eight variants harbouring mutations within the ATP-binding pocket. The data from DNA-binding studies suggest that MtUvrC exhibits high-affinity for duplex DNA containing a bubble or fluorescein-dT moiety, over fluorescein-adducted single-stranded DNA. Most notably, MtUvrC has an intrinsic UvrB-independent ATPase activity, which drives dual incision of the damaged DNA strand. In contrast, EcUvrC is devoid of ATPase activity; however, it retains the ability to bind ATP at levels comparable to that of MtUvrC. The ATPase-deficient variants map to residues lining the MtUvrC ATP-binding pocket. Further analysis of these variants revealed separation of function between ATPase and DNA-binding activities in MtUvrC. Altogether, these findings reveal functional diversity of the bacterial NER machinery and a paradigm for the evolution of a catalytic scaffold in UvrC.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Ankit Agarwal
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
6
|
Case BC, Hartley S, Osuga M, Jeruzalmi D, Hingorani MM. The ATPase mechanism of UvrA2 reveals the distinct roles of proximal and distal ATPase sites in nucleotide excision repair. Nucleic Acids Res 2019; 47:4136-4152. [PMID: 30892613 PMCID: PMC6486640 DOI: 10.1093/nar/gkz180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/02/2019] [Accepted: 03/18/2019] [Indexed: 01/20/2023] Open
Abstract
The UvrA2 dimer finds lesions in DNA and initiates nucleotide excision repair. Each UvrA monomer contains two essential ATPase sites: proximal (P) and distal (D). The manner whereby their activities enable UvrA2 damage sensing and response remains to be clarified. We report three key findings from the first pre-steady state kinetic analysis of each site. Absent DNA, a P2ATP-D2ADP species accumulates when the low-affinity proximal sites bind ATP and enable rapid ATP hydrolysis and phosphate release by the high-affinity distal sites, and ADP release limits catalytic turnover. Native DNA stimulates ATP hydrolysis by all four sites, causing UvrA2 to transition through a different species, P2ADP-D2ADP. Lesion-containing DNA changes the mechanism again, suppressing ATP hydrolysis by the proximal sites while distal sites cycle through hydrolysis and ADP release, to populate proximal ATP-bound species, P2ATP-Dempty and P2ATP-D2ATP. Thus, damaged and native DNA trigger distinct ATPase site activities, which could explain why UvrA2 forms stable complexes with UvrB on damaged DNA compared with weaker, more dynamic complexes on native DNA. Such specific coupling between the DNA substrate and the ATPase mechanism of each site provides new insights into how UvrA2 utilizes ATP for lesion search, recognition and repair.
Collapse
Affiliation(s)
- Brandon C Case
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Silas Hartley
- Department of Chemistry and Biochemistry, City College of New York of the City University of New York, New York, NY 10031, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Memie Osuga
- Department of Chemistry and Biochemistry, City College of New York of the City University of New York, New York, NY 10031, USA.,Hunter College High School, New York, NY 10128, USA
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York of the City University of New York, New York, NY 10031, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA.,Ph.D. Programs in Chemistry and Biology, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Manju M Hingorani
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
7
|
Lee SJ, Sung RJ, Verdine GL. Mechanism of DNA Lesion Homing and Recognition by the Uvr Nucleotide Excision Repair System. RESEARCH (WASHINGTON, D.C.) 2019; 2019:5641746. [PMID: 31549070 PMCID: PMC6750098 DOI: 10.34133/2019/5641746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/26/2019] [Indexed: 11/06/2022]
Abstract
Nucleotide excision repair (NER) is an essential DNA repair system distinguished from other such systems by its extraordinary versatility. NER removes a wide variety of structurally dissimilar lesions having only their bulkiness in common. NER can also repair several less bulky nucleobase lesions, such as 8-oxoguanine. Thus, how a single DNA repair system distinguishes such a diverse array of structurally divergent lesions from undamaged DNA has been one of the great unsolved mysteries in the field of genome maintenance. Here we employ a synthetic crystallography approach to obtain crystal structures of the pivotal NER enzyme UvrB in complex with duplex DNA, trapped at the stage of lesion-recognition. These structures coupled with biochemical studies suggest that UvrB integrates the ATPase-dependent helicase/translocase and lesion-recognition activities. Our work also conclusively establishes the identity of the lesion-containing strand and provides a compelling insight to how UvrB recognizes a diverse array of DNA lesions.
Collapse
Affiliation(s)
- Seung-Joo Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Rou-Jia Sung
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gregory L. Verdine
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Barnett JT, Kad NM. Understanding the coupling between DNA damage detection and UvrA's ATPase using bulk and single molecule kinetics. FASEB J 2018; 33:763-769. [PMID: 30020831 PMCID: PMC6355085 DOI: 10.1096/fj.201800899r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nucleotide excision repair (NER) protects cells against diverse types of DNA damage, principally UV irradiation. In Escherichia coli, damage is recognized by 2 key enzymes: UvrA and UvrB. Despite extensive investigation, the role of UvrA’s 2 ATPase domains in NER remains elusive. Combining single-molecule fluorescence microscopy and classic biochemical methods, we have investigated the role of nucleotide binding in UvrA’s kinetic cycle. Measurement of UvrA’s steady-state ATPase activity shows it is stimulated upon binding DNA (kcat 0.71–1.07/s). Despite UvrA’s ability to discriminate damage, we find UV-damaged DNA does not alter the steady-state ATPase. To understand how damage affects UvrA, we studied its binding to DNA under various nucleotide conditions at the single molecule level. We have found that both UV damage and nucleotide cofactors affect the attached lifetime of UvrA. In the presence of ATP and UV damage, the lifetime is significantly greater compared with undamaged DNA. To reconcile these observations, we suggest that UvrA uses negative cooperativity between its ATPase sites that is gated by damage recognition. Only in the presence of damage is the second site activated, most likely in a sequential manner.—Barnett, J. T., Kad, N. M. Understanding the coupling between DNA damage detection and UvrA’s ATPase using bulk and single molecule kinetics.
Collapse
Affiliation(s)
- Jamie T Barnett
- School of Biological Sciences, University of Kent, Canterbury, United Kingdom
| | - Neil M Kad
- School of Biological Sciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
9
|
Abstract
Synthetic protein switches with tailored response functions are finding increasing applications as tools in basic research and biotechnology. With a number of successful design strategies emerging, the construction of synthetic protein switches still frequently necessitates an integrated approach that combines detailed biochemical and biophysical characterization in combination with high-throughput screening to construct tailored synthetic protein switches. This is increasingly complemented by computational strategies that aim to reduce the need for costly empirical optimization and thus facilitate the protein design process. Successful computational design approaches range from analyzing phylogenetic data to infer useful structural, biophysical, and biochemical information to modeling the structure and function of proteins ab initio. The following chapter provides an overview over the theoretical considerations and experimental approaches that have been successful applied in the construction of synthetic protein switches.
Collapse
Affiliation(s)
- Viktor Stein
- Fachbereich Biologie, Technische Universität Darmstadt, 64287, Darmstadt, Germany.
| |
Collapse
|
10
|
Thakur M, Kumar MBJ, Muniyappa K. Mycobacterium tuberculosis UvrB Is a Robust DNA-Stimulated ATPase That Also Possesses Structure-Specific ATP-Dependent DNA Helicase Activity. Biochemistry 2016; 55:5865-5883. [PMID: 27618337 DOI: 10.1021/acs.biochem.6b00558] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Much is known about the Escherichia coli nucleotide excision repair (NER) pathway; however, very little is understood about the proteins involved and the molecular mechanism of NER in mycobacteria. In this study, we show that Mycobacterium tuberculosis UvrB (MtUvrB), which exists in solution as a monomer, binds to DNA in a structure-dependent manner. A systematic examination of MtUvrB substrate specificity reveals that it associates preferentially with single-stranded DNA, duplexes with 3' or 5' overhangs, and linear duplex DNA with splayed arms. Whereas E. coli UvrB (EcUvrB) binds weakly to undamaged DNA and has no ATPase activity, MtUvrB possesses intrinsic ATPase activity that is greatly stimulated by both single- and double-stranded DNA. Strikingly, we found that MtUvrB, but not EcUvrB, possesses the DNA unwinding activity characteristic of an ATP-dependent DNA helicase. The helicase activity of MtUvrB proceeds in the 3' to 5' direction and is strongly modulated by a nontranslocating 5' single-stranded tail, indicating that in addition to the translocating strand it also interacts with the 5' end of the substrate. The fraction of DNA unwound by MtUvrB decreases significantly as the length of the duplex increases: it fails to unwind duplexes longer than 70 bp. These results, on one hand, reveal significant mechanistic differences between MtUvrB and EcUvrB and, on the other, support an alternative role for UvrB in the processing of key DNA replication intermediates. Altogether, our findings provide insights into the catalytic functions of UvrB and lay the foundation for further understanding of the NER pathway in M. tuberculosis.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science , Bangalore 560012, India
| | - Mohan B J Kumar
- Department of Biochemistry, Indian Institute of Science , Bangalore 560012, India
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
11
|
Stracy M, Jaciuk M, Uphoff S, Kapanidis AN, Nowotny M, Sherratt DJ, Zawadzki P. Single-molecule imaging of UvrA and UvrB recruitment to DNA lesions in living Escherichia coli. Nat Commun 2016; 7:12568. [PMID: 27562541 PMCID: PMC5007444 DOI: 10.1038/ncomms12568] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/14/2016] [Indexed: 11/19/2022] Open
Abstract
Nucleotide excision repair (NER) removes chemically diverse DNA lesions in all domains of life. In Escherichia coli, UvrA and UvrB initiate NER, although the mechanistic details of how this occurs in vivo remain to be established. Here, we use single-molecule fluorescence imaging to provide a comprehensive characterization of the lesion search, recognition and verification process in living cells. We show that NER initiation involves a two-step mechanism in which UvrA scans the genome and locates DNA damage independently of UvrB. Then UvrA recruits UvrB from solution to the lesion. These steps are coordinated by ATP binding and hydrolysis in the ‘proximal' and ‘distal' UvrA ATP-binding sites. We show that initial UvrB-independent damage recognition by UvrA requires ATPase activity in the distal site only. Subsequent UvrB recruitment requires ATP hydrolysis in the proximal site. Finally, UvrA dissociates from the lesion complex, allowing UvrB to orchestrate the downstream NER reactions. Nucleotide excision repair is able to identify and remove a wide range of DNA helix distorting lesions from the genome. Here the authors use single molecule imaging of UvrA and UvrB molecules and suggest a two-step ‘scan and recruit' model for UvrA function.
Collapse
Affiliation(s)
- Mathew Stracy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.,Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Marcin Jaciuk
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Ksiecia Trojdena Street, 02-109 Warsaw, Poland
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Ksiecia Trojdena Street, 02-109 Warsaw, Poland
| | - David J Sherratt
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Pawel Zawadzki
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
12
|
Bugay AN, Krasavin EA, Parkhomenko AY, Vasilyeva MA. Modeling nucleotide excision repair and its impact on UV-induced mutagenesis during SOS-response in bacterial cells. J Theor Biol 2015; 364:7-20. [DOI: 10.1016/j.jtbi.2014.08.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/31/2014] [Accepted: 08/22/2014] [Indexed: 02/01/2023]
|
13
|
Pakotiprapha D, Jeruzalmi D. Small-angle X-ray scattering reveals architecture and A2
B2
stoichiometry of the UvrA-UvrB DNA damage sensor. Proteins 2012; 81:132-9. [DOI: 10.1002/prot.24170] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 08/10/2012] [Accepted: 08/15/2012] [Indexed: 11/09/2022]
|
14
|
Pakotiprapha D, Samuels M, Shen K, Hu JH, Jeruzalmi D. Structure and mechanism of the UvrA-UvrB DNA damage sensor. Nat Struct Mol Biol 2012; 19:291-8. [PMID: 22307053 DOI: 10.1038/nsmb.2240] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 12/12/2011] [Indexed: 01/12/2023]
Abstract
Nucleotide excision repair (NER) is used by all organisms to eliminate DNA lesions. We determined the structure of the Geobacillus stearothermophilus UvrA-UvrB complex, the damage-sensor in bacterial NER and a new structure of UvrA. We observe that the DNA binding surface of UvrA, previously found in an open shape that binds damaged DNA, also exists in a closed groove shape compatible with native DNA only. The sensor contains two UvrB molecules that flank the UvrA dimer along the predicted path for DNA, ~80 Å from the lesion. We show that the conserved signature domain II of UvrA mediates a nexus of contacts among UvrA, UvrB and DNA. Further, in our new structure of UvrA, this domain adopts an altered conformation while an adjacent nucleotide binding site is vacant. Our findings raise unanticipated questions about NER and also suggest a revised picture of its early stages.
Collapse
Affiliation(s)
- Danaya Pakotiprapha
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
15
|
Rossi F, Khanduja JS, Bortoluzzi A, Houghton J, Sander P, Güthlein C, Davis EO, Springer B, Böttger EC, Relini A, Penco A, Muniyappa K, Rizzi M. The biological and structural characterization of Mycobacterium tuberculosis UvrA provides novel insights into its mechanism of action. Nucleic Acids Res 2011; 39:7316-28. [PMID: 21622956 PMCID: PMC3167621 DOI: 10.1093/nar/gkr271] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mycobacterium tuberculosis is an extremely well adapted intracellular human pathogen that is exposed to multiple DNA damaging chemical assaults originating from the host defence mechanisms. As a consequence, this bacterium is thought to possess highly efficient DNA repair machineries, the nucleotide excision repair (NER) system amongst these. Although NER is of central importance to DNA repair in M. tuberculosis, our understanding of the processes in this species is limited. The conserved UvrABC endonuclease represents the multi-enzymatic core in bacterial NER, where the UvrA ATPase provides the DNA lesion-sensing function. The herein reported genetic analysis demonstrates that M. tuberculosis UvrA is important for the repair of nitrosative and oxidative DNA damage. Moreover, our biochemical and structural characterization of recombinant M. tuberculosis UvrA contributes new insights into its mechanism of action. In particular, the structural investigation reveals an unprecedented conformation of the UvrB-binding domain that we propose to be of functional relevance. Taken together, our data suggest UvrA as a potential target for the development of novel anti-tubercular agents and provide a biochemical framework for the identification of small-molecule inhibitors interfering with the NER activity in M. tuberculosis.
Collapse
Affiliation(s)
- Franca Rossi
- DiSCAFF, University of Piemonte Orientale Amedeo Avogadro, Via Bovio 6, 28100 Novara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jaciuk M, Nowak E, Skowronek K, Tańska A, Nowotny M. Structure of UvrA nucleotide excision repair protein in complex with modified DNA. Nat Struct Mol Biol 2011; 18:191-7. [PMID: 21240268 PMCID: PMC3428727 DOI: 10.1038/nsmb.1973] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 11/09/2010] [Indexed: 12/31/2022]
Abstract
One of the primary pathways for removal of DNA damage is nucleotide excision repair (NER). In bacteria, the UvrA protein is the component of NER that locates the lesion. A notable feature of NER is its ability to act on many DNA modifications that vary in chemical structure. So far, the mechanism underlying this broad specificity has been unclear. Here, we report the first crystal structure of a UvrA protein in complex with a chemically modified oligonucleotide. The structure shows that the UvrA dimer does not contact the site of lesion directly, but rather binds the DNA regions on both sides of the modification. The DNA region harboring the modification is deformed, with the double helix bent and unwound. UvrA uses damage-induced deformations of the DNA and a less rigid structure of the modified double helix for indirect readout of the lesion.
Collapse
Affiliation(s)
- Marcin Jaciuk
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Krzysztof Skowronek
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland. Correspondence should be addressed to M.N. ()
| | - Anna Tańska
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
17
|
Goosen N. Scanning the DNA for damage by the nucleotide excision repair machinery. DNA Repair (Amst) 2010; 9:593-6. [PMID: 20335079 DOI: 10.1016/j.dnarep.2010.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/12/2010] [Accepted: 02/24/2010] [Indexed: 11/28/2022]
Abstract
Damage detection during nucleotide excision repair requires the action of multiple proteins that probe the DNA for different parameters like disruption of basepairing, DNA bendability and presence of chemical modifications. In a recent study it has been shown that two of these probing events can be spatially separated on the DNA. Upon initial binding of the XPC protein to a region with disrupted basepairing a complex of XPC, TFIIH and XPA is translocated to a CPD lesion even when this chemical modification is located up to 160 nucleotides from the mispaired region.
Collapse
Affiliation(s)
- Nora Goosen
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
18
|
Differential survival of Escherichia coli uvrA, uvrB, and uvrC mutants to psoralen plus UV-A (PUVA): Evidence for uncoupled action of nucleotide excision repair to process DNA adducts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2009; 98:40-7. [PMID: 20004108 DOI: 10.1016/j.jphotobiol.2009.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/28/2009] [Accepted: 11/03/2009] [Indexed: 11/23/2022]
Abstract
The nucleotide excision repair mechanism (NER) of Escherichia coli is responsible for the recognition and elimination of more than twenty different DNA lesions. Herein, we evaluated the in vivo role of NER in the repair of DNA adducts generated by psoralens (mono- or bi-functional) and UV-A light (PUVA) in E. coli. Cultures of wild-type E. coli K12 and mutants for uvrA, uvrB, uvrC or uvrAC genes were treated with PUVA and cell survival was determined. In parallel, kinetics of DNA repair was also evaluated by the comparison of DNA sedimentation profiles in all the strains after PUVA treatment. The uvrB mutant was more sensitive to PUVA treatment than all the other uvr mutant strains. Wild-type strain, and uvrA and uvrC mutants were able to repair PUVA-induced lesions, as seen by DNA sedimentation profiles, while the uvrB mutant was unable to repair the lesions. In addition, a quadruple fpg nth xth nfo mutant was unable to nick PUVA-treated DNA when the crude cell-free extract was used to perform plasmid nicking. These data suggest that DNA repair of PUVA-induced lesions may require base excision repair functions, despite proficient UvrABC activity. These results point to a specific role for UvrB protein in the repair of psoralen adducts, which appear to be independent of UvrA or UvrC proteins, as described for the classical UvrABC endonuclease mechanism.
Collapse
|
19
|
Wagner K, Moolenaar G, van Noort J, Goosen N. Single-molecule analysis reveals two separate DNA-binding domains in the Escherichia coli UvrA dimer. Nucleic Acids Res 2009; 37:1962-72. [PMID: 19208636 PMCID: PMC2665241 DOI: 10.1093/nar/gkp071] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The UvrA protein is the initial damage-recognizing factor in bacterial nucleotide excision repair. Each monomer of the UvrA dimer contains two ATPase sites. Using single-molecule analysis we show that dimerization of UvrA in the presence of ATP is significantly higher than with ADP or nonhydrolyzable ATPγS, suggesting that the active UvrA dimer contains a mixture of ADP and ATP. We also show that the UvrA dimer has a high preference of binding the end of a linear DNA fragment, independent on the presence or type of cofactor. Apparently ATP binding or hydrolysis is not needed to discriminate between DNA ends and internal sites. A significant number of complexes could be detected where one UvrA dimer bridges two DNA ends implying the presence of two separate DNA-binding domains, most likely present in each monomer. On DNA containing a site-specific lesion the damage-specific binding is much higher than DNA-end binding, but only in the absence of cofactor or with ATP. With ATPγS no discrimination between a DNA end and a DNA damage could be observed. We present a model where damage recognition of UvrA depends on the ability of both UvrA monomers to interact with the DNA flanking the lesion.
Collapse
Affiliation(s)
- Koen Wagner
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | | | | | | |
Collapse
|
20
|
|
21
|
Pakotiprapha D, Inuzuka Y, Bowman BR, Moolenaar GF, Goosen N, Jeruzalmi D, Verdine GL. Crystal structure of Bacillus stearothermophilus UvrA provides insight into ATP-modulated dimerization, UvrB interaction, and DNA binding. Mol Cell 2007; 29:122-33. [PMID: 18158267 DOI: 10.1016/j.molcel.2007.10.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 09/05/2007] [Accepted: 10/10/2007] [Indexed: 10/22/2022]
Abstract
The nucleotide excision repair pathway corrects many structurally unrelated DNA lesions. Damage recognition in bacteria is performed by UvrA, a member of the ABC ATPase superfamily whose functional form is a dimer with four nucleotide-binding domains (NBDs), two per protomer. In the 3.2 A structure of UvrA from Bacillus stearothermophilus, we observe that the nucleotide-binding sites are formed in an intramolecular fashion and are not at the dimer interface as is typically found in other ABC ATPases. UvrA also harbors two unique domains; we show that one of these is required for interaction with UvrB, its partner in lesion recognition. In addition, UvrA contains three zinc modules, the number and ligand sphere of which differ from previously published models. Structural analysis, biochemical experiments, surface electrostatics, and sequence conservation form the basis for models of ATP-modulated dimerization, UvrA-UvrB interaction, and DNA binding during the search for lesions.
Collapse
Affiliation(s)
- Danaya Pakotiprapha
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
O'Brien TJ, Jiang G, Chun G, Mandel HG, Westphal CS, Kahen K, Montaser A, States JC, Patierno SR. Incision of trivalent chromium [Cr(III)]-induced DNA damage by Bacillus caldotenax UvrABC endonuclease. Mutat Res 2006; 610:85-92. [PMID: 16890479 DOI: 10.1016/j.mrgentox.2006.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2006] [Indexed: 10/24/2022]
Abstract
Some hexavalent chromium [Cr(VI)]-containing compounds are lung carcinogens. Once within cells, Cr(VI) is reduced to trivalent chromium [Cr(III)] which displays an affinity for both DNA bases and the phosphate backbone. A diverse array of genetic lesions is produced by Cr including Cr-DNA monoadducts, DNA interstrand crosslinks (ICLs), DNA-Cr-protein crosslinks (DPCs), abasic sites, DNA strand breaks and oxidized bases. Despite the large amount of information available on the genotoxicity of Cr, little is known regarding the molecular mechanisms involved in the removal of these lesions from damaged DNA. Recent work indicates that nucleotide excision repair (NER) is involved in the processing of Cr-DNA adducts in human and rodent cells. In order to better understand this process at the molecular level and begin to identify the Cr-DNA adducts processed by NER, the incision of CrCl(3) [Cr(III)]-damaged plasmid DNA was studied using a thermal-resistant UvrABC NER endonuclease from Bacillus caldotenax (Bca). Treatment of plasmid DNA with Cr(III) (as CrCl(3)) increased DNA binding as a function of dose. For example, at a Cr(III) concentration of 1 microM we observed approximately 2 Cr(III)-DNA adducts per plasmid. At this same concentration of Cr(III) we found that approximately 17% of the plasmid DNA contained ICLs ( approximately 0.2 ICLs/plasmid). When plasmid DNA treated with Cr(III) (1 microM) was incubated with Bca UvrABC we observed approximately 0.8 incisions/plasmid. The formation of endonuclease IV-sensitive abasic lesions or Fpg-sensitive oxidized DNA bases was not detected suggesting that the incision of Cr(III)-damaged plasmid DNA by UvrABC was not related to the generation of oxidized DNA damage. Taken together, our data suggest that a sub-fraction of Cr(III)-DNA adducts is recognized and processed by the prokaryotic NER machinery and that ICLs are not necessarily the sole lesions generated by Cr(III) that are substrates for NER.
Collapse
Affiliation(s)
- Travis J O'Brien
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Truglio JJ, Croteau DL, Van Houten B, Kisker C. Prokaryotic nucleotide excision repair: the UvrABC system. Chem Rev 2006; 106:233-52. [PMID: 16464004 DOI: 10.1021/cr040471u] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James J Truglio
- Department of Pharmacological Sciences, State University of New York at Stony Brook, 11794-5115, USA
| | | | | | | |
Collapse
|
24
|
Eryilmaz J, Ceschini S, Ryan J, Geddes S, Waters TR, Barrett TE. Structural insights into the cryptic DNA-dependent ATPase activity of UvrB. J Mol Biol 2006; 357:62-72. [PMID: 16426634 DOI: 10.1016/j.jmb.2005.12.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 12/15/2005] [Accepted: 12/16/2005] [Indexed: 11/19/2022]
Abstract
The UvrABC pathway is a ubiquitously occurring mechanism targeted towards the repair of bulky base damage. Key to this process is UvrB, a DNA-dependent limited helicase that acts as a lesion recognition element whilst part of a tracking complex involving UvrA, and as a DNA-binding platform required for the presentation of damage to UvrC for subsequent processing. We have been able to determine the structure of a ternary complex involving UvrB* (a C-terminal truncation of full-length UvrB), a polythymine trinucleotide and ADP. This structure has highlighted the roles of key conserved residues in DNA binding distinct from those of the beta-hairpin, where most of the attention in previous studies has been focussed. We are also the first to report the structural basis underlying conformational re-modelling of the beta-hairpin that is absolutely required for DNA binding and how this event results in an ATPase primed for catalysis. Our data provide the first insights at the molecular level into the transformation of UvrB into an active helicase.
Collapse
Affiliation(s)
- Jitka Eryilmaz
- The School of Crystallography and the Institute for Structural Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | | | | | | | | | | |
Collapse
|
25
|
Van Houten B, Croteau DL, DellaVecchia MJ, Wang H, Kisker C. 'Close-fitting sleeves': DNA damage recognition by the UvrABC nuclease system. Mutat Res 2005; 577:92-117. [PMID: 15927210 DOI: 10.1016/j.mrfmmm.2005.03.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 03/11/2005] [Accepted: 03/11/2005] [Indexed: 05/02/2023]
Abstract
DNA damage recognition represents a long-standing problem in the field of protein-DNA interactions. This article reviews our current knowledge of how damage recognition is achieved in bacterial nucleotide excision repair through the concerted action of the UvrA, UvrB, and UvrC proteins.
Collapse
Affiliation(s)
- Bennett Van Houten
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, MD D3-01, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
26
|
Gómez-Pinto I, Cubero E, Kalko SG, Monaco V, van der Marel G, van Boom JH, Orozco M, González C. Effect of bulky lesions on DNA: solution structure of a DNA duplex containing a cholesterol adduct. J Biol Chem 2004; 279:24552-60. [PMID: 15047709 DOI: 10.1074/jbc.m311751200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three-dimensional solution structure of two DNA decamers of sequence d(CCACXGGAAC)-(GTTCCGGTGG) with a modified nucleotide containing a cholesterol derivative (X) in its C1 '(chol)alpha or C1 '(chol)beta diastereoisomer form has been determined by using NMR and restrained molecular dynamics. This DNA derivative is recognized with high efficiency by the UvrB protein, which is part of the bacterial nucleotide excision repair, and the alpha anomer is repaired more efficiently than the beta one. The structures of the two decamers have been determined from accurate distance constraints obtained from a complete relaxation matrix analysis of the NOE intensities and torsion angle constraints derived from J-coupling constants. The structures have been refined with molecular dynamics methods, including explicit solvent and applying the particle mesh Ewald method to properly evaluate the long range electrostatic interactions. These calculations converge to well defined structures whose conformation is intermediate between the A- and B-DNA families as judged by the root mean square deviation but with sugar puckerings and groove shapes corresponding to a distorted B-conformation. Both duplex adducts exhibit intercalation of the cholesterol group from the major groove of the helix and displacement of the guanine base opposite the modified nucleotide. Based on these structures and molecular dynamics calculations, we propose a tentative model for the recognition of damaged DNA substrates by the UvrB protein.
Collapse
Affiliation(s)
- Irene Gómez-Pinto
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, C/. Serrano 119, 28006 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Moolenaar GF, Höglund L, Goosen N. Clue to damage recognition by UvrB: residues in the beta-hairpin structure prevent binding to non-damaged DNA. EMBO J 2001; 20:6140-9. [PMID: 11689453 PMCID: PMC125699 DOI: 10.1093/emboj/20.21.6140] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
UvrB, the ultimate damage-recognizing component of bacterial nucleotide excision repair, contains a flexible beta-hairpin rich in hydrophobic residues. We describe the properties of UvrB mutants in which these residues have been mutated. The results show that Y101 and F108 in the tip of the hairpin are important for the strand-separating activity of UvrB, supporting the model that the beta-hairpin inserts between the two DNA strands during the search for DNA damage. Residues Y95 and Y96 at the base of the hairpin have a direct role in damage recognition and are positioned close to the damage in the UvrB-DNA complex. Strikingly, substituting Y92 and Y93 results in a protein that is lethal to the cell. The mutant protein forms pre- incision complexes on non-damaged DNA, indicating that Y92 and Y93 function in damage recognition by preventing UvrB binding to non-damaged sites. We propose a model for damage recognition by UvrB in which, stabilized by the four tyrosines at the base of the hairpin, the damaged nucleotide is flipped out of the DNA helix.
Collapse
Affiliation(s)
| | | | - Nora Goosen
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
Corresponding author e-mail:
| |
Collapse
|
28
|
Abstract
Nucleotide excision repair in eubacteria is a process that repairs DNA damages by the removal of a 12-13-mer oligonucleotide containing the lesion. Recognition and cleavage of the damaged DNA is a multistep ATP-dependent reaction that requires the UvrA, UvrB and UvrC proteins. Both UvrA and UvrB are ATPases, with UvrA having two ATP binding sites which have the characteristic signature of the family of ABC proteins and UvrB having one ATP binding site that is structurally related to that of helicases.
Collapse
Affiliation(s)
- N Goosen
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, The Netherlands.
| | | |
Collapse
|
29
|
Grossman L. Nucleotide excision repair: Dick Setlow: how he influenced my scientific life. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2001; 38:144-152. [PMID: 11746748 DOI: 10.1002/em.1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- L Grossman
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
30
|
Yamagata A, Masui R, Kato R, Nakagawa N, Ozaki H, Sawai H, Kuramitsu S, Fukuyama K. Interaction of UvrA and UvrB proteins with a fluorescent single-stranded DNA. Implication for slow conformational change upon interaction of UvrB with DNA. J Biol Chem 2000; 275:13235-42. [PMID: 10788428 DOI: 10.1074/jbc.275.18.13235] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UvrA and UvrB proteins play key roles in the damage recognition step in the nucleotide excision repair. However, the molecular mechanism of damage recognition by these proteins is still not well understood. In this work we analyzed the interaction between single-stranded DNA (ssDNA) labeled with a fluorophore tetramethylrhodamine (TMR) and Thermus thermophilus HB8 UvrA (ttUvrA) and UvrB (ttUvrB) proteins. TMR-labeled ssDNA (TMR-ssDNA) as well as UV-irradiated ssDNA stimulated ATPase activity of ttUvrB more strongly than did normal ssDNA, indicating that this fluorescent ssDNA was recognized as damaged ssDNA. The addition of ttUvrA or ttUvrB enhanced the fluorescence intensity of TMR-ssDNA, and the intensity was much greater in the presence of ATP. Fluorescence titration indicated that ttUvrA has higher specificity for TMR-ssDNA than for normal ssDNA in the absence of ATP. The ttUvrB showed no specificity for TMR-ssDNA, but it took over 200 min for the fluorescence intensity of the ttUvrB-TMR-ssDNA complex to reach saturation in the presence of ATP. This time-dependent change could be separated into two phases. The first phase was rapid, whereas the second phase was slow and dependent on ATP hydrolysis. Time dependence of ATPase activity and fluorescence polarization suggested that changes other than the binding reaction occurred during the second phase. These results strongly suggest that ttUvrB binds ssDNA quickly and that a conformational change in ttUrvB-ssDNA complex occurs slowly. We also found that DNA containing a fluorophore as a lesion is useful for directly investigating the damage recognition by UvrA and UvrB.
Collapse
Affiliation(s)
- A Yamagata
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Moolenaar GF, Monaco V, van der Marel GA, van Boom JH, Visse R, Goosen N. The effect of the DNA flanking the lesion on formation of the UvrB-DNA preincision complex. Mechanism for the UvrA-mediated loading of UvrB onto a DNA damaged site. J Biol Chem 2000; 275:8038-43. [PMID: 10713124 DOI: 10.1074/jbc.275.11.8038] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The UvrB-DNA preincision complex plays a key role in nucleotide excision repair in Escherichia coli. To study the formation of this complex, derivatives of a DNA substrate containing a cholesterol adduct were constructed. Introduction of a single strand nick into either the top or the bottom strand at the 3' side of the adduct stabilized the UvrB-DNA complex, most likely by the release of local stress in the DNA. Removal of both DNA strands up to the 3' incision site still allowed formation of the preincision complex. Similar modifications at the 5' side of the damage, however, gave different results. The introduction of a single strand nick at the 5' incision site completely abolished the UvrA-mediated formation of the UvrB-DNA complex. Deletion of both DNA strands up to the 5' incision site also prevented the UvrA-mediated loading of UvrB onto the damaged site, but UvrB by itself could bind very efficiently. This demonstrates that the UvrB protein is capable of recognizing damage without the matchmaker function of the UvrA protein. Our results also indicate that the UvrA-mediated loading of the UvrB protein is an asymmetric process, which starts at the 5' side of the damage.
Collapse
Affiliation(s)
- G F Moolenaar
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Machius M, Henry L, Palnitkar M, Deisenhofer J. Crystal structure of the DNA nucleotide excision repair enzyme UvrB from Thermus thermophilus. Proc Natl Acad Sci U S A 1999; 96:11717-22. [PMID: 10518516 PMCID: PMC18352 DOI: 10.1073/pnas.96.21.11717] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleotide excision repair (NER) is the most important DNA-repair mechanism in living organisms. In prokaryotes, three enzymes forming the UvrABC system initiate NER of a variety of structurally different DNA lesions. UvrB, the central component of this system, is responsible for the ultimate DNA damage recognition and participates in the incision of the damaged DNA strand. The crystal structure of Thermus thermophilus UvrB reveals a core that is structurally similar to core regions found in helicases, where they constitute molecular motors. Additional domains implicated in binding to DNA and various components of the NER system are attached to this central core. The architecture and distribution of DNA binding sites suggest a possible model for the DNA damage recognition process.
Collapse
Affiliation(s)
- M Machius
- Howard Hughes Medical Institute, Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75235-9050, USA
| | | | | | | |
Collapse
|
33
|
Hildebrand EL, Grossman L. Oligomerization of the UvrB nucleotide excision repair protein of Escherichia coli. J Biol Chem 1999; 274:27885-90. [PMID: 10488135 DOI: 10.1074/jbc.274.39.27885] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A combination of hydrodynamic and cross-linking studies were used to investigate self-assembly of the Escherichia coli DNA repair protein UvrB. Though the procession of steps leading to incision of DNA at sites flanking damage requires that UvrB engage in an ordered series of complexes, successively with UvrA, DNA, and UvrC, the potential for self-association had not yet been reported. Gel permeation chromatography, nondenaturing polyacrylamide gel electrophoresis, and chemical cross-linking results combine to show that UvrB stably assembles as a dimer in solution at concentrations in the low micromolar range. Smaller populations of higher order oligomeric species are also observed. Unlike the dimerization of UvrA, an initial step promoted by ATP binding, the monomer-dimer equilibrium for UvrB is unaffected by the presence of ATP. The insensitivity of cross-linking efficiency to a 10-fold variation in salt concentration further suggests that UvrB self-assembly is driven largely by hydrophobic interactions. Self-assembly is significantly weakened by proteolytic removal of the carboxyl terminus of the protein (generating UvrB*), a domain also known to be required for the interaction with UvrC leading to the initial incision of damaged DNA. This suggests that the C terminus may be a multifunctional binding domain, with specificity regulated by protein conformation.
Collapse
Affiliation(s)
- E L Hildebrand
- Department of Biochemistry, School of Hygiene and Public Health, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
34
|
Kovalsky OI, Grossman L. Accessibility of epitopes on UvrB protein in intermediates generated during incision of UV-irradiated DNA by the Escherichia coli Uvr(A)BC endonuclease. J Biol Chem 1998; 273:21009-14. [PMID: 9694852 DOI: 10.1074/jbc.273.33.21009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structural intermediates generated during incision of damaged DNA by the Uvr(A)BC endonuclease were probed with monoclonal antibodies (mAbs) raised against the Escherichia coli UvrB protein. It was found that the epitope of B2C5 mAb, mapped at amino acids (aa) 171-278 of UvrB, is not accessible in any of the preformed Uvr intermediates. Preformed B2C5-UvrB immunocomplexes, however, inhibited formation of those intermediates. B2C5 mAb seems to interfere with the formation of the UvrA-UvrB complex due to overlapping of its epitope and the UvrA binding region of UvrB. Conversely, the epitope of B3C1 mAb (aa 1-7 and/or 62-170) was accessible in all Uvr intermediates. The epitope of B*2E3 mAb (aa 171-278) was not accessible in any of the nucleoprotein intermediates preceding UvrB-DNA preincision complex. However, B*2E3 was able to immunoprecipitate this complex and to inhibit overall incision. B2A1 mAb (aa 8-61) inhibited formation of those Uvr intermediates requiring ATP binding and/or hydrolysis by UvrB. B*2B9 mAb (aa 473-630) inhibited Uvr nucleoprotein complexes involving UvrB. B*2B9 seems to prevent the binding of the UvrA-UvrB complex to DNA. The epitope of the B*3E11 mAb (aa 379-472) was not accessible in Uvr complexes formed at damaged sites. These results are discussed in terms of structure-functional mapping of UvrB protein.
Collapse
Affiliation(s)
- O I Kovalsky
- Department of Biochemistry, The Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
35
|
Hildebrand EL, Grossman L. Introduction of a tryptophan reporter group into the ATP binding motif of the Escherichia coli UvrB protein for the study of nucleotide binding and conformational dynamics. J Biol Chem 1998; 273:7818-27. [PMID: 9525874 DOI: 10.1074/jbc.273.14.7818] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA-dependent ATPase activity of UvrB is required to support preincision steps in nucleotide excision repair in Escherichia coli. This activity is, however, cryptic. Elicited in nucleotide excision repair by association with the UvrA protein, it may also be unmasked by a specific proteolysis eliminating the C-terminal domain of UvrB (generating UvrB*). We introduced fluorescent reporter groups (tryptophan replacing Phe47 or Asn51) into the ATP binding motif of UvrB, without significant alteration of behavior, to study both nucleotide binding and those conformational changes expected to be essential to function. The inserted tryptophans occupy moderately hydrophobic, although potentially heterogeneous, environments as evidenced by fluorescence emission and time-resolved decay characteristics, yet are accessible to the diffusible quencher acrylamide. Activation, via specific proteolysis, is accompanied by conformational change at the ATP binding site, with multiple changes in emission spectra and a greater shielding of the tryptophans from diffusible quencher. Titration of tryptophan fluorescence with ATP has revealed that, although catalytically incompetent, UvrB can bind ATP and bind with an affinity equal to that of the active UvrB* form (Kd of approximately 1 mM). The ATP binding site of UvrB is therefore functional and accessible, suggesting that conformational change either brings amino acid residues into proper alignment for catalysis and/or enables response to effector DNA.
Collapse
Affiliation(s)
- E L Hildebrand
- Department of Biochemistry, School of Hygiene and Public Health, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
36
|
|
37
|
Pujol A, Deleu L, Nüesch JP, Cziepluch C, Jauniaux JC, Rommelaere J. Inhibition of parvovirus minute virus of mice replication by a peptide involved in the oligomerization of nonstructural protein NS1. J Virol 1997; 71:7393-403. [PMID: 9311818 PMCID: PMC192085 DOI: 10.1128/jvi.71.10.7393-7403.1997] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The large nonstructural protein NS1 of the minute virus of mice and other parvoviruses is involved in essential steps of the viral life cycle, such as DNA replication and transcriptional regulation, and is a major contributor to the toxic effect on host cells. Various biochemical functions, such as ATP binding, ATPase, site-specific DNA binding and nicking, and helicase activities, have been assigned to NS1. Homo-oligomerization is a prerequisite for a number of proteins to be fully functional. In particular, helicases generally act as homo-oligomers. Indirect evidence of NS1 self-association has been recently obtained by a nuclear cotransport assay (J. P. Nüesch and P. Tattersall, Virology 196:637-651, 1993). In order to demonstrate the oligomerizing property of NS1 in a direct way and localize the protein region(s) involved, the yeast two-hybrid system was used in combination with deletion mutagenesis across the whole NS1 molecule, followed by high-resolution mapping of the homo-oligomerization domain by a peptide enzyme-linked immunosorbent assay method. This study led to the identification of a distinct NS1 peptide that contains a bipartite domain involved in NS1 oligomerization. Furthermore, this isolated peptide was found to act as a specific competitive inhibitor and suppress NS1 helicase activity in vitro and parvovirus DNA replication in vivo, arguing for the involvement of NS1 oligomerization in these processes. Our results point to drug targeting of oligomerization motifs of viral regulatory proteins as a potentially useful antiviral strategy.
Collapse
Affiliation(s)
- A Pujol
- Applied Tumor Virology Unit, and Institut National de la Santé et de la Recherche Medicale U 375, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Nakagawa N, Masui R, Kato R, Kuramitsu S. Domain structure of Thermus thermophilus UvrB protein. Similarity in domain structure to a helicase. J Biol Chem 1997; 272:22703-13. [PMID: 9278428 DOI: 10.1074/jbc.272.36.22703] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
UvrB protein plays an essential role in the prokaryotic excision repair system. UvrB protein shows cryptic ATPase activity, DNA binding, helicase-like activity, and incision activity by interacting with UvrA or UvrC proteins. To reveal the structure-function relationship of this multifunctional protein, the domain structure of Thermus thermophilus UvrB protein (ttUvrB) was studied by limited proteolysis and denaturation experiments. Proteolytic profiles indicated that ttUvrB consists of four domains: the N domain (residues 2-105), M domain (106-455), C1 domain (456-590), and C2 domain (591-665). The properties of the proteolytic fragments indicated the involvement of the respective domains in the functions of the protein as follows: the N and C1 domains are necessary for ATPase activity, the C1 domain is indispensable for DNA binding, and the N and/or M domains are involved in UvrA binding. The structural stability of the C1 and C2 domains was higher than that of the N and M domains, which supports the proposed domain nature of ttUvrB. Based on these results and the crystal structure of PcrA helicase (Subramanya, H. S., Bird, L. E., Brannigan, J. A., and Wigley, D. B. (1996) Nature 384, 379-383), the domain organization of ttUvrB was proposed.
Collapse
Affiliation(s)
- N Nakagawa
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560, Japan
| | | | | | | |
Collapse
|
39
|
Lin CG, Kovalsky O, Grossman L. DNA damage-dependent recruitment of nucleotide excision repair and transcription proteins to Escherichia coli inner membranes. Nucleic Acids Res 1997; 25:3151-8. [PMID: 9304113 PMCID: PMC146856 DOI: 10.1093/nar/25.15.3151] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The entire process of nucleotide excision repair (NER) in Escherichia coli has been reconstituted in vitro from purified proteins and defined DNA substrates. However, how this system is organized in vivo in unclear. We report here the isolation and characterization of macromolecular assemblies containing NER and transcription proteins from E. coli. This ensemble consists of at least 17 proteins. They are recruited, as a consequence of DNA damage induced by UV irradiation, to the inner membrane. The UV-induced 6-4 photoproducts are also relocated to the inner membrane following UV-irradiation of the cells. This recruitment process is dependent on the uvrA, uvrC and recA gene products. These results suggest that at least part of the repair process may associate with the inner membrane and also provide insights into understanding the cellular organization of repair processes.
Collapse
Affiliation(s)
- C G Lin
- Department of Biochemistry, Johns Hopkins University, School of Hygiene and Public Health, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
40
|
Delagoutte E, Bertrand-Burggraf E, Dunand J, Fuchs RP. Sequence-dependent modulation of nucleotide excision repair: the efficiency of the incision reaction is inversely correlated with the stability of the pre-incision UvrB-DNA complex. J Mol Biol 1997; 266:703-10. [PMID: 9102463 DOI: 10.1006/jmbi.1996.0830] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The UvrABC excinuclease is involved in the nucleotide excision repair (NER) pathway. Sequence-dependent differences in repair efficiency have been reported for many different lesions, and it is often suggested that sites with poor repair contribute to the occurrence of mutation hot spots. However, guanine bases modified by N-2-acetylaminofluorence (AAF) within the NarI site (5'-G1G2CG3CC-3') are incised by the UvrABC excinuclease with different efficiencies in a pattern not correlated with the potency of mutation induction. To gain insight into the mechanism of sequence-dependent modulation of NER, we analyzed the formation, the structure and the stability of UvrB-DNA pre-incision complexes formed at all three positions of the AAF-modified NarI site. We show that the efficiency of release of UvrA2 from specific UvrA2B-DNA complexes is sequence-dependent and that the efficiency of incision is inversely related to the stability of the pre-incision complex. We propose that the pre-incision complex, [UvrB-DNA], when formed upon dissociation of UvrA2, undergoes a conformational change (isomerization step) giving rise to an unstable but incision-competent complex that we call [UvrB-DNA]'. The [UvrB-DNA] complex is stable and unable to form an incision-competent complex with UvrC. As the release of UvrA2, this isomerization step is sequence-dependent. Both steps contribute to modulate NER efficiency.
Collapse
Affiliation(s)
- E Delagoutte
- U.P.R. 9003 du CNRS Cancérogenèse et Mutagenèse Moléculaire et Structurale Ecole Supérieure de Biotechnologie de Strasbourg, France
| | | | | | | |
Collapse
|
41
|
Kovalsky OI, Grossman L, Ahn B. The topodynamics of incision of UV-irradiated covalently closed DNA by the Escherichia coli Uvr(A)BC endonuclease. J Biol Chem 1996; 271:33236-41. [PMID: 8969181 DOI: 10.1074/jbc.271.52.33236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Escherichia coli Uvr(A)BC endonuclease (Uvr(A)BC) initiates nucleotide excision repair of a large variety of DNA damages. The damage recognition and incision steps by the Uvr(A)BC is a complex process utilizing an ATP-dependent DNA helix-tracking activity associated with the UvrA2B1 complex. The latter activity leads to the generation of highly positively supercoiled DNA in the presence of E. coli topoisomerase I in vitro. Such highly positively supercoiled DNA, containing ultraviolet irradiation-induced photoproducts (uvDNA), is resistant to the incision by Uvr(A)BC, whereas the negatively supercoiled and relaxed forms of the uvDNA are effectively incised. The E. coli gyrase can contribute to the above reaction by abolishing the accumulation of highly positively supercoiled uvDNA thereby restoring Uvr(A)BC-catalyzed incision. Eukaryotic (calf thymus) topoisomerase I is able to substitute for gyrase in restoring this Uvr(A)BC-mediated incision reaction. The inability of Uvr(A)BC to incise highly positively supercoiled uvDNA results from the failure of the formation of UvrAB-dependent obligatory intermediates associated with the DNA conformational change. In contrast to Uvr(A)BC, the Micrococcus luteus UV endonuclease efficiently incises uvDNA regardless of its topological state. The in vitro topodynamic system proposed in this study may provide a simple model for studying a topological aspect of nucleotide excision repair and its interaction with other DNA topology-related processes in E. coli.
Collapse
Affiliation(s)
- O I Kovalsky
- Department of Biochemistry, School of Hygiene and Public Health, The Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
42
|
Abstract
Transcription when coupled to nucleotide excision repair specifies the location in active genes where preferential DNA repair is to take place. During DNA damage-induced recruitment of RNA polymerase (RNAP), there is a physical association of the beta subunit of Escherichia coli RNAP and the UvrA component of the repair apparatus (G. C. Lin and L. Grossman, submitted for publication). This molecular affinity is reflected in the ability of the RNAP to increase, in a promoter-dependent manner, DNA supercoiling by the UvrAB complex. In the presence of the RNAP, the UvrAB complex is able to bind to promoter regions and to translocate in a 5' to 3' direction along the non-transcribed strand. As a consequence of this helicase-catalyzed translocation, preferential incision of DNA damaged sites occurs downstream on the transcribed strand. Because of the helicase directionality, the initial binding of the UvrAB complex to the transcribed strand would inevitably lead to its collision with the RNAP. These results imply that the RNAP-induced DNA structure in the vicinity of the transcription start site signals a landing or entry site for the UvrAB complex on DNA.
Collapse
Affiliation(s)
- B Ahn
- Department of Biochemistry, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
43
|
Abstract
Based on the binding of the UvrAB complex to a promoter region in transcription open complexes (Ahn, B., and Grossman, L. (1996) J. Biol. Chem. 271, 21453-21461) and the requirement of a single-stranded region for UvrAB helicase activity, we examined the binding of UvrAB proteins to synthetic bubble or loop regions in duplex DNA and the role of these regions in translocation of the UvrAB complex as well as incision of DNA damage. We found that the UvrAB complex was able to bind to bubble and loop regions with an affinity similar to that for damaged DNA in the absence of RNAP. The preferential recognition and incision of damaged sites by the UvrAB complex was observed downstream of the bubble or loop region in the strand complementary to the strand along which the UvrAB complex translocates. These results imply that the bubble region generated in duplex DNA by RNAP serves as a preferred entry site for the translocation of the UvrAB complex, and that preferential binding and unidirectional translocation of the UvrAB complex predetermine where incision is to occur.
Collapse
Affiliation(s)
- B Ahn
- Department of Biochemistry, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
44
|
Stephens KM, Roush C, Nester E. Agrobacterium tumefaciens VirB11 protein requires a consensus nucleotide-binding site for function in virulence. J Bacteriol 1995; 177:27-36. [PMID: 7798144 PMCID: PMC176552 DOI: 10.1128/jb.177.1.27-36.1995] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
virB11, one of the 11 genes of the virB operon, is absolutely required for transport of T-DNA from Agrobacterium tumefaciens into plant cells. Previous studies reported that VirB11 is an ATPase with autophosphorylation activity and localizes to the inner membrane even though the protein does not contain the consensus N-terminal export sequence. In this report, we show that VirB11 localizes to the inner membrane even in the absence of other tumor-inducing (Ti) plasmid-encoded proteins. To facilitate the further characterization of VirB11, we purified this protein from the soluble fraction of an Escherichia coli extract by fusing VirB11 to the maltose-binding protein. The maltose-binding protein-VirB11 fusion was able to complement a virB11 deletion mutant of A. tumefaciens for tumor formation and also localized properly to the inner membrane of A. tumefaciens. The 72-kDa protein, purified from E. coli, exhibited no autophosphorylation, ATPase activity, or ATP-binding activity. To study the importance of the Walker nucleotide-binding site present in VirB11, mutations were generated to replace the conserved lysine residue with either alanine or arginine. Expression of the virB11K175A mutant gene resulted in an avirulent phenotype, and expression of the virB11K175R mutant gene gave rise to an attenuated virulence phenotype. Both mutant proteins were present at levels three to four times higher than that of VirB11 in the wild-type strain. The mutant genes did not exhibit a transdominant phenotype on tumor formation in bacteria that were expressing wild-type virB11. The mutant proteins also localized properly to the inner membrane of A. tumefaciens, but the VirB11K175R protein appeared to be unstable after lysis of the cells.
Collapse
Affiliation(s)
- K M Stephens
- Department of Microbiology, University of Washington, Seattle 98195
| | | | | |
Collapse
|
45
|
The use of monoclonal antibodies for studying intermediates in DNA repair by the Escherichia coli Uvr(A)BC endonuclease. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47002-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
46
|
Chi NW, Kolodner RD. The effect of DNA mismatches on the ATPase activity of MSH1, a protein in yeast mitochondria that recognizes DNA mismatches. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43979-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Affiliation(s)
- B Van Houten
- Department of Pathology, University of Vermont, Burlington 05405
| | | |
Collapse
|
48
|
Affiliation(s)
- L Grossman
- Department of Biochemistry, Johns Hopkins University, School of Hygiene and Public Health, Baltimore, Maryland 21205
| |
Collapse
|
49
|
Visse R, de Ruijter M, Ubbink M, Brandsma JA, van de Putte P. The first zinc-binding domain of UvrA is not essential for UvrABC-mediated DNA excision repair. Mutat Res 1993; 294:263-74. [PMID: 7692266 DOI: 10.1016/0921-8777(93)90009-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Specific mutations in uvrA were introduced to analyze the role of the zinc-binding domains of the protein in DNA excision repair. Zinc-coordinating cysteines were substituted into non-coordinating serine or glycine residues. Mutations leading to changes in the second zinc-binding domain had a profound effect on UV survival in vivo; however these mutant proteins could not be isolated for in vitro analyses. Amino acid substitutions in the first zinc-binding domain had very little effect on UV survival in vivo. In vitro analyses showed that although this domain no longer coordinates zinc, ATPase activity, helicase activity, DNA binding, incision of damaged DNA and DNA repair synthesis appeared to be normal. Therefore it seems that the first zinc-binding domain of UvrA is not essential for DNA excision repair.
Collapse
Affiliation(s)
- R Visse
- Department of Biochemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
50
|
Thiagalingam S, Grossman L. The multiple roles for ATP in the Escherichia coli UvrABC endonuclease-catalyzed incision reaction. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46855-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|