1
|
Yoshimoto R, Nakayama Y, Nomura I, Yamamoto I, Nakagawa Y, Tanaka S, Kurihara M, Suzuki Y, Kobayashi T, Kozuka-Hata H, Oyama M, Mito M, Iwasaki S, Yamazaki T, Hirose T, Araki K, Nakagawa S. 4.5SH RNA counteracts deleterious exonization of SINE B1 in mice. Mol Cell 2023; 83:4479-4493.e6. [PMID: 38096826 DOI: 10.1016/j.molcel.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
4.5SH RNA is a highly abundant, small rodent-specific noncoding RNA that localizes to nuclear speckles enriched in pre-mRNA-splicing regulators. To investigate the physiological functions of 4.5SH RNA, we have created mutant mice that lack the expression of 4.5SH RNA. The mutant mice exhibited embryonic lethality, suggesting that 4.5SH RNA is an essential species-specific noncoding RNA in mice. RNA-sequencing analyses revealed that 4.5SH RNA protects the transcriptome from abnormal exonizations of the antisense insertions of the retrotransposon SINE B1 (asB1), which would otherwise introduce deleterious premature stop codons or frameshift mutations. Mechanistically, 4.5SH RNA base pairs with complementary asB1-containing exons via the target recognition region and recruits effector proteins including Hnrnpm via its 5' stem loop region. The modular organization of 4.5SH RNA allows us to engineer a programmable splicing regulator to induce the skipping of target exons of interest. Our results also suggest the general existence of splicing regulatory noncoding RNAs.
Collapse
Affiliation(s)
- Rei Yoshimoto
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata City, Osaka 573-0101, Japan.
| | - Yuta Nakayama
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ikuko Nomura
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ikuko Yamamoto
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yumeka Nakagawa
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata City, Osaka 573-0101, Japan
| | - Shigeyuki Tanaka
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata City, Osaka 573-0101, Japan
| | - Misuzu Kurihara
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yu Suzuki
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Tomohiro Yamazaki
- RNA Biofunction Laboratory, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuro Hirose
- RNA Biofunction Laboratory, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan; Center for Metabolic Regulation of Healthy Aging, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
2
|
Hsu TYT, Simon LM, Neill NJ, Marcotte R, Sayad A, Bland CS, Echeverria GV, Sun T, Kurley SJ, Tyagi S, Karlin KL, Dominguez-Vidaña R, Hartman JD, Renwick A, Scorsone K, Bernardi RJ, Skinner SO, Jain A, Orellana M, Lagisetti C, Golding I, Jung SY, Neilson JR, Zhang XHF, Cooper TA, Webb TR, Neel BG, Shaw CA, Westbrook TF. The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature 2015; 525:384-8. [PMID: 26331541 PMCID: PMC4831063 DOI: 10.1038/nature14985] [Citation(s) in RCA: 380] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 07/24/2015] [Indexed: 12/14/2022]
Abstract
c-MYC (MYC) overexpression or hyperactivation is one of the most common drivers of human cancer. Despite intensive study, the MYC oncogene remains recalcitrant to therapeutic inhibition. MYC is a transcription factor, and many of its pro-tumorigenic functions have been attributed to its ability to regulate gene expression programs1–3. Notably, oncogenic MYC activation has also been shown to increase total RNA and protein production in many tissue and disease contexts4–7. While such increases in RNA and protein production may endow cancer cells with pro-tumor hallmarks, this elevation in synthesis may also generate new or heightened burden on MYC-driven cancer cells to properly process these macromolecules8. Herein, we discover the spliceosome as a new target of oncogenic stress in MYC-driven cancers. We identify BUD31 as a MYC-synthetic lethal gene, and demonstrate that BUD31 is a component of the core spliceosome required for its assembly and catalytic activity. Core spliceosomal factors (SF3B1, U2AF1, and others) associated with BUD31 are also required to tolerate oncogenic MYC. Notably, MYC hyperactivation induces an increase in total pre-mRNA synthesis, suggesting an increased burden on the core spliceosome to process pre-mRNA. In contrast to normal cells, partial inhibition of the spliceosome in MYC-hyperactivated cells leads to global intron retention, widespread defects in pre-mRNA maturation, and deregulation of many essential cell processes. Importantly, genetic or pharmacologic inhibition of the spliceosome in vivo impairs survival, tumorigenicity, and metastatic proclivity of MYC-dependent breast cancers. Collectively, these data suggest that oncogenic MYC confers a collateral stress on splicing and that components of the spliceosome may be therapeutic entry points for aggressive MYC-driven cancers.
Collapse
Affiliation(s)
- Tiffany Y-T Hsu
- Verna &Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Interdepartmental Program in Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lukas M Simon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Nicholas J Neill
- Verna &Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Richard Marcotte
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C4, Canada
| | - Azin Sayad
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C4, Canada
| | - Christopher S Bland
- Verna &Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Gloria V Echeverria
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Tingting Sun
- Verna &Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sarah J Kurley
- Verna &Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Siddhartha Tyagi
- Verna &Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kristen L Karlin
- Verna &Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Rocio Dominguez-Vidaña
- Verna &Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Interdepartmental Program in Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jessica D Hartman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Alexander Renwick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kathleen Scorsone
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ronald J Bernardi
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Samuel O Skinner
- Verna &Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Physics, University of Illinois, Urbana, Illinois 61801, USA
| | - Antrix Jain
- Verna &Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mayra Orellana
- Verna &Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chandraiah Lagisetti
- Center for Chemical Biology, Bioscience Division, SRI International, Menlo Park, California 94025, USA
| | - Ido Golding
- Verna &Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Physics, University of Illinois, Urbana, Illinois 61801, USA
| | - Sung Y Jung
- Verna &Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Joel R Neilson
- Interdepartmental Program in Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xiang H-F Zhang
- The Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Thomas A Cooper
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Thomas R Webb
- Center for Chemical Biology, Bioscience Division, SRI International, Menlo Park, California 94025, USA
| | - Benjamin G Neel
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto M5S 2J7, Canada
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Thomas F Westbrook
- Verna &Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Interdepartmental Program in Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
3
|
Tsuiji H, Yoshimoto R, Hasegawa Y, Furuno M, Yoshida M, Nakagawa S. Competition between a noncoding exon and introns: Gomafu contains tandem UACUAAC repeats and associates with splicing factor-1. Genes Cells 2011; 16:479-90. [PMID: 21463453 PMCID: PMC3116199 DOI: 10.1111/j.1365-2443.2011.01502.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Gomafu (also referred to as RNCR2/MIAT) was originally identified as a noncoding RNA expressed in a particular set of neurons. Unlike protein-coding mRNAs, the Gomafu RNA escapes nuclear export and stably accumulates in the nucleus, making a unique nuclear compartment. Although recent studies have revealed the functional relevance of Gomafu in a series of physiological processes, the underlying molecular mechanism remains largely uncharacterized. In this report, we identified a chicken homologue of Gomafu using a comparative genomic approach to search for functionally important and conserved sequence motifs among evolutionarily distant species. Unexpectedly, we found that all Gomafu RNA examined shared a distinctive feature: tandem repeats of UACUAAC, a sequence that has been identified as a conserved intron branch point in the yeast Saccharomyces cerevisiae. The tandem UACUAAC Gomafu RNA repeats bind to the SF1 splicing factor with a higher affinity than the divergent branch point sequence in mammals, which affects the kinetics of the splicing reaction in vitro. We propose that the Gomafu RNA regulates splicing efficiency by changing the local concentration of splicing factors within the nucleus.
Collapse
Affiliation(s)
- Hitomi Tsuiji
- Nakagawa Initiative Research Unit, RIKEN Advanced Science Institute, Hirosawa, Wako, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
4
|
Gusti V, Kim DS, Gaur RK. Sequestering of the 3' splice site in a theophylline-responsive riboswitch allows ligand-dependent control of alternative splicing. Oligonucleotides 2008; 18:93-9. [PMID: 18321166 DOI: 10.1089/oli.2007.0107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Despite the important role of alternative splicing in various aspects of biological processes, our ability to regulate this process at will remains a challenge. In this report, we asked whether a theophylline-responsive riboswitch could be adapted to manipulate alternative splicing. We constructed a pre-mRNA containing a single upstream 5' splice site and two 3' splice sites, of which the proximal 3' splice site is embedded in theophylline-responsive riboswitch. We show that this pre-mRNA spliced with preferential utilization of proximal 3' splice site in vitro. However, addition of theophylline to the splicing reaction promoted splicing at distal 3' splice site thereby changing the ratio of distal-to-proximal 3' splice site usage by more than twofold. Our data suggest that theophylline influenced 3' splice site choice without affecting the kinetics of the splicing reaction. We conclude that an in vitro selected riboswitch can be adapted to control alternative splicing, which may find many applications in basic, biotechnological, and biomedical research.
Collapse
Affiliation(s)
- Veronica Gusti
- Division of Molecular Biology, Beckman Research, Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | |
Collapse
|
5
|
Bohne J, Wodrich H, Kräusslich HG. Splicing of human immunodeficiency virus RNA is position-dependent suggesting sequential removal of introns from the 5' end. Nucleic Acids Res 2005; 33:825-37. [PMID: 15701754 PMCID: PMC549389 DOI: 10.1093/nar/gki185] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transcription of the HIV-1 genome yields a single primary transcript, which is alternatively spliced to >30 mRNAs. Productive infection depends on inefficient and regulated splicing and appears to proceed in a tight 5' to 3' order. To analyse whether sequential splicing is mediated by the quality of splice sites or by the position of an intron, we inserted the efficient beta-globin intron (BGI) into the 3' region or 5'UTR of a subgenomic expression vector or an infectious proviral plasmid. RNA analysis revealed splicing of the 3' BGI only if all upstream introns were removed, while splicing of the same intron in the 5'UTR was efficient and independent of further splicing. Furthermore, mutation of the upstream splice signal in the subgenomic vector did not eliminate the inhibition of 3' splicing, although the BGI sequence was the only intron in this case. These results suggest that downstream splicing of HIV-1 RNAs is completely dependent on prior splicing of all upstream intron(s). This hypothesis was supported by the mutation of the major 5' splice site in the HIV-1 genome, which completely abolished all splicing. It appears likely that the tight order of splicing is important for HIV-1 replication, which requires the stable production of intron containing RNAs, while splicing of 3' introns on incompletely spliced RNAs would be likely to render them subject to nonsense-mediated decay.
Collapse
Affiliation(s)
- Jens Bohne
- Department of Virology, Universität HeidelbergD-69120 Heidelberg, Germany
- Department of Hematology and Oncology, Hannover Medical SchoolD-30625 Hannover, Germany
| | - Harald Wodrich
- Department of Virology, Universität HeidelbergD-69120 Heidelberg, Germany
- Institute de Généthique Moléculaire de Montepellier CNRS UMR 5535F-34293 Montepellier, France
| | - Hans-Georg Kräusslich
- Department of Virology, Universität HeidelbergD-69120 Heidelberg, Germany
- To whom correspondence should be addressed at Abteilung Virologie, Universitätsklinikum Heidelberg Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany. Tel: +49 6221 56 5001; Fax: +49 6221 56 5003;
| |
Collapse
|
6
|
Guth S, Valcárcel J. Kinetic role for mammalian SF1/BBP in spliceosome assembly and function after polypyrimidine tract recognition by U2AF. J Biol Chem 2000; 275:38059-66. [PMID: 10954700 DOI: 10.1074/jbc.m001483200] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two sequences important for pre-mRNA splicing precede the 3' end of introns in higher eukaryotes, the branch point (BP) and the polypyrimidine (Py) tract. Initial recognition of these signals involves cooperative binding of the splicing factor SF1/mammalian branch point binding protein (mBBP) to the BP and of U2AF(65) to the Py tract. Both factors are required for recruitment of the U2 small nuclear ribonucleoprotein particle (U2 snRNP) to the BP in reactions reconstituted from purified components. In contrast, extensive depletion of ST1/BBP in Saccharomyces cerevisiae does not compromise spliceosome assembly or splicing significantly. As BP sequences are less conserved in mammals, these discrepancies could reflect more stringent requirements for SF1/BBP in this system. We report here that extensive depletion of SF1/mBBP from nuclear extracts of HeLa cells results in only modest reduction of their activity in spliceosome assembly and splicing. Some of these effects reflect differences in the kinetics of U2 snRNP binding. Although U2AF(65) binding was reduced in the depleted extracts, the defects caused by SF1/mBBP depletion could not be fully restored by an increase in occupancy of the Py tract by exogenously added U2AF(65), arguing for a role of SF1/mBBP in U2 snRNP recruitment distinct from promoting U2AF(65) binding.
Collapse
Affiliation(s)
- S Guth
- Gene Expression Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | |
Collapse
|
7
|
Förch P, Puig O, Kedersha N, Martínez C, Granneman S, Séraphin B, Anderson P, Valcárcel J. The apoptosis-promoting factor TIA-1 is a regulator of alternative pre-mRNA splicing. Mol Cell 2000; 6:1089-98. [PMID: 11106748 DOI: 10.1016/s1097-2765(00)00107-6] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report here that the apoptosis-promoting protein TIA-1 regulates alternative pre-mRNA splicing of the Drosophila melanogaster gene male-specific-lethal 2 and of the human apoptotic gene Fas. TIA-1 associates selectively with pre-mRNAs that contain 5' splice sites followed by U-rich sequences. TIA-1 binding to the U-rich stretches facilitates 5' splice site recognition by U1 snRNP. This activity is critical for activation of the weak 5' splice site of msl-2 and for modulating the choice of splice site partner in Fas. Structural and functional similarities with the Saccharomyces cerevisiae splicing factor Nam8 suggest striking evolutionary conservation of a mechanism of pre-mRNA splicing regulation that controls biological processes as diverse as meiosis in yeast, dosage compensation in fruit flies, or programmed cell death in humans.
Collapse
Affiliation(s)
- P Förch
- Gene Expression Programme European Molecular Biology Laboratory Meyerhofstrasse 1 D-69117, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Grosset C, Chen CY, Xu N, Sonenberg N, Jacquemin-Sablon H, Shyu AB. A mechanism for translationally coupled mRNA turnover: interaction between the poly(A) tail and a c-fos RNA coding determinant via a protein complex. Cell 2000; 103:29-40. [PMID: 11051545 DOI: 10.1016/s0092-8674(00)00102-1] [Citation(s) in RCA: 258] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
mRNA turnover mediated by the major protein-coding-region determinant of instability (mCRD) of the c-fos proto-oncogene transcript illustrates a functional interplay between mRNA turnover and translation. We show that the function of mCRD depends on its distance from the poly(A) tail. Five mCRD-associated proteins were identified: Unr, a purine-rich RNA binding protein; PABP, a poly(A) binding protein; PAIP-1, a poly(A) binding protein interacting protein; hnRNP D, an AU-rich element binding protein; and NSAP1, an hnRNP R-like protein. These proteins form a multiprotein complex. Overexpression of these proteins stabilized mCRD-containing mRNA by impeding deadenylation. We propose that a bridging complex forms between the poly(A) tail and the mCRD and ribosome transit disrupts or reorganizes the complex, leading to rapid RNA deadenylation and decay.
Collapse
Affiliation(s)
- C Grosset
- Department of Biochemistry and Molecular Biology, The University of Texas Houston Medical School 77030, USA
| | | | | | | | | | | |
Collapse
|
9
|
Merendino L, Guth S, Bilbao D, Martínez C, Valcárcel J. Inhibition of msl-2 splicing by Sex-lethal reveals interaction between U2AF35 and the 3' splice site AG. Nature 1999; 402:838-41. [PMID: 10617208 DOI: 10.1038/45602] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The protein Sex-lethal (SXL) controls dosage compensation in Drosophila by inhibiting the splicing and translation of male-specific-lethal-2 (msl-2) transcripts. Here we report that splicing inhibition of msl-2 requires a binding site for SXL at the polypyrimidine (poly(Y)) tract associated with the 3' splice site, and an unusually long distance between the poly(Y) tract and the conserved AG dinucleotide at the 3' end of the intron. Only this combination allows efficient blockage of U2 small nuclear ribonucleoprotein particle binding and displacement of the large subunit of the U2 auxiliary factor (U2AF65) from the poly(Y) tract by SXL. Crosslinking experiments with ultraviolet light indicate that the small subunit of U2AF (U2AF35) contacts the AG dinucleotide only when located in proximity to the poly(Y) tract. This interaction stabilizes U2AF65 binding such that SXL can no longer displace it from the poly(Y) tract. Our results reveal a novel function for U2AF35, a critical role for the 3' splice site AG at the earliest steps of spliceosome assembly and the need for a weakened U2AF35-AG interaction to regulate intron removal.
Collapse
Affiliation(s)
- L Merendino
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
10
|
Gebauer F, Merendino L, Hentze MW, Valcárcel J. The Drosophila splicing regulator sex-lethal directly inhibits translation of male-specific-lethal 2 mRNA. RNA (NEW YORK, N.Y.) 1998; 4:142-150. [PMID: 9570314 PMCID: PMC1369603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Male-specific expression of the protein male-specific-lethal 2 (MSL-2) controls dosage compensation in Drosophila. msl-2 gene expression is inhibited in females by Sex-lethal (SXL), an RNA binding protein known to regulate pre-mRNA splicing. An intron present at the 5' untranslated region (UTR) of msl-2 mRNA contains putative SXL binding sites and is retained in female flies. Here we show that SXL plays a dual role in the inhibition of msl-2 expression. Cotransfection of Drosophila Schneider cells with an SXL expression vector and a reporter containing the 5' UTR of msl-2 mRNA resulted in retention of the 5' UTR intron and efficient accumulation of the unspliced mRNA in the cytoplasm, where its translation was blocked by SXL, but not by the intron per se. Both splicing and translation inhibition by SXL were recapitulated in vitro and found to be dependent upon SXL binding to high-affinity sites within the intron, showing that SXL directly regulates these events. Our data reveal a coordinated mechanism for the regulation of msl-2 expression by the same regulatory factor: SXL enforces intron retention in the nucleus and subsequent translation inhibition in the cytoplasm.
Collapse
Affiliation(s)
- F Gebauer
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | |
Collapse
|
11
|
Singh R, Valcárcel J, Green MR. Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science 1995; 268:1173-6. [PMID: 7761834 DOI: 10.1126/science.7761834] [Citation(s) in RCA: 424] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In higher eukaryotes, the polypyrimidine-tract (Py-tract) adjacent to the 3' splice site is recognized by several proteins, including the essential splicing factor U2AF65, the splicing regulator Sex-lethal (Sxl), and polypyrimidine tract-binding protein (PTB), whose function is unknown. Iterative in vitro genetic selection was used to show that these proteins have distinct sequence preferences. The uridine-rich degenerate sequences selected by U2AF65 are similar to those present in the diverse array of natural metazoan Py-tracts. In contrast, the Sxl-consensus is a highly specific sequence, which can help explain the ability of Sxl to regulate splicing of transformer pre-mRNA and autoregulate splicing of its own pre-mRNA. The PTB-consensus is not a typical Py-tract; it can be found in certain alternatively spliced pre-mRNAs that undergo negative regulation. Here it is shown that PTB can regulate alternative splicing by selectively repressing 3' splice sites that contain a PTB-binding site.
Collapse
Affiliation(s)
- R Singh
- Howard Hughes Medical Institute, Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester 01605, USA
| | | | | |
Collapse
|
12
|
Abstract
Although the role of U1 small nuclear RNAs (snRNAs) in 5' splice site recognition is well established, suppressor U1 snRNAs active in intact multicellular animals have been lacking. Here we describe suppression of a 5' splice site mutation in the Drosophila melanogaster white gene (wDR18) by compensatory changes in U1 snRNA. Mutation of positions -1 and +6 of the 5' splice site of the second intron (ACG[GTGAGT to ACC]GTGAGC) results in the accumulation of RNA retaining this 74-nucleotide intron in both transfected cells and transgenic flies. U1-3G, a suppressor U1 snRNA which restores base-pairing at position +6 of the mutant intron, increases the ratio of spliced to unspliced wDR18 RNA up to fivefold in transfected Schneider cells and increases eye pigmentation in wDR18 flies. U1-9G, which targets position -1, suppresses wDR18 in transfected cells less well. U1-3G,9G has the same effect as U1-3G although it accumulates to lower levels. Suppression of wDR18 has revealed that the U1b embryonic variant (G134 to U) is active in Schneider cells and pupal eye discs. However, the combination of 9G with 134U leads to reduced accumulation of both U1b-9G and U1b-3G,9G, possibly because nucleotides 9 and 134 both participate in a potential long-range intramolecular base-pairing interaction. High levels of functional U1-3G suppressor reduce both viability and fertility in transformed flies. These results show that, despite the difficulties inherent in stably altering splice site selection in multicellular organisms, it is possible to obtain suppressor U1 snRNAs in flies.
Collapse
Affiliation(s)
- P C Lo
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | | | |
Collapse
|
13
|
Zuo P, Manley JL. The human splicing factor ASF/SF2 can specifically recognize pre-mRNA 5' splice sites. Proc Natl Acad Sci U S A 1994; 91:3363-7. [PMID: 7512732 PMCID: PMC43577 DOI: 10.1073/pnas.91.8.3363] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
ASF/SF2 is a human protein previously shown to function in in vitro pre-mRNA splicing as an essential factor necessary for all splices and also as an alternative splicing factor, capable of switching selection of 5' splice sites. To begin to study the protein's mechanism of action, we have investigated the RNA binding properties of purified recombinant ASF/SF2. Using UV crosslinking and gel shift assays, we demonstrate that the RNA binding region of ASF/SF2 can interact with RNA in a sequence-specific manner, recognizing the 5' splice site in each of two different pre-mRNAs. Point mutations in the 5' splice site consensus can reduce binding by as much as a factor of 100, with the largest effects observed in competition assays. These findings support a model in which ASF/SF2 aids in the recognition of pre-mRNA 5' splice sites.
Collapse
Affiliation(s)
- P Zuo
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | |
Collapse
|
14
|
Valcárcel J, Singh R, Zamore PD, Green MR. The protein Sex-lethal antagonizes the splicing factor U2AF to regulate alternative splicing of transformer pre-mRNA. Nature 1993; 362:171-5. [PMID: 7680770 DOI: 10.1038/362171a0] [Citation(s) in RCA: 239] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Somatic sexual differentiation in Drosophila melanogaster involves a cascade of regulated splicing events and provides an attractive model system for the analysis of alternative splicing mechanisms. The protein Sex-lethal (Sxl) activates a female-specific 3' splice site in the first intron of transformer (tra) pre-mRNA while repressing an alternative non-sex-specific site. We have developed an in vitro system that recapitulates this regulation in a manner consistent with genetic, transfection and fly transformation studies. Using this system, we have determined the molecular basis of the splice site switch. Here we show that Sxl inhibits splicing to the non-sex-specific (default) site by specifically binding to its polypyrimidine tract, blocking the binding of the essential splicing factor U2AF. This enables U2AF to activate the lower-affinity female-specific site. A splicing 'effector' domain present in U2AF but absent from Sxl accounts for the different activities of these two polypyrimidine-tract-binding proteins: addition of the U2AF effector domain to Sxl converts it from a splicing repressor to an activator and renders it unable to mediate splice-site switching.
Collapse
Affiliation(s)
- J Valcárcel
- Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester 01605
| | | | | | | |
Collapse
|
15
|
Mount SM, Burks C, Hertz G, Stormo GD, White O, Fields C. Splicing signals in Drosophila: intron size, information content, and consensus sequences. Nucleic Acids Res 1992; 20:4255-62. [PMID: 1508718 PMCID: PMC334133 DOI: 10.1093/nar/20.16.4255] [Citation(s) in RCA: 309] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A database of 209 Drosophila introns was extracted from Genbank (release number 64.0) and examined by a number of methods in order to characterize features that might serve as signals for messenger RNA splicing. A tight distribution of sizes was observed: while the smallest introns in the database are 51 nucleotides, more than half are less than 80 nucleotides in length, and most of these have lengths in the range of 59-67 nucleotides. Drosophila splice sites found in large and small introns differ in only minor ways from each other and from those found in vertebrate introns. However, larger introns have greater pyrimidine-richness in the region between 11 and 21 nucleotides upstream of 3' splice sites. The Drosophila branchpoint consensus matrix resembles C T A A T (in which branch formation occurs at the underlined A), and differs from the corresponding mammalian signal in the absence of G at the position immediately preceding the branchpoint. The distribution of occurrences of this sequence suggests a minimum distance between 5' splice sites and branchpoints of about 38 nucleotides, and a minimum distance between 3' splice sites and branchpoints of 15 nucleotides. The methods we have used detect no information in exon sequences other than in the few nucleotides immediately adjacent to the splice sites. However, Drosophila resembles many other species in that there is a discontinuity in A + T content between exons and introns, which are A + T rich.
Collapse
Affiliation(s)
- S M Mount
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | | | | | | | | | |
Collapse
|
16
|
Siebel CW, Fresco LD, Rio DC. The mechanism of somatic inhibition of Drosophila P-element pre-mRNA splicing: multiprotein complexes at an exon pseudo-5' splice site control U1 snRNP binding. Genes Dev 1992; 6:1386-401. [PMID: 1322855 DOI: 10.1101/gad.6.8.1386] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Somatic inhibition restricts splicing of the Drosophila P-element third intron (IVS3) to the germ line. We have exploited this simple system to provide a model for a mechanism of alternative pre-mRNA splicing. Biochemical complementation experiments revealed that Drosophila somatic extracts inhibited U1 snRNP binding to the 5' splice site. Using sensitive RNase protection and modification-interference assays, we found that U1 snRNP bound to a pseudo-5' splice site in the 5' exon and that multiprotein complexes bound to an adjacent site. Binding of these factors appeared to mediate the inhibitory effect, because mutations in the pseudo-5' splice sites blocked binding and activated splicing in vitro. Likewise, wild-type, but not mutant, 5' exon RNA titrated inhibitory factors away from the pre-mRNA and activated splicing. Thus, we have defined the pseudo-5' splice sites as crucial components of the regulatory element, correlated the inhibitory activity with specific RNA binding factors from Drosophila somatic cells, and provided a mechanistic description of somatic inhibition. Because the inhibitory activity involves general splicing functions such as protein recognition of 5' splice site sequences and changes in the distribution of bound U1 snRNP, our data may also provide insights into how splice sites are selected.
Collapse
Affiliation(s)
- C W Siebel
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | | | | |
Collapse
|
17
|
A novel protein factor is required for use of distal alternative 5' splice sites in vitro. Mol Cell Biol 1991. [PMID: 1658620 DOI: 10.1128/mcb.11.12.5945] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus E1A pre-mRNA was used as a model to examine alternative 5' splice site selection during in vitro splicing reactions. Strong preference for the downstream 13S 5' splice site over the upstream 12S or 9S 5' splice sites was observed. However, the 12S 5' splice site was used efficiently when a mutant pre-mRNA lacking the 13S 5' splice site was processed, and 12S splicing from this substrate was not reduced by 13S splicing from a separate pre-mRNA, demonstrating that 13S splicing reduced 12S 5' splice site selection through a bona fide cis-competition. DEAE-cellulose chromatography of nuclear extract yielded two fractions with different splicing activities. The bound fraction contained all components required for efficient splicing of simple substrates but was unable to utilize alternative 5' splice sites. In contrast, the flow-through fraction, which by itself was inactive, contained an activity required for alternative splicing and was shown to stimulate 12S and 9S splicing, while reducing 13S splicing, when added to reactions carried out by the bound fraction. Furthermore, the activity, which we have called distal splicing factor (DSF), enhanced utilization of an upstream 5' splice site on a simian virus 40 early pre-mRNA, suggesting that the factor acts in a position-dependent, substrate-independent fashion. Several lines of evidence are presented suggesting that DSF is a non-small nuclear ribonucleoprotein protein. Finally, we describe a functional interaction between DSF and ASF, a protein that enhances use of downstream 5' splice sites.
Collapse
|
18
|
Harper JE, Manley JL. A novel protein factor is required for use of distal alternative 5' splice sites in vitro. Mol Cell Biol 1991; 11:5945-53. [PMID: 1658620 PMCID: PMC361750 DOI: 10.1128/mcb.11.12.5945-5953.1991] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Adenovirus E1A pre-mRNA was used as a model to examine alternative 5' splice site selection during in vitro splicing reactions. Strong preference for the downstream 13S 5' splice site over the upstream 12S or 9S 5' splice sites was observed. However, the 12S 5' splice site was used efficiently when a mutant pre-mRNA lacking the 13S 5' splice site was processed, and 12S splicing from this substrate was not reduced by 13S splicing from a separate pre-mRNA, demonstrating that 13S splicing reduced 12S 5' splice site selection through a bona fide cis-competition. DEAE-cellulose chromatography of nuclear extract yielded two fractions with different splicing activities. The bound fraction contained all components required for efficient splicing of simple substrates but was unable to utilize alternative 5' splice sites. In contrast, the flow-through fraction, which by itself was inactive, contained an activity required for alternative splicing and was shown to stimulate 12S and 9S splicing, while reducing 13S splicing, when added to reactions carried out by the bound fraction. Furthermore, the activity, which we have called distal splicing factor (DSF), enhanced utilization of an upstream 5' splice site on a simian virus 40 early pre-mRNA, suggesting that the factor acts in a position-dependent, substrate-independent fashion. Several lines of evidence are presented suggesting that DSF is a non-small nuclear ribonucleoprotein protein. Finally, we describe a functional interaction between DSF and ASF, a protein that enhances use of downstream 5' splice sites.
Collapse
Affiliation(s)
- J E Harper
- Cold Spring Harbor Laboratory, New York 11724
| | | |
Collapse
|
19
|
Gil A, Sharp PA, Jamison SF, Garcia-Blanco MA. Characterization of cDNAs encoding the polypyrimidine tract-binding protein. Genes Dev 1991; 5:1224-36. [PMID: 1906035 DOI: 10.1101/gad.5.7.1224] [Citation(s) in RCA: 219] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The polypyrimidine tract of mammalian introns is recognized by a 62-kD protein (pPTB). Mutations in the polypyrimidine tract that reduce the binding of pPTB also reduce the efficiency of formation of the pre-spliceosome complex containing U2 snRNP. The PTB protein was purified to homogeneity by affinity chromatography on a matrix containing poly(U), and peptide sequence was used to isolate several cDNAs. Because a variety of cell types express mRNA complementary to these cDNAs, PTB may be a ubiquitous splicing factor. Three classes of cDNAs were identified, on the basis of the presence of additional sequences at an internal position. This variation in sequence probably reflects alternative splicing of the PTB pre-mRNA and produces mRNAs encoding the prototype PTB protein, a form of PTB protein containing 19 additional residues, and a truncated form of PTB protein with a novel carboxyl terminus. A murine homolog of pPTB has been characterized previously as a DNA-binding protein. Sequence comparisons indicate that pPTB is distantly related to the hnRNP L protein and that these two proteins should be considered as members of a novel family of RNA-binding proteins.
Collapse
Affiliation(s)
- A Gil
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
20
|
|
21
|
Bindereif A, Green MR. Identification and functional analysis of mammalian splicing factors. GENETIC ENGINEERING 1991; 12:201-24. [PMID: 1368558 DOI: 10.1007/978-1-4613-0641-2_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Affiliation(s)
- A Bindereif
- Max-Planck-Institut für Molekulare Genetik Otto-Warburg-Laboratorium, Berlin, Germany
| | | |
Collapse
|
22
|
Cunningham SA, Else AJ, Potter BV, Eperon IC. Influences of separation and adjacent sequences on the use of alternative 5' splice sites. J Mol Biol 1991; 217:265-81. [PMID: 1825120 DOI: 10.1016/0022-2836(91)90541-d] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Single nucleotide changes to the sequence between two alternative 5' splice sites, separated by 25 nucleotides in a beta-globin gene derivative, caused substantial shifts in pre-mRNA splicing preferences, both in vivo and in vitro. An activating sequence for splicing was located. Models for the recognition by U1 small nuclear ribonucleoproteins (snRNPs) of competing 5' splice sites were tested by altering the distance separating the two sites. Use of the upstream splice site declined sharply when it was separated from the downstream (natural) site by distances of 40 nucleotides or more. This effect was reversed in vivo, but not in vitro, by altering the upstream sequence to that of a consensus 5' splice site sequence. Dilution of an extract used for splicing in vitro shifted preferences when the sites were close towards the downstream site. We conclude that the mechanism of selection depends on the distance apart of the potential splice sites and that with close sites steric interference between factors bound to both sites may impede splicing and affect splicing preferences.
Collapse
|
23
|
Stolow DT, Berget SM. Identification of nuclear proteins that specifically bind to RNAs containing 5' splice sites. Proc Natl Acad Sci U S A 1991; 88:320-4. [PMID: 1824871 PMCID: PMC50802 DOI: 10.1073/pnas.88.2.320] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Two polypeptides of 26 and 37 kDa (designated SPP-1 and SPP-2) were identified in in vitro splicing extracts by UV crosslinking to splicing precursor RNAs. Crosslinking of both polypeptides required a functional 5' splice site but was not dependent on sequences at the 3' end of the intron. Centrifugation of extract separated the two polypeptides from major U small nuclear ribonucleoproteins (snRNPs), including U1 snRNPs. Both polypeptides crosslinked to precursor RNAs containing 5' splice sites in the absence of U1 RNA. Complexes containing both polypeptides also contained U1 snRNPs, suggesting that SPP-1 and SPP-2 are a part of the functional spliceosome. We propose that SPP-1 and SPP-2 are factors that participate in the recognition of 5' splice sites.
Collapse
Affiliation(s)
- D T Stolow
- Marrs McClean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030
| | | |
Collapse
|
24
|
Abstract
Three exon constructs containing identical intron and exon sequences were mutated at the 5' splice site beginning intron 2 and assayed for the effect of the mutation on splicing of the upstream intron in vitro. Alteration of two or six bases within the 5' splice site reduced removal of intron 1 at least 20-fold, as determined by quantitation of either spliced product or released lariat RNA. The prominent product was skip splicing of exon 1 to exon 3. Examination of complex formation indicated that mutation of the 5' splice site terminating exon 2 depressed the ability of precursor RNAs containing just the affected exon to direct assembly in vitro. These results suggest that mutation at the end of an internal exon inhibits the ability of the exon to be recognized by splicing factors. A comparison of the known vertebrate 5' splice site mutations in which the mutation resides at the end of an internal exon indicated that exon skipping is the preferred phenotype for this type of mutation, in agreement with the in vitro observation reported here. Inhibition of splicing by mutation at the distal and of the exon supports the suggestion that exons, rather than splice sites, are the recognition units for assembly of the spliceosome.
Collapse
|
25
|
Abstract
Three exon constructs containing identical intron and exon sequences were mutated at the 5' splice site beginning intron 2 and assayed for the effect of the mutation on splicing of the upstream intron in vitro. Alteration of two or six bases within the 5' splice site reduced removal of intron 1 at least 20-fold, as determined by quantitation of either spliced product or released lariat RNA. The prominent product was skip splicing of exon 1 to exon 3. Examination of complex formation indicated that mutation of the 5' splice site terminating exon 2 depressed the ability of precursor RNAs containing just the affected exon to direct assembly in vitro. These results suggest that mutation at the end of an internal exon inhibits the ability of the exon to be recognized by splicing factors. A comparison of the known vertebrate 5' splice site mutations in which the mutation resides at the end of an internal exon indicated that exon skipping is the preferred phenotype for this type of mutation, in agreement with the in vitro observation reported here. Inhibition of splicing by mutation at the distal and of the exon supports the suggestion that exons, rather than splice sites, are the recognition units for assembly of the spliceosome.
Collapse
Affiliation(s)
- M Talerico
- Marrs McClean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030
| | | |
Collapse
|
26
|
A novel pathway for alternative splicing: identification of an RNA intermediate that generates an alternative 5' splice donor site not present in the primary transcript of AMPD1. Mol Cell Biol 1990. [PMID: 2398891 DOI: 10.1128/mcb.10.10.5271] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AMP deaminase (AMPD) is a central enzyme in eucaryotic energy metabolism, and tissue-specific as well as stage-specific isoforms are found in many vertebrates. This study demonstrates the AMPD1 gene product in rat is alternatively spliced. The second exon, a 12-base miniexon, was found to be excluded or included in a tissue-specific and stage-specific pattern. This example of cassette splicing utilizes a unique pathway through an RNA intermediate that generates an alternative 5' splice donor site at the point where exon 2 is ligated to exon 1. In the analogous intermediate of human AMPD1, the potential 5' splice donor site created at the boundary of exon 1 and exon 2 was a poor substrate for splicing because of differences in exon 2 sequences, and human AMPD1 was not alternatively spliced. These results demonstrate that in some cases alternative splicing may proceed through an RNA intermediate that generates an alternative splice donor site not present in the primary transcript. Discrimination between alternative 5' splice donor sites in the RNA intermediate of AMPD1 is apparently controlled by tissue-specific and stage-specific signals.
Collapse
|
27
|
A novel pathway for alternative splicing: identification of an RNA intermediate that generates an alternative 5' splice donor site not present in the primary transcript of AMPD1. Mol Cell Biol 1990; 10:5271-8. [PMID: 2398891 PMCID: PMC361213 DOI: 10.1128/mcb.10.10.5271-5278.1990] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AMP deaminase (AMPD) is a central enzyme in eucaryotic energy metabolism, and tissue-specific as well as stage-specific isoforms are found in many vertebrates. This study demonstrates the AMPD1 gene product in rat is alternatively spliced. The second exon, a 12-base miniexon, was found to be excluded or included in a tissue-specific and stage-specific pattern. This example of cassette splicing utilizes a unique pathway through an RNA intermediate that generates an alternative 5' splice donor site at the point where exon 2 is ligated to exon 1. In the analogous intermediate of human AMPD1, the potential 5' splice donor site created at the boundary of exon 1 and exon 2 was a poor substrate for splicing because of differences in exon 2 sequences, and human AMPD1 was not alternatively spliced. These results demonstrate that in some cases alternative splicing may proceed through an RNA intermediate that generates an alternative splice donor site not present in the primary transcript. Discrimination between alternative 5' splice donor sites in the RNA intermediate of AMPD1 is apparently controlled by tissue-specific and stage-specific signals.
Collapse
|
28
|
Krol A, Westhof E, Bach M, Lührmann R, Ebel JP, Carbon P. Solution structure of human U1 snRNA. Derivation of a possible three-dimensional model. Nucleic Acids Res 1990; 18:3803-11. [PMID: 2374709 PMCID: PMC331080 DOI: 10.1093/nar/18.13.3803] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The solution structure of human U1 snRNA was investigated by using base-specific chemical probes (dimethylsulfate, carbodiimide, diethylpyrocarbonate) and RNase V1. Chemical reagents were employed under various conditions of salt and temperature and allowed information at the Watson-Crick base-pairing positions to be obtained for 66% of the U1 snRNA bases. Double-stranded or stacked regions were examined with RNase V1. The dat gained from these experiments extend and support the previous 2D model for U1snRNA. However, to elucidate some aspects of the solution data that could not be accounted for by the secondary structure model, the information gathered from structure probing was used to provide the experimental basis required to construct and to test a tertiary structure model by computer graphics modeling. As a result, U1 snRNA is shown to adopt an asymmetrical X-shape that is formed by two helical domains, each one being generated by coaxial stacking of helices at the U1 snRNA cruciform. Chemical reactivities and model building show that a few nucleotides, previously proposed to be unpaired, can form A.G and U.U non Watson-Crick base-pairs, notably in stem-loop B. The structural model we propose for regions G12 to A124 integrates stereochemical constraints and is based both on solution structure data and sequence comparisons between U1 snRNAs.
Collapse
Affiliation(s)
- A Krol
- Laboratoire de Biochimie, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
29
|
Krainer AR, Conway GC, Kozak D. Purification and characterization of pre-mRNA splicing factor SF2 from HeLa cells. Genes Dev 1990; 4:1158-71. [PMID: 2145194 DOI: 10.1101/gad.4.7.1158] [Citation(s) in RCA: 283] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
SF2, an activity necessary for 5' splice site cleavage and lariat formation during pre-mRNA splicing in vitro, has been purified to near homogeneity from HeLa cells. The purest fraction contains only two related polypeptides of 33 kD. This fraction is sufficient to complement an S100 fraction, which contains the remaining splicing factors, to splice several pre-mRNAs. The optimal amount of SF2 required for efficient splicing depends on the pre-mRNA substrate. SF2 is distinct from the hnRNP A1 and U1 snRNP a polypeptides, which are similar in size. Endogenous hnRNA copurifies with SF2, but this activity does not appear to have an essential RNA component. SF2 appear to be necessary for the assembly or stabilization of the earliest specific prespliceosome complex, although in the absence of other components, it can bind RNA in a nonspecific manner. SF2 copurifies with an activity that promotes the annealing of complementary RNAs. Thus, SF2 may promote specific RNA-RNA interactions between snRNAs and pre-mRNA, between complementary snRNA regions, and/or involving intramolecular pre-mRNA helices. Other purified proteins with RNA annealing activity cannot substitute for SF2 in the splicing reaction.
Collapse
Affiliation(s)
- A R Krainer
- Cold Spring Harbor Laboratory, New York 11724
| | | | | |
Collapse
|
30
|
Mayrand SH, Pederson T. Crosslinking of hnRNP proteins to pre-mRNA requires U1 and U2 snRNPs. Nucleic Acids Res 1990; 18:3307-18. [PMID: 2141400 PMCID: PMC330938 DOI: 10.1093/nar/18.11.3307] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Proteins interacting with pre-mRNAs during early stages of spliceosome formation in a HeLa nuclear extract were investigated by photochemical RNA-protein crosslinking. The level of protein crosslinking to a beta-globin pre-mRNA was positively correlated with the presence of an intron. Proteins of 110,000, 59,000 and 39,000 mol. wt. were crosslinked to the beta-globin pre-mRNA, the latter of which was identified as the A1 hnRNP protein. Comparable experiments with an adenovirus pre-mRNA revealed crosslinked proteins of 110,000, 56,000 and 45,000 mol. wt., with the latter identified as belonging to the C group hnRNP proteins. Crosslinking of hnRNP proteins to both the beta-globin and adenovirus pre-mRNAs was eliminated by oligodeoxynucleotide-directed RNase H excision of an internal region (nt 28-42) of U2 RNA, but was not affected by oligo/RNase H cleavage of the 5'-terminal 15 nucleotides of U2 RNA. Cleavage of the 5'-terminal 15 nucleotides of U1 RNA preferentially eliminated crosslinking of the hnRNP A1 protein to both pre-mRNAs. The requirement of intact U1 snRNP for A1 protein crosslinking was further demonstrated by the fact that although micrococcal nuclease-treated extracts did not support crosslinking of A1 hnRNP protein to beta-globin pre-mRNA, crosslinking was restored by addition of a U1 snRNP-enriched fraction.
Collapse
Affiliation(s)
- S H Mayrand
- Cell Biology Group, Worcester Foundation for Experimental Biology, Shrewsbury, MA 01545
| | | |
Collapse
|
31
|
Siebel CW, Rio DC. Regulated splicing of the Drosophila P transposable element third intron in vitro: somatic repression. Science 1990; 248:1200-8. [PMID: 2161558 DOI: 10.1126/science.2161558] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In eukaryotic cells alternative splicing of messenger RNA precursors (pre-mRNA's) is a means of regulating gene expression. Although a number of the components that participate in regulating some alternative splicing events have been identified by molecular genetic procedures, the elucidation of the biochemical mechanisms governing alternative splicing requires in vitro reaction systems. The tissue specificity of P element transposition in Drosophila depends on the germline restriction of pre-mRNA splicing of the P element third intron (IVS3). Drosophila P element IVS3 pre-mRNA substrates were spliced accurately in vitro in heterologous human cell extracts but not in Drosophila somatic cell splicing extracts. Components in Drosophila somatic cell extracts that specifically inhibited IVS3 splicing in vitro were detected by a complementation assay. Biochemical assays for Drosophila RNA binding proteins were then used to detect a 97-kilodalton protein that interacts specifically with 5' exon sequences previously implicated in the control of IVS3 splicing in vivo. Inhibition of IVS3 splicing in vitro could be correlated with binding of the 97-kD protein to 5' exon sequences, suggesting that one aspect of IVS3 tissue-specific splicing involves somatic repression by specific RNA-protein interactions.
Collapse
Affiliation(s)
- C W Siebel
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, MA 02142
| | | |
Collapse
|
32
|
Abstract
Interactions at the 3' end of the intron initiate spliceosome assembly and splice site selection in vertebrate pre-mRNAs. Multiple factors, including U1 small nuclear ribonucleoproteins (snRNPs), are involved in initial recognition at the 3' end of the intron. Experiments were designed to test the possibility that U1 snRNP interaction at the 3' end of the intron during early assembly functions to recognize and define the downstream exon and its resident 5' splice site. Splicing precursor RNAs constructed to have elongated second exons lacking 5' splice sites were deficient in spliceosome assembly and splicing activity in vitro. Similar substrates including a 5' splice site at the end of exon 2 assembled and spliced normally as long as the second exon was less than 300 nucleotides long. U2 snRNPs were required for protection of the 5' splice site terminating exon 2, suggesting direct communication during early assembly between factors binding the 3' and 5' splice sites bordering an exon. We suggest that exons are recognized and defined as units during early assembly by binding of factors to the 3' end of the intron, followed by a search for a downstream 5' splice site. In this view, only the presence of both a 3' and a 5' splice site in the correct orientation and within 300 nucleotides of one another will stable exon complexes be formed. Concerted recognition of exons may help explain the 300-nucleotide-length maximum of vertebrate internal exons, the mechanism whereby the splicing machinery ignores cryptic sites within introns, the mechanism whereby exon skipping is normally avoided, and the phenotypes of 5' splice site mutations that inhibit splicing of neighboring introns.
Collapse
|
33
|
Lear AL, Eperon LP, Wheatley IM, Eperon IC. Hierarchy for 5' splice site preference determined in vivo. J Mol Biol 1990; 211:103-15. [PMID: 2299664 DOI: 10.1016/0022-2836(90)90014-d] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The relationship between preferences among alternative 5' splice sites and their sequences has been investigated for 37 sequences by assessing their use in splicing relative to the 5' splice site of IVS-2 of rabbit beta-globin. There are strong correlations between the intrinsic strength of a 5' splice site and both the extent to which it resembles the consensus sequence and the calculated stability of its interactions with U1 small nuclear RNA. However, present methods of calculating either of the latter values do not allow predictions to be made of the relative preferences among a small number of sequences.
Collapse
Affiliation(s)
- A L Lear
- Department of Biochemistry, University of Leicester, U.K
| | | | | | | |
Collapse
|
34
|
Heinrichs V, Bach M, Winkelmann G, Lührmann R. U1-specific protein C needed for efficient complex formation of U1 snRNP with a 5' splice site. Science 1990; 247:69-72. [PMID: 2136774 DOI: 10.1126/science.2136774] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
One of the functions of U1 small nuclear ribonucleoprotein (snRNP) in the splicing reaction of pre-mRNA molecules is the recognition of the 5' splice site. U1 snRNP proteins as well as base-pair interactions between U1 snRNA and the 5' splice site are important for the formation of the snRNP-pre-mRNA complex. To determine which proteins are needed for complex formation, the ability of U1 snRNPs gradually depleted of the U1-specific proteins C, A, and 70k to bind to an RNA molecule containing a 5' splice site sequence was studied in a nitrocellulose filter binding assay. The most significant effect was always observed when protein C was removed, either alone or together with other U1-specific proteins; the binding was reduced by 50 to 60%. Complementation of protein C-deficient U1 snRNPs with purified C protein restored their 5' splice site binding activity. These data suggest that protein C may potentiate the base-pair interaction between U1 RNA and the 5' splice site.
Collapse
Affiliation(s)
- V Heinrichs
- Institut fuer Molekularbiologie und Tumorforschung, Marburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
35
|
Affiliation(s)
- R Lührmann
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität, Marburg, F.R.G
| |
Collapse
|
36
|
Robberson BL, Cote GJ, Berget SM. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol Cell Biol 1990; 10:84-94. [PMID: 2136768 PMCID: PMC360715 DOI: 10.1128/mcb.10.1.84-94.1990] [Citation(s) in RCA: 307] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Interactions at the 3' end of the intron initiate spliceosome assembly and splice site selection in vertebrate pre-mRNAs. Multiple factors, including U1 small nuclear ribonucleoproteins (snRNPs), are involved in initial recognition at the 3' end of the intron. Experiments were designed to test the possibility that U1 snRNP interaction at the 3' end of the intron during early assembly functions to recognize and define the downstream exon and its resident 5' splice site. Splicing precursor RNAs constructed to have elongated second exons lacking 5' splice sites were deficient in spliceosome assembly and splicing activity in vitro. Similar substrates including a 5' splice site at the end of exon 2 assembled and spliced normally as long as the second exon was less than 300 nucleotides long. U2 snRNPs were required for protection of the 5' splice site terminating exon 2, suggesting direct communication during early assembly between factors binding the 3' and 5' splice sites bordering an exon. We suggest that exons are recognized and defined as units during early assembly by binding of factors to the 3' end of the intron, followed by a search for a downstream 5' splice site. In this view, only the presence of both a 3' and a 5' splice site in the correct orientation and within 300 nucleotides of one another will stable exon complexes be formed. Concerted recognition of exons may help explain the 300-nucleotide-length maximum of vertebrate internal exons, the mechanism whereby the splicing machinery ignores cryptic sites within introns, the mechanism whereby exon skipping is normally avoided, and the phenotypes of 5' splice site mutations that inhibit splicing of neighboring introns.
Collapse
Affiliation(s)
- B L Robberson
- Marrs McClean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|
37
|
Zamore PD, Green MR. Identification, purification, and biochemical characterization of U2 small nuclear ribonucleoprotein auxiliary factor. Proc Natl Acad Sci U S A 1989; 86:9243-7. [PMID: 2531895 PMCID: PMC298470 DOI: 10.1073/pnas.86.23.9243] [Citation(s) in RCA: 309] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Binding of U2 small nuclear ribonucleoprotein (snRNP) to the pre-mRNA branch site is an early step in spliceosome assembly and appears to commit a pre-mRNA to the splicing pathway. We have shown previously that this ATP-dependent binding requires a non-rnRNP factor, U2 snRNP auxiliary factor (U2AF), in addition to U2 snRNP. In this report we have identified U2AF, purified it to homogeneity, and characterized its biochemical properties. Purified U2AF comprises roughly equimolar quantities of two polypeptides, approximately 65 kDa and approximately 35 kDa, which appear to be associated. Measured by ultraviolet crosslinking, the 65-kDa polypeptide binds specifically to the polypyrimidine tract/3' splice site region. U2AF binds rapidly at 4 degrees C in the absence of ATP and remains associated with the pre-mRNA following U2 snRNP binding. Thus, the simple binding of U2AF initiates mammalian spliceosome assembly by facilitating the ATP-dependent binding of U2 snRNP.
Collapse
Affiliation(s)
- P D Zamore
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|