1
|
Affiliation(s)
- Amar Nath Gupta
- Biophysics and Complex Fluids
Group, Department of Physics, National University of Singapore, 2 Science Drive 3, Republic of Singapore 117542
| | - Johan R. C. van der Maarel
- Biophysics and Complex Fluids
Group, Department of Physics, National University of Singapore, 2 Science Drive 3, Republic of Singapore 117542
| |
Collapse
|
2
|
Zhu X, Ng SY, Gupta AN, Feng YP, Ho B, Lapp A, Egelhaaf SU, Forsyth VT, Haertlein M, Moulin M, Schweins R, van der Maarel JRC. Effect of crowding on the conformation of interwound DNA strands from neutron scattering measurements and Monte Carlo simulations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:061905. [PMID: 20866438 DOI: 10.1103/physreve.81.061905] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 03/18/2010] [Indexed: 05/29/2023]
Abstract
With a view to determining the distance between the two opposing duplexes in supercoiled DNA, we have measured small angle neutron scattering from pHSG298 plasmid (2675 base pairs) dispersed in saline solutions. Experiments were carried out under full and zero average DNA neutron scattering contrast using hydrogenated plasmid and a 1:1 mixture of hydrogenated and perdeuterated plasmid, respectively. In the condition of zero average contrast, the scattering intensity is directly proportional to the single DNA molecule scattering function (form factor), irrespective of the DNA concentration and without complications from intermolecular interference. The form factors are interpreted with Monte Carlo computer simulation. For this purpose, the many body problem of a dense DNA solution was reduced to the one of a single DNA molecule in a congested state by confinement in a cylindrical potential. It was observed that the interduplex distance decreases with increasing concentration of salt as well as plasmid. Therefore, besides ionic strength, DNA crowding is shown to be important in controlling the interwound structure and site juxtaposition of distal segments of supercoiled DNA. This first study exploiting zero average DNA contrast has been made possible by the availability of perdeuterated plasmid.
Collapse
Affiliation(s)
- Xiaoying Zhu
- Department of Physics, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
|
4
|
Korobko AV, Backendorf C, van der Maarel JRC. Plasmid DNA encapsulation within cationic diblock copolymer vesicles for gene delivery. J Phys Chem B 2007; 110:14550-6. [PMID: 16869554 DOI: 10.1021/jp057363b] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the design and structural characterization of cationic diblock copolymer vesicles loaded with plasmid DNA based on a single emulsion technique. For this purpose, a DNA solution was emulsified in an organic solvent and stabilized by an amphiphilic diblock copolymer. The neutral block forms an interfacial brush, whereas the cationic attachment complexes with DNA. A subsequent change of the quality of the organic solvent results in the collapse of the brush and the formation of a capsule. The capsules are subsequently dispersed in aqueous medium to form vesicles and stabilized with an osmotic agent in the external phase. Inside the vesicles, the plasmid is compacted in a liquid-crystalline fashion as shown by the appearance of birefringent textures under crossed polarizers and the increase in fluorescence intensity of labeled DNA. The compaction efficiency and the size distribution of the vesicles were determined by light and electron microscopy, and the integrity of the DNA after encapsulation and subsequent release was confirmed by gel electrophoresis. We demonstrate reverse transfection of in vitro cultured HeLa cancer cells growing on plasmid-copolymer vesicles deposited on a glass substrate.
Collapse
Affiliation(s)
- A V Korobko
- Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | |
Collapse
|
5
|
Zakharova SS, Jesse W, Backendorf C, van der Maarel JRC. Liquid crystal formation in supercoiled DNA solutions. Biophys J 2002; 83:1119-29. [PMID: 12124291 PMCID: PMC1302213 DOI: 10.1016/s0006-3495(02)75235-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The critical concentrations pertaining to the liquid crystal formation of pUC18 plasmid in saline solutions were obtained from (31)P nuclear magnetic resonance, polarized light microscopy, and phase equilibrium experiments. The transition is strongly first order with a broad gap between the isotropic and anisotropic phase. The critical boundaries are strongly and reversibly dependent on temperature and weakly dependent on ionic strength. With polarized light microscopy on magnetically oriented samples, the liquid crystalline phase is assigned cholesteric with a pitch on the order of 4 microm. Preliminary results show that at higher concentrations a true crystal is formed. The isotropic-cholesteric transition is interpreted with lyotropic liquid crystal theory including the effects of charge, orientation entropy, and excluded volume effects. It was found that the molecular free energy associated with the topology of the superhelix is of paramount importance in controlling the width of the phase gap. The theoretical results compare favorably with the critical boundary pertaining to the disappearance of the isotropic phase, but they fail to predict the low concentration at which the anisotropic phase first appears.
Collapse
Affiliation(s)
- Svetlana S Zakharova
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
6
|
Zakharova SS, Jesse W, Backendorf C, Egelhaaf SU, Lapp A, van der Maarel JRC. Dimensions of plectonemically supercoiled DNA. Biophys J 2002; 83:1106-18. [PMID: 12124290 PMCID: PMC1302212 DOI: 10.1016/s0006-3495(02)75234-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
With a view to determine the configuration and regularity of plectonemically supercoiled DNA, we have measured the small angle neutron scattering from pUC18 plasmid in saline solutions. Furthermore, we have derived the mathematical expression for the single chain scattering function (form factor) of a superhelical structure, including the longitudinal and transverse interference over the plectonemic pitch and radius, respectively. It was found that an interwound configuration describes the data well, provided interactions among supercoils are accounted for in the second virial approximation. The opening angle was observed to be relatively constant and close to 58 degrees, but it was necessary to include a significant distribution in radius and pitch. For diluted supercoils with vanishing mutual interaction, the derived structural results agree with independent measurements, including the distribution in linking number deficit as determined by gel electrophoresis. With increasing plasmid concentration, prior and covering the transition to the liquid-crystalline phase, the radius and pitch are seen to decrease significantly. The latter observation shows that compaction of negatively supercoiled DNA by confinement results in a decrease in writhing number at the cost of a positive twist exerted on the DNA duplex. It is our conjecture that the free energy associated with this excess twist is of paramount importance in controlling the critical boundaries pertaining to the transition to the anisotropic, liquid-crystalline phase.
Collapse
Affiliation(s)
- Svetlana S Zakharova
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
7
|
Lloyd RS. The initiation of DNA base excision repair of dipyrimidine photoproducts. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 62:155-75. [PMID: 9932454 DOI: 10.1016/s0079-6603(08)60507-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
One of the major DNA repair pathways is base excision repair, in which DNA bases that have been damaged by endogenous or exogenous agents are removed by the action of a class of enzymes known as DNA glycosylases. One subset of the known DNA glycosylases has an associated abasic lyase activity that generates a phosphodiester bond scission. The base excision pathway is completed by the sequential action of abasic endonucleases, DNA polymerases, and DNA ligases. Base excision repair of ultraviolet (UV) light-induced dipyrimidine photoproducts has been described in a variety of prokaryotic and eukaryotic organisms and phages. These enzymes vary significantly in their exact substrate specificity and in the catalytic mechanism by which repair is initiated. The prototype enzyme within this class of UV-specific DNA glycosylases is T4 endonuclease V. Endonuclease V holds the distinction of being the first glycosylase (1) to have its structure solved by X-ray diffraction of the enzyme alone as well as in complex with pyrimidine dimer-containing DNA, (2) to have its key catalytic active site residues identified, and (3) to have its mechanism of target DNA site location determined and the biological relevance of this process established. Thus, the study of endonuclease V has been critical in gaining a better understanding of the mechanisms of all DNA glycosylases.
Collapse
Affiliation(s)
- R S Lloyd
- Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, Texas 77555, USA
| |
Collapse
|
8
|
Kovalsky OI, Grossman L, Ahn B. The topodynamics of incision of UV-irradiated covalently closed DNA by the Escherichia coli Uvr(A)BC endonuclease. J Biol Chem 1996; 271:33236-41. [PMID: 8969181 DOI: 10.1074/jbc.271.52.33236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Escherichia coli Uvr(A)BC endonuclease (Uvr(A)BC) initiates nucleotide excision repair of a large variety of DNA damages. The damage recognition and incision steps by the Uvr(A)BC is a complex process utilizing an ATP-dependent DNA helix-tracking activity associated with the UvrA2B1 complex. The latter activity leads to the generation of highly positively supercoiled DNA in the presence of E. coli topoisomerase I in vitro. Such highly positively supercoiled DNA, containing ultraviolet irradiation-induced photoproducts (uvDNA), is resistant to the incision by Uvr(A)BC, whereas the negatively supercoiled and relaxed forms of the uvDNA are effectively incised. The E. coli gyrase can contribute to the above reaction by abolishing the accumulation of highly positively supercoiled uvDNA thereby restoring Uvr(A)BC-catalyzed incision. Eukaryotic (calf thymus) topoisomerase I is able to substitute for gyrase in restoring this Uvr(A)BC-mediated incision reaction. The inability of Uvr(A)BC to incise highly positively supercoiled uvDNA results from the failure of the formation of UvrAB-dependent obligatory intermediates associated with the DNA conformational change. In contrast to Uvr(A)BC, the Micrococcus luteus UV endonuclease efficiently incises uvDNA regardless of its topological state. The in vitro topodynamic system proposed in this study may provide a simple model for studying a topological aspect of nucleotide excision repair and its interaction with other DNA topology-related processes in E. coli.
Collapse
Affiliation(s)
- O I Kovalsky
- Department of Biochemistry, School of Hygiene and Public Health, The Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
9
|
Affiliation(s)
- L Grossman
- Department of Biochemistry, Johns Hopkins University, School of Hygiene and Public Health, Baltimore, Maryland 21205
| |
Collapse
|
10
|
Abstract
Nucleotide excision repair is the major DNA repair mechanism in all species tested. This repair system is the sole mechanism for removing bulky adducts from DNA, but it repairs essentially all DNA lesions, and thus, in addition to its main function, it plays a back-up role for other repair systems. In both pro- and eukaryotes nucleotide excision is accomplished by a multisubunit ATP-dependent nuclease. The excision nuclease of prokaryotes incises the eighth phosphodiester bond 5' and the fourth or fifth phosphodiester bond 3' to the modified nucleotide and thus excises a 12-13-mer. The excision nuclease of eukaryotes incises the 22nd, 23rd, or 24th phosphodiester bond 5' and the fifth phosphodiester bond 3' to the lesion and thus removes the adduct in a 27-29-mer. A transcription repair coupling factor encoded by the mfd gene in Escherichia coli and the ERCC6 gene in humans directs the excision nuclease to RNA polymerase stalled at a lesion in the transcribed strand and thus ensures preferential repair of this strand compared to the nontranscribed strand.
Collapse
Affiliation(s)
- A Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599
| | | |
Collapse
|
11
|
Abstract
Torsional tension in DNA may be both a prerequisite for the efficient initiation of transcription and a consequence of the transcription process itself with the generation of positive torsional tension in front of the RNA polymerase and negative torsional tension behind it. To examine torsional tension in specific regions of genomic DNA in vivo, we developed an assay using photoactivated psoralen as a probe for unconstrained DNA superhelicity and x-rays as a means to relax DNA. Psoralen intercalates more readily into DNA underwound by negative torsional tension than into relaxed. DNA, and it can form interstrand DNA cross-links upon UVA irradiation. By comparing the amount of psoralen-induced DNA cross-links in cells irradiated with x-rays either before or after the psoralen treatment, we examined the topological state of the DNA in specific regions of the genome in cultured human 6A3 cells. We found that although no net torsional tension was detected in the bulk of the genome, localized tension was prominent in the DNA of two active genes. Negative torsional tension was found in the 5' end of the amplified dihydrofolate reductase gene and in a region near the 5' end of the 45S rRNA transcription unit, whereas a low level of positive torsional tension was found in a region near the 3' end of the dihydrofolate reductase gene. These results document an intragenomic heterogeneity of DNA torsional tension and lend support to the twin supercoiled domain model for transcription in the genome of intact human cells.
Collapse
Affiliation(s)
- M Ljungman
- Department of Biological Sciences, Stanford University, CA 94305-5020
| | | |
Collapse
|
12
|
Analysis of UvrABC endonuclease reaction intermediates on cisplatin-damaged DNA using mobility shift gel electrophoresis. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50487-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Munn M, Rupp W. Interaction of the UvrABC endonuclease with DNA containing a psoralen monoadduct or cross-link. Differential effects of superhelical density and comparison of preincision complexes. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54293-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Koo HS, Claassen L, Grossman L, Liu LF. ATP-dependent partitioning of the DNA template into supercoiled domains by Escherichia coli UvrAB. Proc Natl Acad Sci U S A 1991; 88:1212-6. [PMID: 1847511 PMCID: PMC50987 DOI: 10.1073/pnas.88.4.1212] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The helicase action of the Escherichia coli UvrAB complex on a covalently closed circular DNA template was monitored using bacterial DNA topoisomerase I, which specifically removes negative supercoils. In the presence of E. coli DNA topoisomerase I and ATP, the UvrAB complex gradually introduced positive supercoils into the input relaxed plasmid DNA template. Positive supercoils were not produced when E. coli DNA topoisomerase I was replaced by eukaryotic DNA topoisomerase I or when both E. coli and eukaryotic DNA topoisomerases I were added simultaneously. These results suggest that like other DNA helix-tracking processes, the ATP-dependent action of the UvrAB complex on duplex DNA simultaneously generates both positive and negative supercoils, which are not constrained by protein binding but are torsionally strained. The supercoiling activity of UvrAB on UV-damaged DNA was also studied using UV-damaged plasmid DNA and a mutant UvrA protein that lacks the 40 C-terminal amino acids and is defective in preferential binding to UV-damaged DNA. UvrAB was found to preferentially supercoil the UV-damaged DNA template, whereas the mutant protein supercoiled UV-damaged and undamaged DNA with equal efficiency. Our results therefore suggest that the DNA helix-tracking activity of UvrAB may be involved in searching and/or prepriming the damaged DNA for UvrC incision. A possible role of supercoiled domains in the incision process is discussed.
Collapse
Affiliation(s)
- H S Koo
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | | | | | | |
Collapse
|
15
|
Abstract
Nucleotide excision is initiated by the UvrABC endonuclease system in which the initial DNA interaction is with UvrA which was dimerized in the presence of ATP. Nucleoprotein formation most likely takes place on undamaged regions of DNA by (UvrA)2 which has been dimerized in the presence of ATP. Topological unwinding of DNA, driven by ATP binding, is increased by the presence of UvrB to approximately a single helical turn. The Uvr(A)2B complex translocates to a damaged site by the combined Uvr(A)2B helicase in which the driving force is provided by the UvrB-associated ATPase. The dual incision reaction is initiated by the binding of the UvrC protein to the Uvr(A)2B-nucleoprotein complex. The proteins in this post-incision nucleoprotein complex do not turn over and require the presence of the UvrD protein and DNA polymerase I under polymerizing conditions. The final integrity of the DNA strands is restored with polynucleotide ligase.
Collapse
Affiliation(s)
- L Grossman
- Department of Biochemistry, Johns Hopkins University, School of Hygiene and Public Health, Baltimore, MD 21205
| | | |
Collapse
|
16
|
Abstract
One of the best-studied DNA repair pathways is nucleotide excision repair, a process consisting of DNA damage recognition, incision, excision, repair resynthesis, and DNA ligation. Escherichia coli has served as a model organism for the study of this process. Recently, many of the proteins that mediate E. coli nucleotide excision have been purified to homogeneity; this had led to a molecular description of this repair pathway. One of the key repair enzymes of this pathway is the UvrABC nuclease complex. The individual subunits of this enzyme cooperate in a complex series of partial reactions to bind to and incise the DNA near a damaged nucleotide. The UvrABC complex displays a remarkable substrate diversity. Defining the structural features of DNA lesions that provide the specificity for damage recognition by the UvrABC complex is of great importance, since it represents a unique form of protein-DNA interaction. Using a number of in vitro assays, researchers have been able to elucidate the action mechanism of the UvrABC nuclease complex. Current research is devoted to understanding how these complex events are mediated within the living cell.
Collapse
Affiliation(s)
- B Van Houten
- Department of Pathology, University of Vermont, Burlington 05405
| |
Collapse
|