1
|
Boaro A, Ramos LD, Bastos EL, Bechara EJH, Bartoloni FH. Comparison of the mechanisms of DNA damage following photoexcitation and chemiexcitation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 262:113070. [PMID: 39657451 DOI: 10.1016/j.jphotobiol.2024.113070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
In this review, we compare the mechanisms and consequences of electronic excitation of DNA via photon absorption or photosensitization, as well as by chemically induced generation of excited states. The absorption of UV radiation by DNA is known to produce cyclobutane pyrimidine dimers (CPDs) and thymine pyrimidone photoproducts. Photosensitizers are known to enable such transformations using UV-A and visible light by generating triplet species able to transfer energy to DNA. Conversely, chemiexcitation of DNA is a process related to the formation of high energy peroxides whose decomposition leads to triplet excited species. In practice, both photoexcitation and chemiexcitation produce reactive excited species able to promote some DNA nucleobases to their excited state. We discuss the effect of epigenetic methylation modifications of DNA and the role of endogenous and exogenous photosensitizers on the formation of DNA photoproducts via triplet-triplet energy transfer as well as oxidative DNA damages. The mechanisms of pathogenic pathway involving the generation of CPDs via chemiexcitation (namely dark CPDs, dCPDs) are discussed and compared with photoexcitation considering their spatiotemporal characteristics. Recognition of the multifaceted noxious effects of UV radiation opens new horizons for the development of effective electronically excited quenchers, thereby providing a crucial step toward mitigating DNA photodamage.
Collapse
Affiliation(s)
- Andreia Boaro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, SP 09210-580, Brazil; Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP 05403-000, Brazil.
| | - Luiz Duarte Ramos
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, SP 09210-580, Brazil
| | - Erick Leite Bastos
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, SP 09210-580, Brazil; Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | | | - Fernando Heering Bartoloni
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, SP 09210-580, Brazil
| |
Collapse
|
2
|
Cadet J, Angelov D, Di Mascio P, Wagner JR. Contribution of oxidation reactions to photo-induced damage to cellular DNA. Photochem Photobiol 2024; 100:1157-1185. [PMID: 38970297 DOI: 10.1111/php.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/08/2024]
Abstract
This review article is aimed at providing updated information on the contribution of immediate and delayed oxidative reactions to the photo-induced damage to cellular DNA/skin under exposure to UVB/UVA radiations and visible light. Low-intensity UVC and UVB radiations that operate predominantly through direct excitation of the nucleobases are very poor oxidizing agents giving rise to very low amounts of 8-oxo-7,8-dihydroguanine and DNA strand breaks with respect to the overwhelming bipyrimidine dimeric photoproducts. The importance of these two classes of oxidatively generated damage to DNA significantly increases together with a smaller contribution of oxidized pyrimidine bases upon UVA irradiation. This is rationalized in terms of sensitized photooxidation reactions predominantly mediated by singlet oxygen together with a small contribution of hydroxyl radical that appear to also be implicated in the photodynamic effects of the blue light component of visible light. Chemiexcitation-mediated formation of "dark" cyclobutane pyrimidine dimers in UVA-irradiated melanocytes is a recent major discovery that implicates in the initial stage, a delayed generation of reactive oxygen and nitrogen species giving rise to triplet excited carbonyl intermediate and possibly singlet oxygen. High-intensity UVC nanosecond laser radiation constitutes a suitable source of light to generate pyrimidine and purine radical cations in cellular DNA via efficient biphotonic ionization.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitar Angelov
- Laboratoire de Biologie et de Modélisation de la Cellule LMBC, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
- Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University, Balçova, Izmir, Turkey
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - J Richard Wagner
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
3
|
Andrés CMC, de la Lastra JMP, Juan CA, Plou FJ, Pérez-Lebeña E. Chemical Insights into Oxidative and Nitrative Modifications of DNA. Int J Mol Sci 2023; 24:15240. [PMID: 37894920 PMCID: PMC10607741 DOI: 10.3390/ijms242015240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
This review focuses on DNA damage caused by a variety of oxidizing, alkylating, and nitrating species, and it may play an important role in the pathophysiology of inflammation, cancer, and degenerative diseases. Infection and chronic inflammation have been recognized as important factors in carcinogenesis. Under inflammatory conditions, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from inflammatory and epithelial cells, and result in the formation of oxidative and nitrative DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. Cellular DNA is continuously exposed to a very high level of genotoxic stress caused by physical, chemical, and biological agents, with an estimated 10,000 modifications occurring every hour in the genetic material of each of our cells. This review highlights recent developments in the chemical biology and toxicology of 2'-deoxyribose oxidation products in DNA.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. AstrofísicoFco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain;
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain;
| | | |
Collapse
|
4
|
Terao J. Revisiting carotenoids as dietary antioxidants for human health and disease prevention. Food Funct 2023; 14:7799-7824. [PMID: 37593767 DOI: 10.1039/d3fo02330c] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Humans are unique indiscriminate carotenoid accumulators, so the human body accumulates a wide range of dietary carotenoids of different types and to varying concentrations. Carotenoids were once recognized as physiological antioxidants because of their ability to quench singlet molecular oxygen (1O2). In the 1990s, large-scale intervention studies failed to demonstrate that supplementary β-carotene intake reduces the incidence of lung cancer, although its antioxidant activity was supposed to contribute to the prevention of oxidative stress-induced carcinogenesis. Nevertheless, the antioxidant activity of carotenoids has attracted renewed attention as the pathophysiological role of 1O2 has emerged, and as the ability of dietary carotenoids to induce antioxidant enzymes has been revealed. This review focuses on six major carotenoids from fruit and vegetables and revisits their physiological functions as biological antioxidants from the standpoint of health promotion and disease prevention. β-Carotene 9',10'-oxygenase-derived oxidative metabolites trigger increases in the activities of antioxidant enzymes. Lutein and zeaxanthin selectively accumulate in human macular cells to protect against light-induced macular impairment by acting as antioxidants. Lycopene accumulates exclusively and to high concentrations in the testis, where its antioxidant activity may help to eliminate oxidative damage. Dietary carotenoids appear to exert their antioxidant activity in photo-irradiated skin after their persistent deposition in the skin. An acceptable level of dietary carotenoids for disease prevention should be established because they can have deleterious effects as prooxidants if they accumulate to excess levels. Finally, it is expected that the reason why humans are indiscriminate carotenoid accumulators will be understood soon.
Collapse
Affiliation(s)
- Junji Terao
- Faculty of Medicine, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| |
Collapse
|
5
|
Liu K, Luo Y, Hao L, Chen J. Antimicrobial effect of methylene blue in microbiologic culture to diagnose periprosthetic joint infection: an in vitro study. J Orthop Surg Res 2022; 17:571. [PMID: 36577990 PMCID: PMC9795775 DOI: 10.1186/s13018-022-03475-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND As one of the major diagnostic criteria in Musculoskeletal Infection Society, the microbiological diagnosis of periprosthetic joint infection (PJI) performed by analyzing periprosthetic tissue culture is recommended. The goal of this study was to determine if methylene blue (MB) has antibacterial effects that might interfere with microbial culture in vitro. METHODS Eight isolates of reference strains of Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus hominis, Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Streptococcus pyogenes, and Candida albicans were incubated appropriately on blood agar, China blue agar, or Sabouraud's agar plates at 35 ℃. (Streptococci were cultured in a CO2-rich atmosphere.) Each bacterial suspension was formed by 50-fold dilution before the test MB was added. For each strain, bacterial suspension was divided into 3 groups (5 samples each) exposed either MB 0.1%, MB 0.05% or sterile non-bacteriostatic 0.45% saline. The antimicrobial property of MB was determined by measuring the bacterial density on agar plates incubated for 24 h and comparing it with controls unexposed to MB. RESULTS Exposure to MB 0.1% or MB 0.05% negatively affected microbial viability in vitro. Of the diluted form of MB exposure, reference strains of S. hominis and A. baumannii resulted in fewer colony-forming units compared with the sterile saline control. MB concentration was significantly negatively correlated with CFU counts of S. hominis and A. baumannii strains. The antibacterial property of MB 0.1% or MB 0.05% appears to affect the ability to culture the organism in in vitro assays. CONCLUSION MB 0.1% or MB 0.05% has strong antimicrobial activities against some commonly encountered bacterial strains in PJI in vitro. To further evaluate its potential antibacterial usefulness in clinical applications, the next studies are needed to assess the ability of MB to affect the ability to culture the pathogens in vivo, especially in periprosthetic tissue.
Collapse
Affiliation(s)
- Kan Liu
- grid.24695.3c0000 0001 1431 9176Department of Orthopedics, Beijing University of Chinese Medicine Third Affiliated Hospital, No.51 Xiaoguan Street, Beijing, 100029 China
| | - Yanping Luo
- grid.414252.40000 0004 1761 8894Department of Clinical Microbiology, General Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Libo Hao
- grid.414252.40000 0004 1761 8894Department of Orthopedics, General Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Jiying Chen
- grid.414252.40000 0004 1761 8894Department of Orthopedics, General Hospital of Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
6
|
do Prado-Silva L, Brancini GT, Braga GÚ, Liao X, Ding T, Sant’Ana AS. Antimicrobial photodynamic treatment (aPDT) as an innovative technology to control spoilage and pathogenic microorganisms in agri-food products: An updated review. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Zhang Y, Xi K, Fu X, Sun H, Wang H, Yu D, Li Z, Ma Y, Liu X, Huang B, Wang J, Li G, Cui J, Li X, Ni S. Versatile metal-phenolic network nanoparticles for multitargeted combination therapy and magnetic resonance tracing in glioblastoma. Biomaterials 2021; 278:121163. [PMID: 34601197 DOI: 10.1016/j.biomaterials.2021.121163] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Glioblastoma multiforme (GBM) is a common malignancy of the central nervous system, but conventional treatments yield unsatisfactory results. Although innovative therapeutic approaches have been developed, they prolong survival by only approximately 5 months. The heterogeneity of GBM renders growth inhibition with a single drug difficult, and exploring combination approaches with multiple targets for the comprehensive treatment of GBM is expected to overcome this limitation. In this study, we designed a biocompatible cRGD/Pt + DOX@GFNPs (RPDGs) nanoformulation to disrupt redox homeostasis in GBM cells and promote the simultaneous occurrence of efficient apoptosis and ferroptosis. Taking advantage of the highly stable Fenton reaction catalytic activity of gallic acid (GA)/Fe2+ nanoparticles in physiological environments, the ability of Pt (IV) to deplete glutathione (GSH) and increase reactive oxygen species (ROS) levels, and the efficient photothermal conversion efficiency of GA/Fe2+ nanoparticles, our synthesized multifunctional and multitargeted RPDGs significantly increased intracellular ROS levels and thus induced ferroptosis. Furthermore, the RPDGs displayed superior photothermal responsiveness and magnetic resonance imaging (MRI) capabilities. These results indicate that RPDGs can not only directly inhibit the growth of tumors but also effectively improve the efficient translocation of conventional chemotherapeutic drugs across the blood-brain barrier, thereby providing a new approach for the comprehensive treatment of GBM.
Collapse
Affiliation(s)
- Yulin Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Kaiyan Xi
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiao Fu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Haifeng Sun
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Hong Wang
- Radiology Department, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Dexin Yu
- Radiology Department, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Zhiwei Li
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yuan Ma
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xinjie Liu
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
8
|
Baptista MS, Cadet J, Greer A, Thomas AH. Photosensitization Reactions of Biomolecules: Definition, Targets and Mechanisms. Photochem Photobiol 2021; 97:1456-1483. [PMID: 34133762 DOI: 10.1111/php.13470] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023]
Abstract
Photosensitization reactions have been demonstrated to be largely responsible for the deleterious biological effects of UV and visible radiation, as well as for the curative actions of photomedicine. A large number of endogenous and exogenous photosensitizers, biological targets and mechanisms have been reported in the past few decades. Evolving from the original definitions of the type I and type II photosensitized oxidations, we now provide physicochemical frameworks, classifications and key examples of these mechanisms in order to organize, interpret and understand the vast information available in the literature and the new reports, which are in vigorous growth. This review surveys in an extended manner all identified photosensitization mechanisms of the major biomolecule groups such as nucleic acids, proteins, lipids bridging the gap with the subsequent biological processes. Also described are the effects of photosensitization in cells in which UVA and UVB irradiation triggers enzyme activation with the subsequent delayed generation of superoxide anion radical and nitric oxide. Definitions of photosensitized reactions are identified in biomolecules with key insights into cells and tissues.
Collapse
Affiliation(s)
| | - Jean Cadet
- Département de Médecine Nucléaire et de Radiobiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, Brooklyn, NY, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Andrés H Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
9
|
Di Mascio P, Martinez GR, Miyamoto S, Ronsein GE, Medeiros MHG, Cadet J. Singlet Molecular Oxygen Reactions with Nucleic Acids, Lipids, and Proteins. Chem Rev 2019; 119:2043-2086. [DOI: 10.1021/acs.chemrev.8b00554] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Glaucia R. Martinez
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, 81531-990 Curitiba, PR, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Graziella E. Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Marisa H. G. Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4 Québec, Canada
| |
Collapse
|
10
|
Parry JA, Karau MJ, Kakar S, Hanssen AD, Patel R, Abdel MP. Disclosing Agents for the Intraoperative Identification of Biofilms on Orthopedic Implants. J Arthroplasty 2017; 32:2501-2504. [PMID: 28420544 DOI: 10.1016/j.arth.2017.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/02/2017] [Accepted: 03/06/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Disclosing agents are dyes used in dentistry to colorize plaque (biofilm) and may offer a means for intraoperative detection of biofilms on orthopedic implants. Methylene blue (MB) stains biofilm and is safely used in orthopedic applications. Injection of MB into acutely infected prosthetic knees before debridement may enable visualization of biofilm, which could influence treatment decisions. The aims of this study were to determine if MB could be used to visualize biofilm on total knee arthroplasty (TKA) implants and to determine if MB staining has an antimicrobial effect that might interfere with subsequent culture. METHODS Staphylococcus epidermidis biofilms were formed on TKA polyethylene liners and polymethylmethacrylate (PMMA) and Teflon discs. After staining biofilms on these implants, the bacterial densities were determined through sonication and quantitative culture. The antimicrobial activity of MB staining was determined by measuring the bacterial density of S. epidermidis biofilms on PMMA discs incubated in 0.05% MB for 24 hours vs 30 seconds and comparing it with controls unexposed to MB. RESULTS MB stained S. epidermidis biofilms grown on TKA implants and Teflon and PMMA discs in vitro. Sonication and quantitative culture of the stained implants showed that bacterial densities were at supraphysiological levels. Staining did not affect the ability to culture the organism. CONCLUSION MB is a possible cost-effective and novel method to expeditiously identify intraoperative biofilm. To further evaluate MB staining and its potential clinical usefulness, future studies are needed to assess the ability of MB to stain physiological levels of biofilm.
Collapse
Affiliation(s)
- Joshua A Parry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Melissa J Karau
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Arlen D Hanssen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota; Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Matthew P Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
11
|
Alak G, Yeltekin AÇ, Tas IH, Ucar A, Parlak V, Topal A, Kocaman EM, Atamanalp M. Investigation of 8-OHdG, CYP1A, HSP70 and transcriptional analyses of antioxidant defence system in liver tissues of rainbow trout exposed to eprinomectin. FISH & SHELLFISH IMMUNOLOGY 2017; 65:136-144. [PMID: 28400213 DOI: 10.1016/j.fsi.2017.04.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/31/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Eprinomectin (EPM), a member of avermectin family, is a semi-synthetic antibiotic. It has been known that avermectin family enters the aquatic environments and adversely affects the aquatic organisms. Effects of EPM is fully unknown in aquatic organisms especially fish, thus the aim of the present study was to investigate transcriptional changes (sod, cat, gpx) and activities of some antioxidant enzymes (superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) and malondialdehyde (MDA) levels, oxidative DNA damage (8-hydroxy-2-deoxyguanosine (8-OHdG)) and transcriptional changes of heat shock protein 70 (HSP70), and cytochromes P4501A (CYP1A) in liver tissues of rainbow trout exposed to sublethal EPM concentration (0.001 μg/L, 0.002 μg/L, 0.01 μg/L, 0.05 μg/L) for 24 h, 48 h, 72 h and 96 h. The decrease in antioxidant enzyme (SOD, CAT and GPx) activity, transcriptional changes (sod, cat, gpx, HSP70 and CYP1A genes) and increase in MDA level and activity of 8-OHdG in a dose-time-dependent manner in the liver of rainbow trout were observed. The down-regulated of antioxidant (sod, cat and gpx), HSP70 and CYP1A obviously, the severity of which increased with the concentration of EPM and exposure time. The results imply that EPM could induce oxidative damage to the liver tissue of rainbow trout. The information presented in this study is helpful to understand the mechanism of veterinary pharmaceuticals-induced oxidative stress in fishes.
Collapse
Affiliation(s)
- Gonca Alak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey.
| | - Aslı Çilingir Yeltekin
- Department of Chemistry, Faculty of Science, University of Yuzuncu Yıl, TR-65080, Van, Turkey
| | - Ismail Hakkı Tas
- Department of Parasitology, Faculty of Veterinary, Ataturk University, TR-25030 Erzurum, Turkey
| | - Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| | - Veysel Parlak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| | - Ahmet Topal
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| | - Esat Mahmut Kocaman
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| |
Collapse
|
12
|
Donmez-Altuntas H, Bayram F, Bitgen N, Ata S, Hamurcu Z, Baskol G. Increased Chromosomal and Oxidative DNA Damage in Patients with Multinodular Goiter and Their Association with Cancer. Int J Endocrinol 2017; 2017:2907281. [PMID: 28373882 PMCID: PMC5360991 DOI: 10.1155/2017/2907281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/02/2017] [Accepted: 01/12/2017] [Indexed: 12/19/2022] Open
Abstract
Thyroid nodules are a common clinical problem worldwide. Although thyroid cancer accounts for a small percentage of thyroid nodules, the majority are benign. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) levels are a marker of oxidative stress and play a key role in the initiation and development of a range of diseases and cancer types. This study evaluates cytokinesis-block micronucleus cytome (CBMN-cyt) assay parameters and plasma 8-OHdG levels and their association with thyroid nodule size and thyroid hormones in patients with multinodular goiter. The study included 32 patients with multinodular goiter and 18 age- and sex-matched healthy controls. CBMN-cyt assay parameters in peripheral blood lymphocytes of patients with multinodular goiter and controls were evaluated, and plasma 8-OHdG levels were measured. The micronucleus (MN) frequency (chromosomal DNA damage), apoptotic and necrotic cells (cytotoxicity), and plasma 8-OHdG levels (oxidative DNA damage) were significantly higher among patients with multinodular goiter. Our study is the first report of increased chromosomal and oxidative DNA damage in patients with multinodular goiter, which may predict an increased risk of thyroid cancer in these patients. MN frequency and plasma 8-OHdG levels may be markers of the carcinogenic potential of multinodular goiters and could be used for early detection of different cancer types, including thyroid cancer.
Collapse
Affiliation(s)
- Hamiyet Donmez-Altuntas
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- *Hamiyet Donmez-Altuntas:
| | - Fahri Bayram
- Department of Endocrinology and Metabolism, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nazmiye Bitgen
- Department of Chemical Technology, Technical Sciences Vocational School, Aksaray University, Aksaray, Turkey
| | - Sibel Ata
- Department of Endocrinology and Metabolism, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Zuhal Hamurcu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gulden Baskol
- Department of Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
13
|
Taghavian F, Vaezi G, Abdollahi M, Malekirad AA. Comparative Toxicological Study between Exposed and Non-Exposed Farmers to Organophosphorus Pesticides. CELL JOURNAL 2016; 18:89-96. [PMID: 27054123 PMCID: PMC4819391 DOI: 10.22074/cellj.2016.3991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/17/2015] [Indexed: 12/18/2022]
Abstract
Objective The purpose of this work was to compare DNA damage, acetylcholinesterase
(AChE) activity, inflammatory markers and clinical symptoms in farmers exposed to organophosphorus pesticides to individuals that had no pesticide exposure.
Materials and Methods We conducted a cross-sectional survey with a total of 134
people. The subject group consisted of 67 farmers who were exposed to organophosphorus pesticides. The control group consisted of 67 people without any contact with
pesticides matched with the subject group in terms of age, gender, and didactics.
Oxidative DNA damage, the activities of AChE, interleukin-6 (IL6), IL10 and C-reactive
protein (CRP) in serum were measured and clinical examinations conducted in order
to register all clinical signs. Results Compared with the control group, substantial gains were observed in the farmers’ levels of oxidative DNA damage, IL10 and CRP. There was significantly less AChE
activity in farmers exposed to organophosphorus pesticides. The levels of IL6 in both
groups did not significantly differ.
Conclusion The outcomes show that exposure to organophosphorus pesticides may
cause DNA oxidative damage, inhibit AChE activity and increase the serum levels of inflammatory markers. Using biological materials instead of chemical pesticides and encouraging the use of safety equipment by farmers are some solutions to the adverse
effects of exposure to organophosphorous pesticides.
Collapse
Affiliation(s)
- Fariba Taghavian
- Department of Biology, Damghan Branch, Islamic Azad University, Semnan, Iran
| | - Gholamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Semnan, Iran
| | - Mohammad Abdollahi
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
14
|
Reynolds P, Cooper S, Lomax M, O'Neill P. Disruption of PARP1 function inhibits base excision repair of a sub-set of DNA lesions. Nucleic Acids Res 2015; 43:4028-38. [PMID: 25813046 PMCID: PMC4417162 DOI: 10.1093/nar/gkv250] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/18/2023] Open
Abstract
The repair of endogenously induced DNA damage is essential to maintain genomic integrity. It has been shown that XRCC1 and PARP1 are involved in the repair of base lesions and SSBs, although the exact mode of action has yet to be determined. Here we show that XRCC1 is involved in the repair of base lesions and SSBs independent of the cell cycle. However, the rate of repair of damage requiring XRCC1 does reflect the damage complexity. The repair of induced DNA damage occurs by PARP1-dependent and PARP1-independent sub-pathways of BER. It is suggested that the repair of SSBs and purine base damage is by a sub-pathway of BER that requires both XRCC1 and PARP1. Repair of pyrimidine base damage may require XRCC1 but does not require PARP1 activity. Therefore, although BER of simple lesions occurs rapidly, pathway choice and the involvement of PARP1 are highly dependent on the types of lesion induced.
Collapse
Affiliation(s)
- Pamela Reynolds
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Sarah Cooper
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Martine Lomax
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Peter O'Neill
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
15
|
Mulder JE, Bondy GS, Mehta R, Massey TE. The impact of chronic Aflatoxin B1 exposure and p53 genotype on base excision repair in mouse lung and liver. Mutat Res 2015; 773:63-8. [PMID: 25847422 DOI: 10.1016/j.mrfmmm.2015.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 12/05/2014] [Accepted: 01/18/2015] [Indexed: 12/15/2022]
Abstract
Aflatoxin B1 (AFB1) is produced by species of Aspergillus, and is a known human carcinogen. AFB1-induced oxidative DNA damage, specifically 8-hydroxy-2-deoxyguanosine (8-OHdG) lesions, has been demonstrated in both animal models and in humans, and is repaired by base excision repair (BER). The tumour suppressor gene p53 is implicated in the regulation of DNA repair, and heterozygous p53 knockouts have an attenuated nucleotide excision repair response to AFB1. Male heterozygous p53 knockout mice and their wild-type controls were exposed to 0, 0.2 or 1.0ppm AFB1 for 26 weeks in their diet. BER activity of lung and liver was assessed with an in vitro assay, using 8-OHdG-damaged plasmid DNA as a substrate. BER activity did not differ between livers or lungs from untreated wild-type versus heterozygous p53 knockout mice. In wild-type mice, repair was 65% lower in liver extracts from mice exposed to 1.0ppm AFB1 than in liver extracts from mice exposed to 0.2ppm AFB1 (p<0.05), but not significantly lower than that in liver extracts from control mice. AFB1 did not affect BER in lung extracts from wild-type mice, or in lung and liver extracts from heterozygous p53 knockout mice. In liver and lung, AFB1 exposure did not alter levels of 8-oxoguanine glycosylase protein, a key enzyme in the repair of 8-OHdG, and did not cause hepatotoxicity, as indicated by plasma alanine aminotransferase levels. In conclusion, chronic exposure to AFB1 did not affect BER in lungs or livers of heterozygous p53 knockout mice. BER activity was lower in livers from p53 wild type mice exposed to 1.0ppm AFB1 versus those exposed to 0.2ppm AFB1, an effect that was not attributable to liver cell death or altered levels of 8-oxoguanine glycosylase.
Collapse
Affiliation(s)
- Jeanne E Mulder
- Pharmacology and Toxicology Graduate Program, Department of Biomedical and Molecular Sciences, Queen's University Kingston, Ontario, Canada K7L 3N6
| | - Genevieve S Bondy
- Toxicology Research Division, 2202D, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9 Canada
| | - Rekha Mehta
- Toxicology Research Division, 2202D, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9 Canada
| | - Thomas E Massey
- Pharmacology and Toxicology Graduate Program, Department of Biomedical and Molecular Sciences, Queen's University Kingston, Ontario, Canada K7L 3N6.
| |
Collapse
|
16
|
Arjunan KP, Sharma VK, Ptasinska S. Effects of atmospheric pressure plasmas on isolated and cellular DNA-a review. Int J Mol Sci 2015; 16:2971-3016. [PMID: 25642755 PMCID: PMC4346876 DOI: 10.3390/ijms16022971] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 01/02/2023] Open
Abstract
Atmospheric Pressure Plasma (APP) is being used widely in a variety of biomedical applications. Extensive research in the field of plasma medicine has shown the induction of DNA damage by APP in a dose-dependent manner in both prokaryotic and eukaryotic systems. Recent evidence suggests that APP-induced DNA damage shows potential benefits in many applications, such as sterilization and cancer therapy. However, in several other applications, such as wound healing and dentistry, DNA damage can be detrimental. This review reports on the extensive investigations devoted to APP interactions with DNA, with an emphasis on the critical role of reactive species in plasma-induced damage to DNA. The review consists of three main sections dedicated to fundamental knowledge of the interactions of reactive oxygen species (ROS)/reactive nitrogen species (RNS) with DNA and its components, as well as the effects of APP on isolated and cellular DNA in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX 77843, USA.
| | - Sylwia Ptasinska
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
17
|
Choi SS, Lee HK, Chae HS. Synergistic in vitro photodynamic antimicrobial activity of methylene blue and chitosan against Helicobacter pylori 26695. Photodiagnosis Photodyn Ther 2014; 11:526-32. [PMID: 25174558 DOI: 10.1016/j.pdpdt.2014.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 01/26/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) is a method for killing cells (bacterial, fungal and cancer cells) or virus using photosensitizers (PS) and light of various wavelengths. In vitro PDT using endoscopic light against H. pylori was effective at a concentration of 0.2mg/mL of MB. The purpose of this study was to increase the effect of photodynamic modality against H. pylori by addition of chitosan to MB. METHODS The bactericidal effect was measured by counting viable cells after PDT. The degree of damage to DNA was confirmed using alkaline gel electrophoresis. Cellular DNA damage was demonstrated by ethidium bromide monoazide-quantitative polymerase chain reaction (EMA-qPCR). RESULTS In the groups treated with either 0.04 mg/mL MB alone or 0.02 mg/mL MB with endoscopic light for 15 min, viable cells were decreased approximately tenfold. The group treated with 0.04 mg/mL of MB with light, showed more effective bactericidal activity than 0.02 mg/mL of MB treatment. By 0.05% chitosan pre-treatment followed with 0.04 mg/mL of MB and light irradiation, viable cells were decreased 10(7)-fold. The DNA damage caused by PDT as demonstrated by alkaline gel electrophoresis was greater in the MB plus chitosan-treated group than in control and MB-treated groups. Cellular DNA damage demonstrated by EMA-qPCR was also greater in the group treated with MB plus chitosan than in the MB-treated group. CONCLUSION The bactericidal effects with PDT using MB were increased with the concentration of photosensitizer and chitosan treatment, peculiarly before endoscopic light irradiation.
Collapse
Affiliation(s)
- Sung Sook Choi
- College of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Hae Kyung Lee
- Department of Laboratory Medicine, Uijongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hiun Suk Chae
- Internal Medicine, Uijongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Donmez-Altuntas H, Sahin F, Bayram F, Bitgen N, Mert M, Guclu K, Hamurcu Z, Arıbas S, Gundogan K, Diri H. Evaluation of chromosomal damage, cytostasis, cytotoxicity, oxidative DNA damage and their association with body-mass index in obese subjects. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 771:30-6. [PMID: 25308439 DOI: 10.1016/j.mrgentox.2014.06.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 03/29/2014] [Accepted: 05/15/2014] [Indexed: 01/10/2023]
Abstract
Over-weight and obesity are serious problems that increase the risk not only for chronic diseases like diabetes and heart disease but also of various types of cancer. This study was conducted to evaluate cytokinesis-block micronucleus cytome (CBMN-cyt) assay parameters and plasma concentrations of 8-hydroxy-2'-deoxyguanosine (8-OHdG), and their relationship with age, body-mass index (BMI) and waist-to-hip ratio (WHR) in 83 obese, 21 over-weight and 21 normal-weight subjects. Frequencies of micronuclei (MN), nucleoplasmic bridges (NPB), nuclear buds (NBUD), and apoptotic and necrotic cells in lymphocytes of obese subjects were found to be significantly higher than those found in normal-weight and over-weight subjects (p<0.01 and p<0.05), whereas plasma concentrations of 8-OHdG in obese subjects were lower than those observed in normal-weight and over-weight subjects (p<0.05 and p<0.01, respectively). There was a negative correlation between age and frequency of necrotic cells and NDI (p<0.05), whereas there was no correlation between BMI, WHR, CBMN cyt assay parameters and plasma 8-OHdG in normal-weight subjects. In over-weight subjects, a negative correlation was observed between age and NDI (p<0.01) and a positive correlation between age and frequency of NPB (p<0.01) and between BMI and frequency of NBUD (p<0.05). In obese subjects, a negative correlation was observed between age and NDI (p<0.01) and between BMI and NDI (p<0.05), whereas no correlation was observed between WHR and CBMN-cyt assay parameters and plasma 8-OHdG. However, frequencies of MN, NPB, NBUD, apoptotic and necrotic cells in total over-weight/obese (p<0.01/p<0.05) and all subjects (p<0.01) increased with increasing BMI. The increase in genomic damage (MN, NPB and NBUD) in obese subjects and the positive correlation between genomic damage and BMI in total over-weight/obese subjects indicate that obesity increases genomic damage and may be associated with an increased risk of cancer, because an increase in MN frequency is a predictor of cancer risk.
Collapse
Affiliation(s)
| | - Fatma Sahin
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Fahri Bayram
- Department of Endocrinology and Metabolism, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nazmiye Bitgen
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Meral Mert
- Department of Endocrinology and Metabolism, Kayseri Education and Research Hospital, Kayseri, Turkey
| | - Kenan Guclu
- Department of Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Zuhal Hamurcu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Sülbiye Arıbas
- Department of Endocrinology and Metabolism, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Kursat Gundogan
- Intensive Care Unit, Department of Internal Medicine, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Halit Diri
- Department of Endocrinology and Metabolism, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
19
|
Oxidized extracellular DNA suppresses nitric oxide production by endothelial NO synthase (eNOS) in human endothelial cells (HUVEC). Bull Exp Biol Med 2014; 157:202-6. [PMID: 24952486 DOI: 10.1007/s10517-014-2525-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Indexed: 10/25/2022]
Abstract
Circulating DNA from patients with cardiovascular diseases reduce the synthesis of NO in endothelial cells, which is probably related to oxidative modification of DNA. To test this hypothesis, HUVEC cells were cultured in the presence of DNA containing ~1 (nonoxidized DNA), 700, or 2100 8-oxodG/10(6) nucleosides. Nonoxidized DNA stimulated the synthesis of NO, which was associated with an increase in the expression of endothelial NO synthase. Oxidized NO decreased the amount of mRNA and protein for endothelial NO synthase, but increased the relative content of its low active form. These changes were accompanied by reduction of NO production. These findings suggest that oxidative modification of circulating extracellular DNA contributes to endothelial dysfunction manifested in suppression of NO production.
Collapse
|
20
|
Squillace DM, Zhao Z, Call GM, Gao J, Yao JQ. Viral Inactivation of Human Osteochondral Grafts with Methylene Blue and Light. Cartilage 2014; 5:28-36. [PMID: 26069682 PMCID: PMC4297095 DOI: 10.1177/1947603513509650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Cartilage injury is one of the most common disorders of synovial joints. Fresh osteochondral allografts are becoming a standard treatment; however, they are supply constrained with a potential risk of disease transmission. There are no known virucidal processes available for osteochondral allografts and most methods presently available are detrimental to cartilage. Methylene blue light treatment has been shown to be successful in the literature for viral inactivation of fresh frozen plasma. The purpose of this study was to determine the capacity of methylene blue light treatment to inactivate a panel of clinically relevant viruses inoculated onto osteochondral allografts. DESIGN Osteochondral grafts recovered from human cadaveric knees were inoculated with one of the following viruses: bovine viral diarrhea virus (BVDV), hepatitis A virus (HAV), human immunodeficiency virus type 1 (HIV-1), porcine parvovirus (PPV), and pseudorabies virus (PrV). The samples were processed through a methylene blue light treatment, which consisted of an initial soak in nonilluminated circulating methylene blue at ambient temperature, followed by light exposure with circulating methylene blue at cool temperatures. The final titer was compared with the recovery control for the viral log reduction. RESULTS HIV-1, BVDV, and PrV were reduced to nondetectable levels while HAV and PPV were reduced by 3.1 and 5.6 logs, respectively. CONCLUSIONS The methylene blue light treatment was effective in reducing (a) enveloped DNA and RNA viruses to nondetectable levels and (b) nonenveloped DNA and RNA viruses of inoculated human osteochondral grafts by 3.1 to 5.6 logs. This study demonstrates the first practical method for significantly reducing viral load in osteochondral implants.
Collapse
Affiliation(s)
| | - Zhixing Zhao
- Research, Zimmer Orthobiologics, Inc., Austin, TX, USA
| | - Gazell M Call
- Research, Zimmer Orthobiologics, Inc., Austin, TX, USA
| | - Jizong Gao
- Research, Zimmer Orthobiologics, Inc., Austin, TX, USA
| | - Jian Q Yao
- Research and Development, Asia Pacific Region, Zimmer, Inc., Shanghai, China
| |
Collapse
|
21
|
Gupta N, Curtis RM, Mulder JE, Massey TE. Acute in vivo treatment with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone does not alter base excision repair activities in murine lung and liver. DNA Repair (Amst) 2013; 12:1031-6. [DOI: 10.1016/j.dnarep.2013.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 09/07/2013] [Accepted: 09/30/2013] [Indexed: 11/17/2022]
|
22
|
Kitayama T, Fujii K, Nakahara H, Mizuno N, Kasai K, Yonezawa N, Sekiguchi K. Estimation of the detection rate in STR analysis by determining the DNA degradation ratio using quantitative PCR. Leg Med (Tokyo) 2012; 15:1-6. [PMID: 22885165 DOI: 10.1016/j.legalmed.2012.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 05/15/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
Abstract
Performing short tandem repeat (STR) analysis from degraded DNA is a challenge for forensic biologists. For assessing the quality and quantity of DNA, we developed quantitative PCR assays to determine the extent of DNA degradation. Quantitative PCR assays using primers that generate two sizes of amplicons from the same region of genomic DNA were used to determine the extent of DNA degradation. These quantitative PCR assays were used with artificially degraded DNA and degraded DNA extracted from aged bloodstains. Increased DNA degradation correlated with a decrease in the number of detectable loci in STR analysis. The extent of DNA degradation and the number of loci detected by STR analysis varied depending on the method of degradation. The extent of degradation of DNA extracted from aged bloodstains correlated well with that of DNA artificially degraded by DNase I in the presence of Mn(2+). Thus, determination of the extent of DNA degradation was helpful for estimating the number of detectable loci. Furthermore, this estimation method is expected to save time and labor, and is particularly suitable when only a limited amount of DNA can be extracted from casework samples.
Collapse
Affiliation(s)
- Tetsushi Kitayama
- National Research Institute of Police Science, Kashiwa, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Endogenous and exogenous sources cause free radical-induced DNA damage in living organisms by a variety of mechanisms. The highly reactive hydroxyl radical reacts with the heterocyclic DNA bases and the sugar moiety near or at diffusion-controlled rates. Hydrated electron and H atom also add to the heterocyclic bases. These reactions lead to adduct radicals, further reactions of which yield numerous products. These include DNA base and sugar products, single- and double-strand breaks, 8,5'-cyclopurine-2'-deoxynucleosides, tandem lesions, clustered sites and DNA-protein cross-links. Reaction conditions and the presence or absence of oxygen profoundly affect the types and yields of the products. There is mounting evidence for an important role of free radical-induced DNA damage in the etiology of numerous diseases including cancer. Further understanding of mechanisms of free radical-induced DNA damage, and cellular repair and biological consequences of DNA damage products will be of outmost importance for disease prevention and treatment.
Collapse
Affiliation(s)
- Miral Dizdaroglu
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | | |
Collapse
|
24
|
Loseva P, Kostyuk S, Malinovskaya E, Clement N, Dechesne CA, Dani C, Smirnova T, Glebova K, Baidakova G, Baranova A, Izhevskaia V, Ginter E, Veiko N. Extracellular DNA oxidation stimulates activation of NRF2 and reduces the production of ROS in human mesenchymal stem cells. Expert Opin Biol Ther 2012; 12 Suppl 1:S85-97. [PMID: 22594577 DOI: 10.1517/14712598.2012.688948] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Human blood normally contains circulating cell-free DNA (cirDNA). Cell-free DNA (cfDNA) present in cell culture medium is termed extracellular DNA (ecDNA). Its concentration, GC content and oxidation level depend on physiological state of the organism. cirDNA could probably be one of the aggressive factors encountered by therapeutic stem cells. The authors hypothesize that oxidized cirDNA could influence their survival rate. They aimed to uncover the effects of oxidized ecDNAs, including ecDNA of cultivated primary tumor cells and cirDNA from blood plasma of cancer patients on mesenchymal stem cells (MSCs). AREAS COVERED Increased concentrations of cfDNA stimulate a rapid increase in reactive oxygen species (ROS) synthesis and up-regulate antioxidant response genes (NRF2, KEAP1, SOD1, BRCA1, BCL2) in MSCs. This response is more prominent when cfDNA contains higher proportions of 8-oxo-dG. Within an hour, oxidized DNA induces a decrease in ROS production while NRF2 mRNA levels continue to augment and the NRF2 protein translocates into the nucleus. Additionally, oxidized DNA up-regulates PPRAG2 with no apparent induction of adipogenesis. This kind of response is specific for MSCs. EXPERT OPINION Oxidized cfDNA up-regulates NRF2 and PPARG2 and reduces ROS production in MSCs. These effects should be taken into account when considering therapeutic applications of stem cells.
Collapse
Affiliation(s)
- Polina Loseva
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lin SL, Hu JM, Tang SS, Wu XY, Chen ZQ, Tang SZ. Photodynamic inactivation of methylene blue and tungsten-halogen lamp light against food pathogen Listeria monocytogenes. Photochem Photobiol 2012; 88:985-91. [PMID: 22469298 DOI: 10.1111/j.1751-1097.2012.01154.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this study was to verify the bactericidal effect and the damage of photodynamic inactivation (PDI) using methylene blue (MB) and tungsten-halogen lamp over Listeria monocytogenes via atomic force microscopy, absorption spectrophotometry, agarose gel electrophoresis, real-time PCR and SDS-PAGE. The obtained data indicated that the viability of L. monocytogenes was ca 7-log reduced by illumination with 10 min tungsten-halogen lamp light under the presence of 0.5 μg mL(-1) MB, and this bactericidal activity against L. monocytogenes of PDI increased proportionally to the concentration of MB and the duration of irradiation. Moreover, after irradiation with MB and visible light, the leakage of intracellular contents was estimated by spectrophotometer at OD(260) and OD(280), which correlated with morphological alterations. Furthermore, genomic DNA cleavage and protein degradation were also detected after PDI treatment. Consequently, breakage of the membrane, damage of the genomic DNA and degradation of bacterial proteins may play an important role in the mechanisms involved in PDI-MB bactericidal activity on L. monocytogenes.
Collapse
Affiliation(s)
- Shao-ling Lin
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
The water-soluble porphyrins meso-tetrakis[4-(carboxymethyleneoxy)phenyl]porphyrin ( H 2 T4CPP ), meso-tetrakis[3-(carboxymethyleneoxy)phenyl]porphyrin ( H 2 T3CPP ) and meso-tetrakis[3,4-bis(carboxymethyleneoxy)phenyl]porphyrin ( H 2 T3 , 4BCPP ) cleave plasmid pBR322 DNA to single-strand breaks (SSBs) in the presence of molecular oxygen and visible light. These porphyrins induced SSBs in DNA as a function of irradiation time as well as porphyrin concentration. Under similar conditions (10 μM or more), H 2 T3CPP showed more SSBs in DNA than the porphyrins H 2 T 4CPP and H 2 T 3,4 BCPP . The DNA cleavage was more in D 2 O -based buffer than in H 2 O buffer. In addition, this DNA cleavage was inhibited by the presence of sodium azide and lipoic acid, which are potent quenchers of singlet oxygen (1 O 2). These observations suggest the involvement of 1 O 2 in photocleavage of DNA. Further, the DNA cleavage, to a limited extent, was also inhibited by tert-butanol and mannitol, both quenchers of hydroxyl radical (· OH ), suggesting the involvement of · OH in photocleavage of DNA. Thus both 1 O 2 and · OH are involved in photocleavage of plasmid DNA by these porphyrins.
Collapse
Affiliation(s)
- SHAMPA R. CHATTERJEE
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai 400 076, India
| | - T. S. SRIVASTAVA
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai 400 076, India
| | - J. P. KAMAT
- Cell Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - T. P. A. DEVASAGAYAM
- Cell Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|
27
|
Schalow BJ, Courcelle CT, Courcelle J. Escherichia coli Fpg glycosylase is nonrendundant and required for the rapid global repair of oxidized purine and pyrimidine damage in vivo. J Mol Biol 2011; 410:183-93. [PMID: 21601577 DOI: 10.1016/j.jmb.2011.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/03/2011] [Accepted: 05/03/2011] [Indexed: 01/13/2023]
Abstract
Endonuclease (Endo) III and formamidopyrimidine-N-glycosylase (Fpg) are two of the predominant DNA glycosylases in Escherichia coli that remove oxidative base damage. In cell extracts and purified form, Endo III is generally more active toward oxidized pyrimidines, while Fpg is more active towards oxidized purines. However, the substrate specificities of these enzymes partially overlap in vitro. Less is known about the relative contribution of these enzymes in restoring the genomic template following oxidative damage. In this study, we examined how efficiently Endo III and Fpg repair their oxidative substrates in vivo following treatment with hydrogen peroxide. We found that Fpg was nonredundant and required to rapidly remove its substrate lesions on the chromosome. In addition, Fpg also repaired a significant portion of the lesions recognized by Endo III, suggesting that it plays a prominent role in the global repair of both purine damage and pyrimidine damage in vivo. By comparison, Endo III did not affect the repair rate of Fpg substrates and was only responsible for repairing a subset of its own substrate lesions in vivo. The absence of Endo VIII or nucleotide excision repair did not significantly affect the global repair of either Fpg or Endo III substrates in vivo. Surprisingly, replication recovered after oxidative DNA damage in all mutants examined, even when lesions persisted in the DNA, suggesting the presence of an efficient mechanism to process or overcome oxidative damage encountered during replication.
Collapse
Affiliation(s)
- Brandy J Schalow
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA.
| | | | | |
Collapse
|
28
|
Choi SS, Lee HK, Chae HS. In vitro photodynamic antimicrobial activity of methylene blue and endoscopic white light against Helicobacter pylori 26695. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 101:206-9. [PMID: 20692848 DOI: 10.1016/j.jphotobiol.2010.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/06/2010] [Accepted: 07/08/2010] [Indexed: 02/07/2023]
Abstract
Photodynamic therapy (PDT) is a method for inactivating cells (viral, bacterial and cancer cells) using photosensitizers (PS) and light of various wavelengths. Helicobacter pylori might be easily affected by light because it has few genes to repair light-induced DNA damage. In vitro PDT against H. pylori was conducted using endoscopic white light and methylene blue (MB) as the PS before application to in vivo study. The bactericidal effects were measured by counting viable cells after PDT. The degree of oxidative damage of DNA was confirmed using alkaline gel electrophoresis, real-time PCR (RT-PCR) and an assay of 8-hydroxy-2-deoxyguanosine (8-OHdG). In the control group, the number of viable cells was maintained constantly during the experiment. In the groups treated with either 0.2mg/mlMB alone or white light with 0.02mg/mlMB for 10min, bacteria decreased approximately a hundredfold. The killing effect increased proportionally to the PS concentration and the duration of irradiation. DNA damage by PDT proven by alkaline gel electrophoresis, RT-PCR and assay of 8-OHdG, was greater in PDT-treated groups than in control. PDT using MB and endoscopic white light showed effective bactericidal activity in vitro by oxidative DNA damage of H. pylori.
Collapse
Affiliation(s)
- Sung Sook Choi
- College of Pharmacy, Sahmyook University, Seoul, South Korea
| | | | | |
Collapse
|
29
|
Goodarzi MT, Navidi AA, Rezaei M, Babahmadi-Rezaei H. Oxidative damage to DNA and lipids: correlation with protein glycation in patients with type 1 diabetes. J Clin Lab Anal 2010; 24:72-6. [PMID: 20333759 DOI: 10.1002/jcla.20328] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Diabetic hyperglycemia is associated with increased production of reactive oxygen species (ROS). ROS reacts with DNA resulting in various products, such as 8-hydroxydeoxyguanosine (8-OHdG), that excrete in urine owing to DNA repair processes. Urinary 8-OHdG has been proposed as an indicator of oxidative damage to DNA. This study aimed to evaluate relationship between oxidative damage to DNA and protein glycation in patients with Type 1 diabetes. We measured urinary 8-OHdG level in diabetic patients and healthy subjects and discussed its relationship to glycated hemoglobin (HbA(1c)) and glycated serum protein (GSP) levels. Furthermore plasma malondialdehyde (MDA) level monitored as an important indicator of lipid peroxidation in diabetes. We studied 32 patients with Type 1 diabetes mellitus and compared the measured factors with those of 48 age-matched nondiabetic controls. GSP and MDA were measured bycolorimetric assay. Urinary 8-OHdG measurement was carried out using ELISA. In this study urinary 8-OHdG, HbA(1c), plasma MDA, and GSP levels were progressively higher in diabetics than in control subjects (P<0.05). Furthermore we found significant correlation between urinary 8-OHdG and HbA(1c) (P<0.05) in diabetic group. Correlation between fasting blood sugar and GSP were significant. We also found significant correlation between fasting blood sugar and MDA. This case-control study in young diabetic patients showed increased blood glucose and related metabolic disorders result in oxidative stress and oxidative damage to DNA and lipids. Furthermore oxidative damage to DNA is associated to glycemic control level, whereas lipid peroxidation level was not significantly correlated with glycemic control level. J. Clin. Lab. Anal. 24:72-76, 2010. (c) 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Mohammad Taghi Goodarzi
- Department of Biochemistry and Nutrition, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran.
| | | | | | | |
Collapse
|
30
|
Khobta A, Anderhub S, Kitsera N, Epe B. Gene silencing induced by oxidative DNA base damage: association with local decrease of histone H4 acetylation in the promoter region. Nucleic Acids Res 2010; 38:4285-95. [PMID: 20338881 PMCID: PMC2910050 DOI: 10.1093/nar/gkq170] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Oxidized DNA bases, particularly 7,8-dihydro-8-oxoguanine (8-oxoG), are endogenously generated in cells, being a cause of carcinogenic mutations and possibly interfering with gene expression. We found that expression of an oxidatively damaged plasmid DNA is impaired after delivery into human host cells not only due to decreased retention in the transfected cells, but also due to selective silencing of the damaged reporter gene. To test whether the gene silencing was associated with a specific change of the chromatin structure, we determined the levels of histone modifications related to transcriptional activation (acetylated histones H3 and H4) or repression (methylated K9 and K27 of the histone H3, and histone H1) in the promoter region and in the downstream transcribed DNA. Acetylation of histone H4 was found to be specifically decreased by 25% in the proximal promoter region of the damaged gene, while minor quantitative changes in other tested chromatin components could not be proven as significant. Treatment with an inhibitor of histone deacetylases, trichostatin A, partially restored expression of the damaged DNA, suggesting a causal connection between the changes of histone acetylation and persistent gene repression. Based on these findings, we propose that silencing of the oxidatively damaged DNA may occur in a chromatin-mediated mechanism.
Collapse
Affiliation(s)
- Andriy Khobta
- Johannes Gutenberg University of Mainz, Institute of Pharmacy, Staudingerweg 5, 55128 Mainz, Germany.
| | | | | | | |
Collapse
|
31
|
Floyd RA. Serendipitous findings while researching oxygen free radicals. Free Radic Biol Med 2009; 46:1004-13. [PMID: 19439210 PMCID: PMC2683184 DOI: 10.1016/j.freeradbiomed.2009.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/05/2009] [Accepted: 02/05/2009] [Indexed: 11/13/2022]
Abstract
This review is based on the honor of receiving the Discovery Award from the Society of Free Radical Biology and Medicine. The review is reflective and presents our thinking that led to experiments that yielded novel observations. Critical questioning of our understanding of oxygen free radicals in biomedical problems led us to use and develop more direct and extremely sensitive methods. This included nitrone free radical spin trapping and HPLC-electrochemical detection. This technology led to the pioneering use of salicylate to trap hydroxyl free radicals and show increased flux in ischemia/reperfused brain regions and also to first sensitively detect 8-hydroxyl-2-deoxyguanosine in oxidatively damaged DNA and help assess its role in cancer development. We demonstrated that methylene blue (MB) photoinduces formation of 8-hydroxyguanine in DNA and RNA and discovered that MB sensitively photoinactivates RNA viruses, including HIV and the West Nile virus. Studies in experimental stroke led us serendipitously to discover that alpha-phenyl-tert-butylnitrone (PBN) was neuroprotective if given after the stroke. This led to extensive commercial development of NXY-059, a PBN derivative, for the treatment of stroke. More recently we discovered that PBN nitrones have potent anti-cancer activity and are active in preventing hearing loss caused by acute acoustical trauma.
Collapse
Affiliation(s)
- Robert A Floyd
- Experimental Therapeutics Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73170, USA.
| |
Collapse
|
32
|
Dizdaroglu M, Kirkali G, Jaruga P. Formamidopyrimidines in DNA: mechanisms of formation, repair, and biological effects. Free Radic Biol Med 2008; 45:1610-21. [PMID: 18692130 DOI: 10.1016/j.freeradbiomed.2008.07.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 06/26/2008] [Accepted: 07/08/2008] [Indexed: 01/01/2023]
Abstract
Oxidatively induced damage to DNA results in a plethora of lesions comprising modified bases and sugars, DNA-protein cross-links, tandem lesions, strand breaks, and clustered lesions. Formamidopyrimidines, 4,6-diamino-5-formamidopyrimidine (FapyAde) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua), are among the major lesions generated in DNA by hydroxyl radical attack, UV radiation, or photosensitization under numerous in vitro and in vivo conditions. They are formed by one-electron reduction of C8-OH-adduct radicals of purines and thus have a common precursor with 8-hydroxypurines generated upon one-electron oxidation. Methodologies using mass spectrometry exist to accurately measure FapyAde and FapyGua in vitro and in vivo. Formamidopyrimidines are repaired by base excision repair. Numerous prokaryotic and eukaryotic DNA glycosylases are highly specific for removal of these lesions from DNA in the first step of this repair pathway, indicating their biological importance. FapyAde and FapyGua are bypassed by DNA polymerases with the insertion of the wrong intact base opposite them, leading to mutagenesis. In mammalian cells, the mutagenicity of FapyGua exceeds that of 8-hydroxyguanine, which is thought to be the most mutagenic of the oxidatively induced lesions in DNA. The background and formation levels of the former in vitro and in vivo equal or exceed those of the latter under various conditions. FapyAde and FapyGua exist in living cells at significant background levels and are abundantly generated upon exposure to oxidative stress. Mice lacking the genes that encode specific DNA glycosylases accumulate these lesions in different organs and, in some cases, exhibit a series of pathological conditions including metabolic syndrome and cancer. Animals exposed to environmental toxins accumulate formamidopyrimidines in their organs. Here, we extensively review the mechanisms of formation, measurement, repair, and biological effects of formamidopyrimidines that have been investigated in the past 50 years. Our goal is to emphasize the importance of these neglected lesions in many biological and disease processes.
Collapse
Affiliation(s)
- Miral Dizdaroglu
- Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | | | | |
Collapse
|
33
|
Wilson B, Fernández MJ, Lorente A, Grant KB. Synthesis and DNA interactions of a bis-phenothiazinium photosensitizer. Org Biomol Chem 2008; 6:4026-35. [PMID: 18931811 DOI: 10.1039/b810015b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis and characterization of N,N-bis[(7-dimethylamino)phenothiazin-5-ium-3-yl]-4,4-ethylenedipiperidine diiodide (3), consisting of two photosensitizing phenothiazinium rings attached to a central ethylenedipiperidine linker. At all time points (10, 30, 60 min) and all wavelengths (676, 700, 710 nm) tested, photocleavage of pUC19 plasmid DNA (22 degrees C and pH 7.0) was markedly enhanced by 1 microM of 3 in comparison to 1 microM of the parent phenothiazine methylene blue (MB). At concentrations of phenothiazine ranging from 5 to 0.5 microM, the photocleavage levels produced by compound 3 were consistently higher than the cleavage produced using approximately twice the amount of MB (e.g., 710 nm irradiation of 5 microM of 3 and 10 microM of MB cleaved the plasmid DNA in 93% and 71% yields, respectively). Scavenger assays provided evidence for the involvement of singlet oxygen and, to a lesser extent, hydroxyl radicals in DNA damage. Analysis of photocleavage products at nucleotide resolution revealed that direct strand breaks and alkaline-labile lesions occurred predominantly at guanine bases. While compound 3 and MB were both shown to stabilize duplex DNA, the DeltaTm values of calf thymus (CT) and C. perfringens DNAs were approximately three fold higher in the presence of compound 3. Finally, viscometric data indicated that CT DNA interacts with compound 3 and MB by a combination of groove binding and monofunctional intercalation, and with compound 3 by a third, bisintercalative binding mode.
Collapse
Affiliation(s)
- Beth Wilson
- Department of Chemistry, Georgia State University, P.O. Box 4098, Atlanta, GA 30302-4098, USA
| | | | | | | |
Collapse
|
34
|
García-Zubiri IX, Burrows HD, Seixas de Melo JS, Pina J, Monteserín M, Tapia MJ. Effects of the interaction between beta-carboline-3-carboxylic acid N-methylamide and polynucleotides on singlet oxygen quantum yield and DNA oxidative damage. Photochem Photobiol 2008; 83:1455-64. [PMID: 18028221 DOI: 10.1111/j.1751-1097.2007.00187.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complexation of beta-carboline-3-carboxylic acid N-methylamide (betaCMAM) with the sodium salts of the nucleotides polyadenylic (Poly A), polycytidylic (Poly C), polyguanylic (Poly G), polythymidylic (Poly T) and polyuridylic (Poly U) acids, and with double stranded (dsDNA) and single stranded deoxyribonucleic acids (ssDNA) was studied at pH 4, 6 and 9. Predominant 1:1 complex formation is indicated from Job plots. Association constants were determined using the Benesi-Hildebrand equation. BetaCMAM-sensitized singlet oxygen quantum yields were determined at pH 4, 6 and 9, and the effects on this of adding oligonucleotides, dsDNA and ssDNA were studied at the three pH values. With dsDNA, the effect on betaCMAM triplet state formation was also determined through triplet-triplet transient absorption spectra. To evaluate possible oxidative damage of DNA following singlet oxygen betaCMAM photosensitization, we used thiobarbituric acid-reactivity assays and electrophoretic separation of DNA assays. The results showed no oxidative damage at the level of DNA degradation or strand break.
Collapse
|
35
|
|
36
|
García-Zubiri IX, Burrows HD, Sérgio Seixas de Melo J, Pina J, Monteserín M, Tapia MJ. Effects of the Interaction Between ?-Carboline-3-carboxylic acid N-Methylamide and Polynucleotides on Singlet Oxygen Quantum Yield and DNA Oxidative Damage. Photochem Photobiol 2007. [DOI: 10.1111/j.0031-8655.2007.00187.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Rotman E, Kuzminov A. The mutT defect does not elevate chromosomal fragmentation in Escherichia coli because of the surprisingly low levels of MutM/MutY-recognized DNA modifications. J Bacteriol 2007; 189:6976-88. [PMID: 17616589 PMCID: PMC2045204 DOI: 10.1128/jb.00776-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nucleotide pool sanitizing enzymes Dut (dUTPase), RdgB (dITPase), and MutT (8-oxo-dGTPase) of Escherichia coli hydrolyze noncanonical DNA precursors to prevent incorporation of base analogs into DNA. Previous studies reported dramatic AT-->CG mutagenesis in mutT mutants, suggesting a considerable density of 8-oxo-G in DNA that should cause frequent excision and chromosomal fragmentation, irreparable in the absence of RecBCD-catalyzed repair and similar to the lethality of dut recBC and rdgB recBC double mutants. In contrast, we found mutT recBC double mutants viable with no signs of chromosomal fragmentation. Overproduction of the MutM and MutY DNA glycosylases, both acting on DNA containing 8-oxo-G, still yields no lethality in mutT recBC double mutants. Plasmid DNA, extracted from mutT mutM double mutant cells and treated with MutM in vitro, shows no increased relaxation, indicating no additional 8-oxo-G modifications. Our DeltamutT allele elevates the AT-->CG transversion rate 27,000-fold, consistent with published reports. However, the rate of AT-->CG transversions in our mutT(+) progenitor strain is some two orders of magnitude lower than in previous studies, which lowers the absolute rate of mutagenesis in DeltamutT derivatives, translating into less than four 8-oxo-G modifications per genome equivalent, which is too low to cause the expected effects. Introduction of various additional mutations in the DeltamutT strain or treatment with oxidative agents failed to increase the mutagenesis even twofold. We conclude that, in contrast to the previous studies, there is not enough 8-oxo-G in the DNA of mutT mutants to cause elevated excision repair that would trigger chromosomal fragmentation.
Collapse
Affiliation(s)
- Ella Rotman
- Department of Microbiology, University of Illinois at Urbana-Champaign, IL 61801-3709, USA
| | | |
Collapse
|
38
|
Lee HW, Lee HJ, Hong CM, Baker DJ, Bhatia R, O’Connor TR. Monitoring repair of DNA damage in cell lines and human peripheral blood mononuclear cells. Anal Biochem 2007; 365:246-59. [PMID: 17449003 PMCID: PMC3614353 DOI: 10.1016/j.ab.2007.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 03/13/2007] [Accepted: 03/16/2007] [Indexed: 11/20/2022]
Abstract
We introduce a method to follow DNA repair that is suitable for both clinical and laboratory samples. An episomal construct with a unique 8-oxoguanine (8-oxoG) base at a defined position was prepared in vitro using single-stranded phage harboring a 678-bp tract from exons 5 to 9 of the human P53 gene. Mixing curve experiments showed that the real-time PCR method has a linear response to damage, suggesting that it is useful for DNA repair studies. The episomal construct with a unique 8-oxoG base was introduced into AD293 cells or human peripheral blood mononuclear cells, and plasmids were recovered as a function of time. The quantitative real-time PCR assay demonstrated that repair of the 8-oxoG was 80% complete in less than 48 h in AD293 cells. Transfection of small interfering RNAs down-regulated OGG1 expression in AD293 cells and reduced the repair of 8-oxoG to 30%. Transfection of the episome into unstimulated white blood cells showed that 8-oxoG repair had a half-life of 2 to 5h. This method is a rapid, reproducible, and robust way to monitor repair of specific adducts in virtually any cell type.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Biology Department, Hematology Department, Beckman Research Institute, City of Hope National Medical Center, 1450 East Duarte Road, Duarte, CA 91010
| | - Hae-Jung Lee
- Biology Department, Hematology Department, Beckman Research Institute, City of Hope National Medical Center, 1450 East Duarte Road, Duarte, CA 91010
| | - Chong-mu Hong
- Biology Department, Hematology Department, Beckman Research Institute, City of Hope National Medical Center, 1450 East Duarte Road, Duarte, CA 91010
| | - David J. Baker
- Biology Department, Hematology Department, Beckman Research Institute, City of Hope National Medical Center, 1450 East Duarte Road, Duarte, CA 91010
| | - Ravi Bhatia
- Department of Hematology and Bone Marrow Transplantation, Beckman Research Institute, City of Hope National Medical Center, 1450 East Duarte Road, Duarte, CA 91010
| | | |
Collapse
|
39
|
Takai D, Park SH, Takada Y, Ichinose S, Kitagawa M, Akashi M. UV-irradiation induces oxidative damage to mitochondrial DNA primarily through hydrogen peroxide: analysis of 8-oxodGuo by HPLC. Free Radic Res 2007; 40:1138-48. [PMID: 17050167 DOI: 10.1080/10715760600838381] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Roles of reactive oxygen species (ROS) in damage to mitochondrial DNA (mtDNA) following ultraviolet (UV)-irradiation were investigated in the human hepatoma cell line SK-HEP-1. We altered the intracellular status of ROS by the overexpression of manganese superoxide dismutase (MnSOD) and/or catalase. Using HPLC, we analyzed 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), known as a marker of damage to DNA molecules. UV-irradiation resulted in the accumulation of 8-oxodGuo in these cells. The overexpression of MnSOD enhanced the accumulation of 8-oxodGuo by UV. The co-overexpression of catalase inhibited the accumulation of 8-oxodGuo by UV in MnSOD-transfectants. The overexpression of MnSOD reduced the colony forming capacity in SK-HEP-1 cells and the co-overexpression of catalase with MnSOD stimulated the capacity compared to control. UV-irradiation inhibited the colony forming capacity in these cells; no difference was observed among the capacities of control, MnSOD- and catalase-transfectants. However, the overexpression of MnSOD/catalase significantly rescued the reduction of colony forming capacity by UV-irradiation. Our results suggest that the accumulation of hydrogen peroxide plays a key role in the oxidative damage to mtDNA of UV-irradiated cells, and also that the overexpression of both MnSOD and catalase reduces the mtDNA damage and blocks the growth inhibition by UV. Our results also indicate that the increased activity of MnSOD may lead to a toxic effect on mtDNA by UV-irradiation.
Collapse
Affiliation(s)
- Daisaku Takai
- Department of Radiation Emergency Medicine, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Zhang Y, Hu N. Cyclic voltammetric detection of chemical DNA damage induced by styrene oxide in natural dsDNA layer-by-layer films using methylene blue as electroactive probe. Electrochem commun 2007. [DOI: 10.1016/j.elecom.2006.08.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
41
|
Akatsuka S, Aung TT, Dutta KK, Jiang L, Lee WH, Liu YT, Onuki J, Shirase T, Yamasaki K, Ochi H, Naito Y, Yoshikawa T, Kasai H, Tominaga Y, Sakumi K, Nakabeppu Y, Kawai Y, Uchida K, Yamasaki A, Tsuruyama T, Yamada Y, Toyokuni S. Contrasting genome-wide distribution of 8-hydroxyguanine and acrolein-modified adenine during oxidative stress-induced renal carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1328-42. [PMID: 17003489 PMCID: PMC1780183 DOI: 10.2353/ajpath.2006.051280] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oxidative stress is a persistent threat to the genome and is associated with major causes of human mortality, including cancer, atherosclerosis, and aging. Here we established a method to generate libraries of genomic DNA fragments containing oxidatively modified bases by using specific monoclonal antibodies to immunoprecipitate enzyme-digested genome DNA. We applied this technique to two different base modifications, 8-hydroxyguanine and 1,N6-propanoadenine (acrotein-Ade), in a ferric nitrilotriacetate-induced murine renal carcinogenesis model. Renal cortical genomic DNA derived from 10- to 12-week-old male C57BL/6 mice, of untreated control or 6 hours after intraperitoneal injection of 3 mg iron/kg ferric nitrilotriacetate, was enzyme digested, immunoprecipitated, cloned, and mapped to each chromosome. The results revealed that distribution of the two modified bases was not random but differed in terms of chromosomes, gene size, and expression, which could be partially explained by chromosomal territory. In the wild-type mice, low GC content areas were more likely to harbor the two modified bases. Knockout of OGG1, a repair enzyme for genomic 8-hydroxyguanine, increased the amounts of acrolein-Ade as determined by quantitative polymerase chain reaction analyses. This versatile technique would introduce a novel research area as a high-throughput screening method for critical genomic loci under oxidative stress.
Collapse
Affiliation(s)
- Shinya Akatsuka
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Breimer LH. Molecular mechanisms of oxygen radical carcinogenesis and mutagenesis: the role of DNA base damage. Mol Carcinog 2006; 3:188-97. [PMID: 2206282 DOI: 10.1002/mc.2940030405] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- L H Breimer
- Institute of Cancer Research, Chester Beatty Laboratories, London, England
| |
Collapse
|
43
|
Li W, Luo Y, Zhang F, Signore AP, Gobbel GT, Simon RP, Chen J. Ischemic preconditioning in the rat brain enhances the repair of endogenous oxidative DNA damage by activating the base-excision repair pathway. J Cereb Blood Flow Metab 2006; 26:181-98. [PMID: 16001017 DOI: 10.1038/sj.jcbfm.9600180] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The development of ischemic tolerance in the brain, whereby a brief period of sublethal 'preconditioning' ischemia attenuates injury from subsequent severe ischemia, may involve the activation of multiple intracellular signaling events that promote neuronal survival. In this study, the potential role of inducible DNA base-excision repair (BER), an endogenous adaptive response that prevents the detrimental effect of oxidative DNA damage, has been studied in the rat model of ischemic tolerance produced by three episodes of ischemic preconditioning (IP). This paradigm of IP, when applied 2 and 5 days before 2-h middle cerebral artery occlusion (MCAO), significantly decreased infarct volume in the frontal-parietal cortex 72 h later. Correlated with this protective effect, IP markedly attenuated the nuclear accumulations of several oxidative DNA lesions, including 8-oxodG, AP sites, and DNA strand breaks, after 2-h MCAO. Consequently, harmful DNA damage-responsive events, including NAD depletion and p53 activation, were reduced during postischemic reperfusion in preconditioned brains. The mechanism underlying the decreased DNA damage in preconditioned brain was then investigated by measuring BER activities in nuclear extracts. Beta-polymerase-mediated BER activity was markedly increased after IP, and this activation occurred before (24 h) and during the course of ischemic tolerance (48 to 72 h). In similar patterns, the activities for AP site and 8-oxodG incisions were also upregulated after IP. The upregulation of BER activities after IP was likely because of increased expression of repair enzymes beta-polymerase, AP endonuclease, and OGG1. These results suggest that the activation of the BER pathway may contribute to IP-induced neuroprotection by enhancing the repair of endogenous oxidative DNA damage after ischemic injury.
Collapse
Affiliation(s)
- Wenjin Li
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Watanabe-Akanuma M, Inaba Y, Ohta T. Analysis of Photomutagenicity of Thiabendazole with UVA Irradiation: Absence of 8-Hydroxyguanosine Formation. Genes Environ 2006. [DOI: 10.3123/jemsge.28.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
45
|
Park JH, Gopishetty S, Szewczuk LM, Troxel AB, Harvey RG, Penning TM. Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo) by PAH o-quinones: involvement of reactive oxygen species and copper(II)/copper(I) redox cycling. Chem Res Toxicol 2005; 18:1026-37. [PMID: 15962938 PMCID: PMC1314988 DOI: 10.1021/tx050001a] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants and procarcinogens that require activation by host metabolism. Metabolic activation of PAHs by aldo-keto reductases (AKRs) leads to formation of reactive and redox active o-quinones, which may cause oxidatively generated DNA damage. Spectrophotometric assays showed that NADPH caused PAH o-quinones to enter futile redox cycles, which result in the depletion of excess cofactor. Copper(II) amplified NADPH-dependent redox cycling of the o-quinones. Concurrent with NADPH oxidation, molecular oxygen was consumed, indicating the production of ROS. To determine whether PAH o-quinones can cause 8-oxo-dGuo formation in salmon testis DNA, three prerequisite experimental conditions were satisfied. Quantitative complete enzymatic hydrolysis of DNA was achieved, adventitious oxidation of dGuo was eliminated by the use of chelex and desferal, and basal levels of less than 2.0 8-oxo-dGuo/10(5) dGuo were obtained. The HPLC-ECD analytical method was validated by spiking the DNA with standard 8-oxo-dGuo and demonstrating quantitative recovery. HPLC-ECD analysis revealed that in the presence of NADPH and Cu(II), submicromolar concentrations of PAH o-quinones generated >60.0 8-oxo-dGuo adducts/10(5) dGuo. The rank order of 8-oxo-dGuo generated in isolated DNA was NP-1,2-dione > BA-3,4-dione > 7,12-DMBA-3,4-dione > BP-7,8-dione. The formation of 8-oxo-dGuo by PAH o-quinones was concentration-dependent. It was completely or partially inhibited when catalase, tiron, or a Cu(I) specific chelator, bathocuproine, was added, indicating the requirement for H(2)O(2), O(2)(-), and Cu(I), respectively. Methional, which is a copper-hydroperoxo complex [Cu(I)OOH] scavenger, also suppressed 8-oxo-dGuo formation. By contrast, mannitol, sodium benzoate, and sodium formate, which act as hydroxyl radical scavengers, did not block its formation. Sodium azide, which can act as both a hydroxyl radical and a (1)O(2) scavenger, abolished the formation of 8-oxo-dGuo. These data showed that the production of 8-oxo-dGuo was dependent on Cu(II)/Cu(I) catalyzed redox cycling of PAH o-quinones to produce ROS and that the immediate oxidant was not hydroxyl radical or Cu(I)OOH and that it is more likely (1)O(2), which can produce a 4,8-endoperoxide-dGuo intermediate.
Collapse
Affiliation(s)
| | | | | | - Andrea B. Troxel
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Ronald G. Harvey
- The Ben May Institute for Cancer Research, University of Chicago, Chicago, Illinois 60637
| | - Trevor M. Penning
- Department of Pharmacology
- *To whom correspondence should be addressed: Department of Pharmacology, University of Pennsylvania School of Medicine, 130C John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104-6084, USA. Tel: 215-898-9445. Fax: 215-898-7180. E-mail:
| |
Collapse
|
46
|
Floyd RA, Schneider JE, Dittmer DP. Methylene blue photoinactivation of RNA viruses. Antiviral Res 2004; 61:141-51. [PMID: 15168794 DOI: 10.1016/j.antiviral.2003.11.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Accepted: 11/11/2003] [Indexed: 11/25/2022]
Abstract
We present a review of the current status of the use of methylene blue (MB) photoinactivation of viruses starting with the first early observations up to its current use to inactivate HIV-1 in blood products. Basic mechanism of action studies conducted with model bacteriophages indicate that MB-photomediated viral RNA-protein crosslinkage is a primary lesion and that oxygen, specifically singlet oxygen, is very important also. Basic studies on the mechanism of action with HIV are lacking; however, we do show new data illustrating that viral reverse transcriptase inactivation per se cannot account for MB-mediated photoinactivation. We also show data illustrating that MB photomediates the inactivation of West Nile Virus, a flavivirus, which poses a significant new threat to the continental US. MB photoinactivation of viruses show significant promise because the technology not only offers significant potency but the history of safe MB use in human therapy makes it attractive also.
Collapse
Affiliation(s)
- Robert A Floyd
- Oklahoma Medical Research Foundation, Auburn University, Auburn, AL 36849, USA.
| | | | | |
Collapse
|
47
|
Kim SR, Matsui K, Yamada M, Kohno T, Kasai H, Yokota J, Nohmi T. Suppression of chemically induced and spontaneously occurring oxidative mutagenesis by three alleles of human OGG1 gene encoding 8-hydroxyguanine DNA glycosylase. Mutat Res 2004; 554:365-74. [PMID: 15450432 DOI: 10.1016/j.mrfmmm.2004.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 05/11/2004] [Accepted: 05/28/2004] [Indexed: 11/24/2022]
Abstract
8-Hydroxyguanine (8-OH-G) is an oxidatively damaged guanine base that causes G:C to T:A transversion mutations. To counteract the mutagenicity of 8-OH-G in DNA, humans possess the hOGG1 gene, which encodes 8-OH-G DNA glycosylase. Interestingly, genetic polymorphisms at codon 326 (hOGG1-Ser326 versus hOGG1-Cys326) and at codon 46 (hOGG1-Arg46 versus hOGG1-Gln46) exist in human populations. hOGG1-Ser326 and -Cys326 have Arg at codon 46, and hOGG1-Gln46 has Ser at codon 326. In this study, we examined the abilities of three forms of GST-hOGG1 (hOGG1-Ser326, -Cys326 and -Gln46) to suppress chemically induced oxidative mutagenesis using Salmonella typhimurium strains YG3001 and YG3002. These strains are the mutMST derivatives of Ames tester strains TA1535 (uvrB-) and TA1975 (uvrB+), respectively. The mutMST gene encodes a functional counterpart of the OGG1 gene. Mutations induced by 4-nitroquinoline 1-oxide were by more than 95% suppressed by the expression of any of three forms of GST-hOGG1 in strain YG3002. Expression of GST-hOGG1 also reduced by 40 and 60%, respectively, the numbers of His+ revertants induced by methylene blue plus visible light and benzo[a]pyrene plus visible light in strain YG3001. hOGG1-Gln46 displayed a slightly weaker ability to suppress the mutations induced by methylene blue plus visible light than did other two forms although the differences were not statistically significant. About 85 and 95% of spontaneous mutagenesis in strain YG3021 and YG3022, the mutMST mutYST double mutants of strain TA1535 and TA1975, respectively, were suppressed by the expression of any of hOGG1 alleles. hOGG1-Gln46 displayed a weaker suppression than did other two forms in strain YG3022 and the difference was statistically significant. These results suggest that three alleles of the hOGG1 gene efficiently suppress chemically induced and spontaneously occurring oxidative mutagenesis, and that hOGG1-Gln46 may have a weaker ability to suppress the mutations.
Collapse
Affiliation(s)
- Su-Ryang Kim
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Lobachevsky PN, Karagiannis TC, Martin RF. Plasmid DNA breakage by decay of DNA-associated Auger electron emitters: approaches to analysis of experimental data. Radiat Res 2004; 162:84-95. [PMID: 15222798 DOI: 10.1667/rr3187] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Plasmid DNA is a popular substrate for the assay of DNA strand breakage by a variety of agents. The use of the plasmid assay relies on the assumption that individual damaging events occur at random, which allows the application of Poisson statistics. This assumption is not valid in the case of damage arising from decay of DNA-associated Auger electron emitters, since a single decay event can generate a few breaks in the same DNA strand, which is indistinguishable from a single break in the assay. The consequent analytical difficulties are overcome by considering relaxation events rather than single-strand breaks, and linearization events rather than double-strand breaks. A further consideration is that apart from damage at the site of DNA-associated decay, which is the principal interest of the analysis, some DNA damage also arises from the radiation field created by all decay events. These two components of damage are referred to as internal and external breakage, respectively, and they can be separated in the analysis since their contribution depends on the experimental conditions. The DNA-binding ligand Hoechst 33258 labeled with 125I was used in our experiments to study breakage in pBR322 plasmid DNA arising from the decay of this Auger electron emitter. The values obtained for the efficiency (per decay) of plasmid relaxation and linearization by the 125I-labeled ligand were 0.090 +/- 0.035 and 0.82 +/- 0.04, respectively. When dimethylsulfoxide was included as a radical scavenger, the efficiency values for relaxation and linearization were 0.15 +/- 0.02 and 0.65 +/- 0.05, respectively.
Collapse
Affiliation(s)
- Pavel N Lobachevsky
- Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | | | |
Collapse
|
49
|
Washburn KE, Streeter RN, Saliki JT, Lehenbauer TW. The use of phenothiazine dyes to inactivate bovine viral diarrhea virus in goat colostrum. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2004; 68:105-11. [PMID: 15188954 PMCID: PMC1142153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The objectives of this study were to determine the optimal concentration of phenothiazine dye required to inactivate bovine viral diarrhea virus (BVDV) in goat colostrum following 60 min of illumination and determine if immunoglobulin concentration is affected by this technique. In addition, the potential of continuous agitation of colostrum during illumination to affect viral kill was investigated. This experiment was designed to more closely approximate on-farm use than a previous pilot study performed by the same investigators. Bovine viral diarrhea virus was used as a model for caprine arthritis-encephalitis virus. Goat colostrum containing BVDV was illuminated for 60 min following the addition of either methylene blue (MB) or methylene violet (MV). Four different concentrations of each dye were evaluated. Illumination was performed in a small, portable chest-type freezer equipped on the inside with white fluorescent lights. Some samples were continuously rocked during illumination, while others remained stationary. Virus levels were determined before and after illumination. Immunoglobulin concentrations were determined for time 0 and 60 min. One microM MB reduced virus to undetectable levels following 60 min of illumination. A concentration of 20 microM MV was required to reduce virus levels to zero. Agitation of colostrum samples had no effect with either MB or MV on whether virus levels were reduced. High concentrations of MB and MV had no important effect on immunoglobulin concentrations.
Collapse
Affiliation(s)
- Kevin E Washburn
- Department of Veterinary Clinical Sciences, Oklahoma State University, College of Veterinary Medicine, Stillwater, Oklahoma 74078, USA.
| | | | | | | |
Collapse
|
50
|
Lan J, Li W, Zhang F, Sun FY, Nagayama T, O'Horo C, Chen J. Inducible repair of oxidative DNA lesions in the rat brain after transient focal ischemia and reperfusion. J Cereb Blood Flow Metab 2003; 23:1324-39. [PMID: 14600440 DOI: 10.1097/01.wcb.0000091540.60196.f2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To determine the role of oxidative DNA damage and repair in brain injury after focal ischemia and reperfusion, the authors investigated DNA base damage and DNA base excision repair (BER) capacity, the predominant repair mechanism for oxidative DNA lesions, in the rat model of temporary middle cerebral artery occlusion. Contents of 8-hydroxyl-2'-deoxyguanosine (8-oxodG) and apurinic/apyrimidinic abasic site (AP site), hallmarks of oxidative DNA damage, were quantitatively measured in nuclear DNA extracts from brains 0.25 to 72 hours after 1 hour of middle cerebral artery occlusion. In parallel to the detection of DNA lesions, the capacity for 8-oxodG- or AP site-dependent DNA repair synthesis was measured in nuclear protein extracts using specific in vitro DNA repair assays. After postischemic reperfusion, the levels of 8-oxodG and AP sites were markedly increased in ischemic tissues. In frontal/parietal cortex, regions that survived ischemia, 8-oxodG and AP sites were efficiently repaired during reperfusion. However, in the caudate, a region that was destined to infarct, the DNA lesions were poorly repaired. In consistent with the patterns of endogenous lesion repair, a markedly induced and long-lasting (at least 72 hours) BER activity was detected in the cortex but not in the caudate after ischemia. The induced BER activity in ischemic cortex was attributed to the upregulation of gene expression and activation of selective BER enzymes, particularly DNA polymerase-beta and OGG1. These results strongly suggest that inducible DNA BER constitutes an important endogenous mechanism that protects brain against ischemia-induced oxidative neuronal injury.
Collapse
Affiliation(s)
- Jing Lan
- Department of Neurology and Pittsburgh Institute of Neurodegenerative Disorders, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|