1
|
Kuznetsova AA, Soloveva MA, Mikushina ES, Gavrilova AA, Bakman AS, Kuznetsov NA. Characterization and PCR Application of Family B DNA Polymerases from Thermococcus stetteri. Life (Basel) 2024; 14:1544. [PMID: 39768253 PMCID: PMC11676844 DOI: 10.3390/life14121544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
DNA polymerases from the hyperthermophilic Archaea have attracted considerable attention as PCR enzymes due to their high thermal stability and proofreading 3' → 5' exonuclease activity. This study is the first to report data concerning the purification and biochemical characteristics of the Tst DNA polymerase from Thermococcus stetteri. Both the wild type Tst(wt) DNA polymerase and its chimeric form containing the P36H substitution-which reduces the enzyme's affinity for the U-containing template and dUTP-and the DNA-binding domain Sso7d from S. solfataricus were obtained and analyzed. It was shown that Tst(wt) could effectively amplify up to 6-kb DNA fragments, whereas TstP36H-Sso7d could amplify DNA fragments up to 15 kb. It was found that TstP36H-Sso7d has superior PCR efficiency compared to the commonly used DNA polymerase PfuV93Q-Sso7d. For the amplification of a 2-kb DNA fragment, TstP36H-Sso7d required less than 10 s of extension time, whereas for PfuV93Q-Sso7d, the extension time was no less than 30 s. Steady-state kinetic assays revealed that the dNTP-binding affinity KdNTPm was the same for TstP36H-Sso7d and PfuV93Q-Sso7d, whereas the maximum rate of dNTP incorporation, kcat, was two orders of magnitude higher for TstP36H-Sso7d. Moreover, the incorporation of incorrect dNTP was not observed for TstP36H-Sso7d up to 56 °C, whereas for PfuV93Q-Sso7d, the extension of primer with incorrect dNTP was observed at 37 °C, supporting higher fidelity of TstP36H-Sso7d. The obtained data suggest that TstP36H-Sso7d may be a good candidate for high-fidelity DNA amplification.
Collapse
Affiliation(s)
- Aleksandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (M.A.S.); (E.S.M.); (A.A.G.); (A.S.B.)
| | - Marina A. Soloveva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (M.A.S.); (E.S.M.); (A.A.G.); (A.S.B.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Elena S. Mikushina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (M.A.S.); (E.S.M.); (A.A.G.); (A.S.B.)
| | - Anastasia A. Gavrilova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (M.A.S.); (E.S.M.); (A.A.G.); (A.S.B.)
| | - Artemiy S. Bakman
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (M.A.S.); (E.S.M.); (A.A.G.); (A.S.B.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (M.A.S.); (E.S.M.); (A.A.G.); (A.S.B.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Han P, Fan H, Tong Y. Identification of a novel family B DNA polymerase from Enterococcus phage IME199 and its overproduction in Escherichia coli BL21(DE3). Microb Cell Fact 2023; 22:217. [PMID: 37865739 PMCID: PMC10590003 DOI: 10.1186/s12934-023-02228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND Identification and characterization of novel, faithful and processive DNA polymerases is a driving force in the development of DNA amplification methods. Purification of proteins from natural phages is often time-consuming, cumbersome and low yielding. Escherichia coli is a host bacterium widely used for the production of recombinant proteins, is the cell factory of choice for in vitro studies of phage protein function. RESULTS We expressed the gene encoding Enterococcus faecium phage IME199 DNA polymerase (IME199 DNAP) in Escherichia coli BL21(DE3), and characterized protein function. IME199 DNAP has 3'-5' exonuclease activity, but does not have 5'-3' exonuclease activity. In addition, IME199 DNAP has dNTP-dependent 5'-3' polymerase activity and can amplify DNA at 15-35 °C and a pH range of 5.5-9.5. The amino acid residues Asp30, Glu32, Asp112 and Asp251 are the 3'-5' exonuclease active sites of IME199 DNAP, while residues Asp596 and Tyr639 are essential for DNA synthesis by IME199 DNAP. More importantly, the IME199 DNAP has strand displacement and processive synthesis capabilities, and can perform rolling circle amplification and multiple displacement amplification with very low error rates (approximately 3.67 × 10-6). CONCLUSIONS A novel family B DNA polymerase was successfully overproduced in Escherichia coli BL21(DE3). Based on the characterized properties, IME199 DNAP is expected to be developed as a high-fidelity polymerase for DNA amplification at room temperature.
Collapse
Affiliation(s)
- Pengjun Han
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
3
|
Kuznetsova AA, Kuznetsov NA. Direct Enzyme Engineering of B Family DNA Polymerases for Biotechnological Approaches. Bioengineering (Basel) 2023; 10:1150. [PMID: 37892880 PMCID: PMC10604792 DOI: 10.3390/bioengineering10101150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
DNA-dependent DNA polymerases have been intensively studied for more than 60 years and underlie numerous biotechnological and diagnostic applications. In vitro, DNA polymerases are used for DNA manipulations, including cloning, PCR, site-directed mutagenesis, sequencing, and others. Understanding the mechanisms of action of DNA polymerases is important for the creation of new enzymes possessing improved or modified properties. This review is focused on archaeal family B DNA polymerases. These enzymes have high fidelity and thermal stability and are finding many applications in molecular biological methods. Nevertheless, the search for and construction of new DNA polymerases with altered properties is constantly underway, including enzymes for synthetic biology. This brief review describes advances in the development of family B DNA polymerases for PCR, synthesis of xeno-nucleic acids, and reverse transcription.
Collapse
Affiliation(s)
- Aleksandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad. Lavrentyeva, Novosibirsk 630090, Russia
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad. Lavrentyeva, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Ordóñez CD, Redrejo-Rodríguez M. DNA Polymerases for Whole Genome Amplification: Considerations and Future Directions. Int J Mol Sci 2023; 24:9331. [PMID: 37298280 PMCID: PMC10253169 DOI: 10.3390/ijms24119331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
In the same way that specialized DNA polymerases (DNAPs) replicate cellular and viral genomes, only a handful of dedicated proteins from various natural origins as well as engineered versions are appropriate for competent exponential amplification of whole genomes and metagenomes (WGA). Different applications have led to the development of diverse protocols, based on various DNAPs. Isothermal WGA is currently widely used due to the high performance of Φ29 DNA polymerase, but PCR-based methods are also available and can provide competent amplification of certain samples. Replication fidelity and processivity must be considered when selecting a suitable enzyme for WGA. However, other properties, such as thermostability, capacity to couple replication, and double helix unwinding, or the ability to maintain DNA replication opposite to damaged bases, are also very relevant for some applications. In this review, we provide an overview of the different properties of DNAPs widely used in WGA and discuss their limitations and future research directions.
Collapse
Affiliation(s)
- Carlos D. Ordóñez
- CIC bioGUNE, Bizkaia Science and Technology Park, Building 800, 48160 Derio, Spain
| | - Modesto Redrejo-Rodríguez
- Department of Biochemistry, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
5
|
Akram F, Shah FI, Ibrar R, Fatima T, Haq IU, Naseem W, Gul MA, Tehreem L, Haider G. Bacterial thermophilic DNA polymerases: A focus on prominent biotechnological applications. Anal Biochem 2023; 671:115150. [PMID: 37054862 DOI: 10.1016/j.ab.2023.115150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/24/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
DNA polymerases are the enzymes able to replicate the genetic information in nucleic acid. As a result, they are necessary to copy the complete genome of every living creature before cell division and sustain the integrity of the genetic information throughout the life of each cell. Any organism that uses DNA as its genetic information, whether unicellular or multicellular, requires one or more thermostable DNA polymerases to thrive. Thermostable DNA polymerase is important in modern biotechnology and molecular biology because it results in methods such as DNA cloning, DNA sequencing, whole genome amplification, molecular diagnostics, polymerase chain reaction, synthetic biology, and single nucleotide polymorphism detection. There are at least 14 DNA-dependent DNA polymerases in the human genome, which is remarkable. These include the widely accepted, high-fidelity enzymes responsible for replicating the vast majority of genomic DNA and eight or more specialized DNA polymerases discovered in the last decade. The newly discovered polymerases' functions are still being elucidated. Still, one of its crucial tasks is to permit synthesis to resume despite the DNA damage that stops the progression of replication-fork. One of the primary areas of interest in the research field has been the quest for novel DNA polymerase since the unique features of each thermostable DNA polymerase may lead to the prospective creation of novel reagents. Furthermore, protein engineering strategies for generating mutant or artificial DNA polymerases have successfully generated potent DNA polymerases for various applications. In molecular biology, thermostable DNA polymerases are extremely useful for PCR-related methods. This article examines the role and importance of DNA polymerase in a variety of techniques.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan; The University of Lahore, Pakistan
| | - Ramesha Ibrar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Taseer Fatima
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan; Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Waqas Naseem
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Mahmood Ayaz Gul
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Tehreem
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ghanoor Haider
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
6
|
Wang G, Du Y, Ma X, Ye F, Qin Y, Wang Y, Xiang Y, Tao R, Chen T. Thermophilic Nucleic Acid Polymerases and Their Application in Xenobiology. Int J Mol Sci 2022; 23:ijms232314969. [PMID: 36499296 PMCID: PMC9738464 DOI: 10.3390/ijms232314969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Thermophilic nucleic acid polymerases, isolated from organisms that thrive in extremely hot environments, possess great DNA/RNA synthesis activities under high temperatures. These enzymes play indispensable roles in central life activities involved in DNA replication and repair, as well as RNA transcription, and have already been widely used in bioengineering, biotechnology, and biomedicine. Xeno nucleic acids (XNAs), which are analogs of DNA/RNA with unnatural moieties, have been developed as new carriers of genetic information in the past decades, which contributed to the fast development of a field called xenobiology. The broad application of these XNA molecules in the production of novel drugs, materials, and catalysts greatly relies on the capability of enzymatic synthesis, reverse transcription, and amplification of them, which have been partially achieved with natural or artificially tailored thermophilic nucleic acid polymerases. In this review, we first systematically summarize representative thermophilic and hyperthermophilic polymerases that have been extensively studied and utilized, followed by the introduction of methods and approaches in the engineering of these polymerases for the efficient synthesis, reverse transcription, and amplification of XNAs. The application of XNAs facilitated by these polymerases and their mutants is then discussed. In the end, a perspective for the future direction of further development and application of unnatural nucleic acid polymerases is provided.
Collapse
|
7
|
Nguyen H, Abramov M, Rozenski J, Eremeeva E, Herdewijn P. In vivo assembly and expression of DNA containing non-canonical bases in the yeast Saccharomyces cerevisiae. Chembiochem 2022; 23:e202200060. [PMID: 35322918 DOI: 10.1002/cbic.202200060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Indexed: 11/10/2022]
Abstract
Chemically modified nucleic acids are of utmost interest in synthetic biology to create a regulable and sophisticated synthetic system with tailor-made properties. Implanting chemically modified nucleic acids in microorganisms might serve biotechnological applications, while using them in human cells might lead to new advanced medicines. Previously, we reported that a fully modified DNA sequence (called DZA) composed of the four base-modified nucleotides - 7-deaza-adenine, 5-chlorouracil, 7-deaza-guanine and 5-fluorocytosine - could function as a genetic template in prokaryotic cells, Escherichia coli . Here, we report the synthesis of long, partially or fully modified DZA fragments that encode the yeast-enhanced red fluorescence protein (yEmRFP). The DZA sequences were directly introduced in the genome of the eukaryotic cells, Saccharomyces cerevisiae , via the yeast natural homologous recombination. The simple and straightforward DZA cloning strategy reported herein might be of interest to scientists working in the field of xenobiology in yeast.
Collapse
Affiliation(s)
- Hoai Nguyen
- KU Leuven Rega Institute for Medical Research.: Katholieke Universiteit Leuven Rega Institute for Medical Research, Medicinal Chemistry, BELGIUM
| | - Mikhail Abramov
- KU Leuven Rega Institute for Medical Research: Katholieke Universiteit Leuven Rega Institute for Medical Research, Medicinal Chemistry, BELGIUM
| | - Jef Rozenski
- KU Leuven Rega Institute for Medical Research.: Katholieke Universiteit Leuven Rega Institute for Medical Research, Medicinal Chemistry, BELGIUM
| | - Elena Eremeeva
- KU Leuven Rega Institute for Medical Research.: Katholieke Universiteit Leuven Rega Institute for Medical Research, Medicinal Chemistry, BELGIUM
| | - Piet Herdewijn
- Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - box 1030, 3000, Leuven, BELGIUM
| |
Collapse
|
8
|
Strobel EJ. Efficient Linear dsDNA Tagging Using Deoxyuridine Excision*. Chembiochem 2021; 22:3214-3224. [PMID: 34547157 DOI: 10.1002/cbic.202100425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/05/2021] [Indexed: 11/06/2022]
Abstract
Site-specific strategies for exchanging segments of dsDNA are important for DNA library construction and molecular tagging. Deoxyuridine (dU) excision is an approach for generating 3' ssDNA overhangs in gene assembly and molecular cloning procedures. Unlike approaches that use a multi-base pair motif to specify a DNA cut site, dU excision requires only a dT→dU substitution. Consequently, excision sites can be embedded in biologically active DNA sequences by placing dU substitutions at non-perturbative positions. In this work, I describe a molecular tagging method that uses dU excision to exchange a segment of a dsDNA strand with a long synthetic oligonucleotide. The core workflow of this method, called deoxyUridine eXcision-tagging (dUX-tagging), is an efficient one-pot reaction: strategically positioned dU nucleotides are excised from dsDNA to generate a 3' overhang so that additional sequence can be appended by annealing and ligating a tagging oligonucleotide. The tagged DNA is then processed by one of two procedures to fill the 5' overhang and remove excess tagging oligo. To facilitate its widespread use, all dUX-tagging procedures exclusively use commercially available reagents. As a result, dUX-tagging is a concise and easily implemented approach for high-efficiency linear dsDNA tagging.
Collapse
Affiliation(s)
- Eric J Strobel
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
9
|
Strobel EJ. Preparation and Characterization of Internally Modified DNA Templates for Chemical Transcription Roadblocking. Bio Protoc 2021; 11:e4141. [PMID: 34604447 DOI: 10.21769/bioprotoc.4141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 01/19/2023] Open
Abstract
Site-specific transcription arrest is the basis of emerging technologies that assess nascent RNA structure and function. Cotranscriptionally folded RNA can be displayed from an arrested RNA polymerase (RNAP) for biochemical manipulations by halting transcription elongation at a defined DNA template position. Most transcription "roadblocking" approaches halt transcription elongation using a protein blockade that is non-covalently attached to the template DNA. I previously developed a strategy for halting Escherichia coli RNAP at a chemical lesion, which expands the repertoire of transcription roadblocking technologies and enables sophisticated manipulations of the arrested elongation complexes. To facilitate this chemical transcription roadblocking approach, I developed a sequence-independent method for preparing internally modified dsDNA using PCR and translesion synthesis. Here, I present a detailed protocol for the preparation and characterization of internally modified dsDNA templates for chemical transcription roadblocking experiments. Graphic abstract: Precise transcription roadblocking using functionalized DNA lesions.
Collapse
Affiliation(s)
- Eric J Strobel
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
10
|
Hu B, Wang Y, Li N, Zhang S, Luo G, Huang Z. Highly convenient and highly specific-and-sensitive PCR using Se-atom modified dNTPs. Chem Commun (Camb) 2021; 57:57-60. [PMID: 33346277 DOI: 10.1039/d0cc06172g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Primer design and condition optimization for PCR are tedious and labour-intensive. To conveniently achieve high selectivity, sensitivity and robustness, herein, we first report a new strategy with Se-dNTPs to enhance PCR specificity (over 240-fold) and sensitivity (up to single-digit), effectively eliminating non-specific products and simplifing PCR design and optimization.
Collapse
Affiliation(s)
- Bei Hu
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | | | | | | | | | | |
Collapse
|
11
|
Shioi S, Shimamoto A, Nakagami Y, Qin L, Shimokawa M, Oda S. Precision length determination and in silico simulation in PCR of microsatellite repeat sequences. Electrophoresis 2021; 42:1323-1332. [PMID: 33755214 DOI: 10.1002/elps.202100021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Accepted: 03/17/2021] [Indexed: 11/05/2022]
Abstract
Despite being commonplace, polymerase chain reactions (PCRs) still contain many unknown aspects. One example is microsatellite PCR, which is now widely used for various purposes from ecology to cancer medicine. Since this category of repetitive DNA sequences induces polymerase slippage not only in vivo but also in vitro, microsatellite PCR products comprise a complex combination of DNA fragments with various lengths and have, therefore, been empirically interpreted. The primary obstacle for understanding microsatellite PCR was the intrinsic inaccuracy in sizing of DNA fragments in capillary electrophoresis (CE), which, however, has been overcome by elucidating intrinsic sizing errors in each fragment length range. Secondly, the slippage properties of the thermostable polymerases were first clarified in detail using primer extension assays. Furthermore, using the obtained slippage parameters and our original program, we have first reconstructed microsatellite PCR in silico. The entire processes of complex microsatellite PCR have, thus, been more clearly understood.
Collapse
Affiliation(s)
- Seijiro Shioi
- Cancer Genetics Laboratory, Clinical Research Institute, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Akiyoshi Shimamoto
- Cancer Genetics Laboratory, Clinical Research Institute, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Yuki Nakagami
- Department of Biostatistics, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Lexin Qin
- Cancer Genetics Laboratory, Clinical Research Institute, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Mototsugu Shimokawa
- Department of Biostatistics, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shinya Oda
- Cancer Genetics Laboratory, Clinical Research Institute, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| |
Collapse
|
12
|
Najar IN, Thakur N. A systematic review of the genera Geobacillus and Parageobacillus: their evolution, current taxonomic status and major applications. MICROBIOLOGY-SGM 2020; 166:800-816. [PMID: 32744496 DOI: 10.1099/mic.0.000945] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The genus Geobacillus, belonging to the phylum Firmicutes, is one of the most important genera and comprises thermophilic bacteria. The genus Geobacillus was erected with the taxonomic reclassification of various Bacillus species. Taxonomic studies of Geobacillus remain in progress. However, there is no comprehensive review of the characteristic features, taxonomic status and study of various applications of this interesting genus. The main aim of this review is to give a comprehensive account of the genus Geobacillus. At present the genus acomprises 25 taxa, 14 validly published (with correct name), nine validly published (with synonyms) and two not validly published species. We describe only validly published species of the genera Geobacillus and Parageobacillus. Vegetative cells of Geobacillus species are Gram-strain-positive or -variable, rod-shaped, motile, endospore-forming, aerobic or facultatively anaerobic, obligately thermophilic and chemo-organotrophic. Growth occurs in the pH range 6.08.5 and a temperature of 37-75 °C. The major cellular fatty acids are iso-C15:o, iso-C16:0 and iso-C17:o. The main menaquinone type is MK-7. The G-+C content of the DNA ranges between 48.2 and 58 mol%. The genus Geobacillus is widely distributed in nature, being mostly found in many extreme locations such as hot springs, hydrothermal vents, marine trenches, hay composts, etc. Geobacillus species have been widely exploited in various industrial and biotechnological applications, and thus are promising candidates for further studies in the future.
Collapse
Affiliation(s)
- Ishfaq Nabi Najar
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok - 737102, Sikkim, India
| | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok - 737102, Sikkim, India
| |
Collapse
|
13
|
Zhang L, Jiang D, Shi H, Wu M, Gan Q, Yang Z, Oger P. Characterization and application of a family B DNA polymerase from the hyperthermophilic and radioresistant euryarchaeon Thermococcus gammatolerans. Int J Biol Macromol 2020; 156:217-224. [PMID: 32229210 DOI: 10.1016/j.ijbiomac.2020.03.204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/07/2020] [Accepted: 03/24/2020] [Indexed: 11/19/2022]
Abstract
Thermococcus gammatolerans is anaerobic euryarchaeon which grows optimally at 88 °C and its genome encodes a family B DNA polymerase (Tga PolB). Herein, we cloned the gene of Tga PolB, expressed and purified the gene product, and characterized the enzyme biochemically. The recombinant Tga PolB can efficiently synthesize DNA at high temperature, and retain 93% activity after heated at 95 °C for 1.0 h, suggesting that the enzyme is thermostable. Furthermore, the optimal pH for the enzyme activity was measured to be 7.0-9.0. Tga PolB activity is dependent on a divalent cation, among which magnesium ion is optimal. NaCl at low concentration stimulates the enzyme activity but at high concentration inhibits enzyme activity. Interestingly, Tga PolB is able to efficiently bypass uracil in DNA, which is distinct from other archaeal family B DNA pols. By contrast, Tga PolB is halted by an AP site in DNA, as observed in other archaeal family B DNA polymerases. Furthermore, Tga PolB extends the mismatched ends with reduced efficiencies. The enzyme possesses 3'-5' exonuclease activity and this activity is inhibited by dNTPs. The DNA binding assays showed that Tga PolB can efficiently bind to ssDNA and primed DNA, and have a marked preference for primed DNA. Last, Tga PolB can be used in routine PCR.
Collapse
Affiliation(s)
- Likui Zhang
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Jiangsu Province 225127, China; Guangling College, Yangzhou University, China.
| | - Donghao Jiang
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Jiangsu Province 225127, China
| | - Haoqiang Shi
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Jiangsu Province 225127, China
| | - Mai Wu
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Jiangsu Province 225127, China
| | - Qi Gan
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Jiangsu Province 225127, China
| | - Zhihui Yang
- College of Plant Protection, Agricultural University of Hebei, Baoding, City, Hebei Province 071001, China.
| | - Philippe Oger
- Univ Lyon, INSA de Lyon, CNRS UMR 5240, Villeurbanne, France.
| |
Collapse
|
14
|
Abstract
DNA polymerases play a central role in biology by transferring genetic information from one generation to the next during cell division. Harnessing the power of these enzymes in the laboratory has fueled an increase in biomedical applications that involve the synthesis, amplification, and sequencing of DNA. However, the high substrate specificity exhibited by most naturally occurring DNA polymerases often precludes their use in practical applications that require modified substrates. Moving beyond natural genetic polymers requires sophisticated enzyme-engineering technologies that can be used to direct the evolution of engineered polymerases that function with tailor-made activities. Such efforts are expected to uniquely drive emerging applications in synthetic biology by enabling the synthesis, replication, and evolution of synthetic genetic polymers with new physicochemical properties.
Collapse
|
15
|
Lee SH, Park SM, Kim BN, Kwon OS, Rho WY, Jun BH. Emerging ultrafast nucleic acid amplification technologies for next-generation molecular diagnostics. Biosens Bioelectron 2019; 141:111448. [PMID: 31252258 DOI: 10.1016/j.bios.2019.111448] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
Over the last decade, nucleic acid amplification tests (NAATs) including polymerase chain reaction (PCR) were an indispensable methodology for diagnosing cancers, viral and bacterial infections owing to their high sensitivity and specificity. Because the NAATs can recognize and discriminate even a few copies of nucleic acid (NA) and species-specific NA sequences, NAATs have become the gold standard in a wide range of applications. However, limitations of NAAT approaches have recently become more apparent by reason of their lengthy run time, large reaction volume, and complex protocol. To meet the current demands of clinicians and biomedical researchers, new NAATs have developed to achieve ultrafast sample-to-answer protocols for the point-of-care testing (POCT). In this review, ultrafast NA-POCT platforms are discussed, outlining their NA amplification principles as well as delineating recent advances in ultrafast NAAT applications. The main focus is to provide an overview of NA-POCT platforms in regard to sample preparation of NA, NA amplification, NA detection process, interpretation of the analysis, and evaluation of the platform design. Increasing importance will be given to innovative, ultrafast amplification methods and tools which incorporate artificial intelligence (AI)-associated data analysis processes and mobile-healthcare networks. The future prospects of NA POCT platforms are promising as they allow absolute quantitation of NA in individuals which is essential to precision medicine.
Collapse
Affiliation(s)
- Sang Hun Lee
- Department of Bioengineering, University of California Berkeley, CA, USA
| | | | - Brian N Kim
- Department of Electrical and Computer Engineering, University of Central Florida, FL, USA
| | - Oh Seok Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, South Korea
| | - Won-Yep Rho
- School of International Engineering and Science, Chonbuk National University, Jeonju, South Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, South Korea.
| |
Collapse
|
16
|
Abstract
An efficient PCR amplification of various templates (short 57-mer, random 67- and 82-mer, and long DNA) with base-modified nucleoside triphosphates is presented here. Using 5-substituted pyrimidine and 7-substituted-7-deaza- or 8-substituted purine nucleoside triphosphates as substrates for thermostable DNA polymerases [Taq and Vent (exo- )], successful PCR amplification of partially or entirely modified DNA libraries and long DNA constructs (up to 1.5 kb) is achieved. Visualization of double-stranded PCR product formation is improved through the use of primers with different fluorescent labels. This allows one to monitor the efficiency of modified substrate incorporation and the enzymatic recognition of the modified template during PCR. The redesigned fully base-modified DNA (denoted 'DZA') can be utilized for the straightforward production of diverse libraries for in vitro selection of aptamer and catalytic nucleic acids as well as for the synthesis of artificial genetic templates, replicons, or complex vectors. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Elena Eremeeva
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Leuven, Belgium
| | - Piet Herdewijn
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Leuven, Belgium
| |
Collapse
|
17
|
Straub CT, Counts JA, Nguyen DMN, Wu CH, Zeldes BM, Crosby JR, Conway JM, Otten JK, Lipscomb GL, Schut GJ, Adams MWW, Kelly RM. Biotechnology of extremely thermophilic archaea. FEMS Microbiol Rev 2018; 42:543-578. [PMID: 29945179 DOI: 10.1093/femsre/fuy012] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/23/2018] [Indexed: 12/26/2022] Open
Abstract
Although the extremely thermophilic archaea (Topt ≥ 70°C) may be the most primitive extant forms of life, they have been studied to a limited extent relative to mesophilic microorganisms. Many of these organisms have unique biochemical and physiological characteristics with important biotechnological implications. These include methanogens that generate methane, fermentative anaerobes that produce hydrogen gas with high efficiency, and acidophiles that can mobilize base, precious and strategic metals from mineral ores. Extremely thermophilic archaea have also been a valuable source of thermoactive, thermostable biocatalysts, but their use as cellular systems has been limited because of the general lack of facile genetics tools. This situation has changed recently, however, thereby providing an important avenue for understanding their metabolic and physiological details and also opening up opportunities for metabolic engineering efforts. Along these lines, extremely thermophilic archaea have recently been engineered to produce a variety of alcohols and industrial chemicals, in some cases incorporating CO2 into the final product. There are barriers and challenges to these organisms reaching their full potential as industrial microorganisms but, if these can be overcome, a new dimension for biotechnology will be forthcoming that strategically exploits biology at high temperatures.
Collapse
Affiliation(s)
- Christopher T Straub
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James A Counts
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Diep M N Nguyen
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James R Crosby
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan M Conway
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan K Otten
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| |
Collapse
|
18
|
|
19
|
Abstract
Biotechnology has almost unlimited potential to change our lives in very exciting ways. Many of the chemical reactions that produce these products can be fully optimized by performing them at extremes of temperature, pressure, salinity, and pH for efficient and cost-effective outcomes. Fortunately, there are many organisms (extremophiles) that thrive in extreme environments found in nature and offer an excellent source of replacement enzymes in lieu of mesophilic ones currently used in these processes. In this review, I discuss the current uses and some potential new applications of extremophiles and their products, including enzymes, in biotechnology.
Collapse
Affiliation(s)
- James A Coker
- Department of Biotechnology, University of Maryland, Adelphi, MD, USA
| |
Collapse
|
20
|
Archaeal DNA polymerases in biotechnology. Appl Microbiol Biotechnol 2015; 99:6585-97. [DOI: 10.1007/s00253-015-6781-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
|
21
|
Detection of G-quadruplex DNA using primer extension as a tool. PLoS One 2015; 10:e0119722. [PMID: 25799152 PMCID: PMC4370603 DOI: 10.1371/journal.pone.0119722] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 01/23/2015] [Indexed: 01/22/2023] Open
Abstract
DNA sequence and structure play a key role in imparting fragility to different regions of the genome. Recent studies have shown that non-B DNA structures play a key role in causing genomic instability, apart from their physiological roles at telomeres and promoters. Structures such as G-quadruplexes, cruciforms, and triplexes have been implicated in making DNA susceptible to breakage, resulting in genomic rearrangements. Hence, techniques that aid in the easy identification of such non-B DNA motifs will prove to be very useful in determining factors responsible for genomic instability. In this study, we provide evidence for the use of primer extension as a sensitive and specific tool to detect such altered DNA structures. We have used the G-quadruplex motif, recently characterized at the BCL2 major breakpoint region as a proof of principle to demonstrate the advantages of the technique. Our results show that pause sites corresponding to the non-B DNA are specific, since they are absent when the G-quadruplex motif is mutated and their positions change in tandem with that of the primers. The efficiency of primer extension pause sites varied according to the concentration of monovalant cations tested, which support G-quadruplex formation. Overall, our results demonstrate that primer extension is a strong in vitro tool to detect non-B DNA structures such as G-quadruplex on a plasmid DNA, which can be further adapted to identify non-B DNA structures, even at the genomic level.
Collapse
|
22
|
Liu J, Song H, Liu D, Zuo T, Lu F, Zhuang H, Gao F. Extensive recombination due to heteroduplexes generates large amounts of artificial gene fragments during PCR. PLoS One 2014; 9:e106658. [PMID: 25211143 PMCID: PMC4161356 DOI: 10.1371/journal.pone.0106658] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/07/2014] [Indexed: 11/18/2022] Open
Abstract
Artificial recombinants can be generated during PCR when more than two genetically distinct templates coexist in a single PCR reaction. These recombinant amplicons can lead to the false interpretation of genetic diversity and incorrect identification of biological phenotypes that do not exist in vivo. We investigated how recombination between 2 or 35 genetically distinct HIV-1 genomes was affected by different PCR conditions using the parallel allele-specific sequencing (PASS) assay and the next generation sequencing method. In a standard PCR condition, about 40% of amplicons in a PCR reaction were recombinants. The high recombination frequency could be significantly reduced if the number of amplicons in a PCR reaction was below a threshold of 1013–1014 using low thermal cycles, fewer input templates, and longer extension time. Heteroduplexes (each DNA strand from a distinct template) were present at a large proportion in the PCR products when more thermal cycles, more templates, and shorter extension time were used. Importantly, the majority of recombinants were identified in heteroduplexes, indicating that the recombinants were mainly generated through heteroduplexes. Since prematurely terminated extension fragments can form heteroduplexes by annealing to different templates during PCR amplification, recombination has a better chance to occur with samples containing different genomes when the number of amplicons accumulate over the threshold. New technologies are warranted to accurately characterize complex quasispecies gene populations.
Collapse
Affiliation(s)
- Jia Liu
- Department of Microbiology, Peking University Health Science Center, Beijing, China
| | - Hongshuo Song
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United State of America
| | - Donglai Liu
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United State of America
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, China
| | - Tao Zuo
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United State of America
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, China
| | - Fengmin Lu
- Department of Microbiology, Peking University Health Science Center, Beijing, China
| | - Hui Zhuang
- Department of Microbiology, Peking University Health Science Center, Beijing, China
| | - Feng Gao
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United State of America
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, China
- * E-mail:
| |
Collapse
|
23
|
Ishino S, Ishino Y. DNA polymerases as useful reagents for biotechnology - the history of developmental research in the field. Front Microbiol 2014; 5:465. [PMID: 25221550 PMCID: PMC4148896 DOI: 10.3389/fmicb.2014.00465] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/15/2014] [Indexed: 11/13/2022] Open
Abstract
DNA polymerase is a ubiquitous enzyme that synthesizes complementary DNA strands according to the template DNA in living cells. Multiple enzymes have been identified from each organism, and the shared functions of these enzymes have been investigated. In addition to their fundamental role in maintaining genome integrity during replication and repair, DNA polymerases are widely used for DNA manipulation in vitro, including DNA cloning, sequencing, labeling, mutagenesis, and other purposes. The fundamental ability of DNA polymerases to synthesize a deoxyribonucleotide chain is conserved. However, the more specific properties, including processivity, fidelity (synthesis accuracy), and substrate nucleotide selectivity, differ among the enzymes. The distinctive properties of each DNA polymerase may lead to the potential development of unique reagents, and therefore searching for novel DNA polymerase has been one of the major focuses in this research field. In addition, protein engineering techniques to create mutant or artificial DNA polymerases have been successfully developing powerful DNA polymerases, suitable for specific purposes among the many kinds of DNA manipulations. Thermostable DNA polymerases are especially important for PCR-related techniques in molecular biology. In this review, we summarize the history of the research on developing thermostable DNA polymerases as reagents for genetic manipulation and discuss the future of this research field.
Collapse
Affiliation(s)
- Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Fukuoka, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Fukuoka, Japan
| |
Collapse
|
24
|
Cho SS, Yu M, Kwon ST. Mutations in the palm subdomain of Twa DNA polymerase to enhance PCR efficiency and its function analysis. J Biotechnol 2014; 184:39-46. [PMID: 24865518 DOI: 10.1016/j.jbiotec.2014.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/19/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
Abstract
Among the family B DNA polymerases, the Twa DNA polymerase from T. wiotapuensis, a hyperthermophilic archaeon, has exceedingly high fidelity. For applications in PCR, however, the enzyme is limited by its low extension rate and processivity. To resolve these weaknesses, we focused on two amino acid residues (A381 and N501) located at the palm subdomain of Twa DNA polymerase. Following replacement of these residues by site-directed mutagenesis, Twa N501R DNA polymerase showed significantly improved polymerase function compared to the wild-type enzyme in terms of processivity (3-fold), extension rate (2-fold) and PCR efficiency. Kinetic analysis using DNA as template revealed that the kcat value of the Twa N501R mutant was similar to that of wild-type, but the Km of the Twa N501R mutant was about 1.5-fold lower than that of the wild-type. These results suggest that a positive charge at residue 501 located in the forked-point does not impede catalytic activity of the polymerase domain but stabilizes interactions between the polymerase domain and the DNA template.
Collapse
Affiliation(s)
- Sung Suk Cho
- Department of Genetic Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Mi Yu
- Department of Genetic Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Suk-Tae Kwon
- Department of Genetic Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746, Republic of Korea.
| |
Collapse
|
25
|
Cho SS, Yu M, Kim SH, Kwon ST. Enhanced PCR efficiency of high-fidelity DNA polymerase from Thermococcus waiotapuensis. Enzyme Microb Technol 2014; 63:39-45. [PMID: 25039058 DOI: 10.1016/j.enzmictec.2014.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 05/18/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
Twa DNA polymerase from hyperthermophilic archaeon Thermococcus waiotapuensis has exceedingly high fidelity among family B DNA polymerases. However, Twa DNA polymerase has significant shortcomings in terms of a low extension rate and poor processivity. To resolve these weaknesses, we focused on two amino acid residues (N565 and H633) in the palm and thumb subdomains of the Twa DNA polymerase. These two residues were replaced by site-directed mutagenesis and the enzymatic properties of the mutants were analyzed. Here, Twa H633R DNA polymerase showed significantly improved polymerase function compared to wild-type Twa DNA polymerase in terms of processivity (2-fold), extension rate (1.5-fold) and PCR efficiency. Kinetic analysis using DNA as a template revealed that the kcat value of the Twa H633R mutant was similar to that of wild-type, but the Km of the Twa H633R mutant was about 1.6-fold lower than that of the wild-type. These results showed that the Arg residue substitution at H633 located in the thumb subdomain has a positive effect on processivity, extension rate and PCR efficiency, suggesting that the Twa H633R mutant allows a conformational change for easy access of the primer-template to the binding site of the polymerase domain.
Collapse
Affiliation(s)
- Sung Suk Cho
- Department of Genetic Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Mi Yu
- Department of Genetic Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Seung Hyun Kim
- Department of Genetic Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Suk-Tae Kwon
- Department of Genetic Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746, Republic of Korea.
| |
Collapse
|
26
|
Greenough L, Menin JF, Desai NS, Kelman Z, Gardner AF. Characterization of family D DNA polymerase from Thermococcus sp. 9°N. Extremophiles 2014; 18:653-64. [PMID: 24794034 PMCID: PMC4065339 DOI: 10.1007/s00792-014-0646-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/13/2014] [Indexed: 11/28/2022]
Abstract
Accurate DNA replication is essential for maintenance of every genome. All archaeal genomes except Crenarchaea, encode for a member of Family B (polB) and Family D (polD) DNA polymerases. Gene deletion studies in Thermococcus kodakaraensis and Methanococcus maripaludis show that polD is the only essential DNA polymerase in these organisms. Thus, polD may be the primary replicative DNA polymerase for both leading and lagging strand synthesis. To understand this unique archaeal enzyme, we report the biochemical characterization of a heterodimeric polD from Thermococcus. PolD contains both DNA polymerase and proofreading 3′–5′ exonuclease activities to ensure efficient and accurate genome duplication. The polD incorporation fidelity was determined for the first time. Despite containing 3′–5′ exonuclease proofreading activity, polD has a relatively high error rate (95 × 10−5) compared to polB (19 × 10−5) and at least 10-fold higher than the polB DNA polymerases from yeast (polε and polδ) or Escherichia coli DNA polIII holoenzyme. The implications of polD fidelity and biochemical properties in leading and lagging strand synthesis are discussed.
Collapse
Affiliation(s)
- Lucia Greenough
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | | | | | | | | |
Collapse
|
27
|
Enhancing the processivity of a family B-type DNA polymerase of Thermococcus onnurineus and application to long PCR. Biotechnol Lett 2013; 36:985-92. [DOI: 10.1007/s10529-013-1441-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
|
28
|
Álvarez M, Menéndez-Arias L. Temperature effects on the fidelity of a thermostable HIV-1 reverse transcriptase. FEBS J 2013; 281:342-51. [PMID: 24279450 DOI: 10.1111/febs.12605] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/04/2013] [Accepted: 11/01/2013] [Indexed: 11/30/2022]
Abstract
Transcriptomics and gene expression analysis are largely dependent of the availability of efficient thermostable reverse transcriptases (RTs). However, the intrinsic fidelity of DNA synthesis catalyzed by retroviral RTs is low. Reported error rates are in the range 1.2 × 10(-5)-6.7 × 10(-4), with oncoretroviral RTs being the most faithful enzymes. Wild-type HIV-1 group O (HIV-1O) RT is a thermostable polymerase that is able to synthesize cDNA at temperatures as high as 70 °C. At 37 °C, its error rate has been estimated at 5.8 × 10(-5) in M13mp2 lacZ-based forward mutation assays. However, at higher temperatures (e.g. 50 and 55 °C), the accuracy of HIV-1O RT is increased by approximately two- to five-fold. At 55 °C, the HIV-1O RT error rate (1.3 × 10(-5)) was similar to that shown by the AffinityScript (Agilent Technologies Inc., La Jolla, CA, USA) RT, a commercially available thermostable murine leukaemia virus RT. At higher temperatures, the increased accuracy of the HIV-1 enzyme results from a lower base substitution error rate, although it shows a higher tendency to introduce frameshifts. Kinetic studies carried out with model template-primers suggest minor differences in nucleotide discrimination, although, at higher temperatures, HIV-1O RT showed a reduced ability to extend mispaired template-primers.
Collapse
Affiliation(s)
- Mar Álvarez
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Spain
| | | |
Collapse
|
29
|
Terpe K. Overview of thermostable DNA polymerases for classical PCR applications: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 2013; 97:10243-54. [DOI: 10.1007/s00253-013-5290-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/20/2013] [Accepted: 09/22/2013] [Indexed: 11/29/2022]
|
30
|
Papadakos KS, Sougleri IS, Mentis AF, Sgouras DN. A mutagenesis method for the addition and deletion of highly repetitive DNA regions: the paradigm of EPIYA motifs in the cagA gene of Helicobacter pylori. Helicobacter 2013. [PMID: 23190444 DOI: 10.1111/hel.12029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND CagA protein of Western origin Helicobacter pylori isolates contains at its carboxyl-terminal end repeating types of EPIYA motifs, depending on the surrounding sequence, which dictate hierarchic tyrosine phosphorylation. To produce, in an isogenic background, mutant strains expressing CagA protein with variable numbers of EPIYA-C terminal motifs, we have adopted a mutagenesis assay using a megaprimer approach. MATERIALS AND METHODS The H. pylori P12 reference strain containing two terminal EPIYA-C motifs was utilized. Initially, we cloned, full-length cagA gene, next to the Campylobacter jejuni kanamycin-resistance cassette, followed by the 1200-bp region located immediately after cagA gene (metacagA region). Then, we generated a megaprimer consisting of three consecutive copies of the EPIYA-C coding sequence of cagA gene, followed by the 140-bp region of the cagA genomic sequence present immediately after the second EPIYA-C repeat. We utilized these two products to perform a QuikChange mutagenesis assay and were able to obtain all desired combinations of EPIYA-C motifs, followed by Kan(r) cassette and metacagA region. These constructions were used to perform natural transformation of the P12 parental strain, by directional homologous recombination. RESULTS We produced isogenic H. pylori strains that express CagA with variable number of EPIYA-C motifs (AB, ABC, ABCCC) and their phosphorylation-deficient counterparts. They exhibited similar growth characteristics to the parental strain, adhered equally well to gastric cells and successfully translocated CagA, following pilus induction. CONCLUSIONS Our method can be used in other cases where highly repetitive sequences need to be reproduced.
Collapse
|
31
|
Olsen TJ, Choi Y, Sims PC, Gul OT, Corso BL, Dong C, Brown WA, Collins PG, Weiss GA. Electronic measurements of single-molecule processing by DNA polymerase I (Klenow fragment). J Am Chem Soc 2013; 135:7855-60. [PMID: 23631761 DOI: 10.1021/ja311603r] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bioconjugating single molecules of the Klenow fragment of DNA polymerase I into electronic nanocircuits allowed electrical recordings of enzymatic function and dynamic variability with the resolution of individual nucleotide incorporation events. Continuous recordings of DNA polymerase processing multiple homopolymeric DNA templates extended over 600 s and through >10,000 bond-forming events. An enzymatic processivity of 42 nucleotides for a template of the same length was directly observed. Statistical analysis determined key kinetic parameters for the enzyme's open and closed conformations. Consistent with these nanocircuit-based observations, the enzyme's closed complex forms a phosphodiester bond in a highly efficient process >99.8% of the time, with a mean duration of only 0.3 ms for all four dNTPs. The rate-limiting step for catalysis occurs during the enzyme's open state, but with a nearly 2-fold longer duration for dATP or dTTP incorporation than for dCTP or dGTP into complementary, homopolymeric DNA templates. Taken together, the results provide a wealth of new information complementing prior work on the mechanism and dynamics of DNA polymerase I.
Collapse
Affiliation(s)
- Tivoli J Olsen
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ppyun H, Kim I, Cho SS, Seo KJ, Yoon K, Kwon ST. Improved PCR performance using mutant Tpa-S DNA polymerases from the hyperthermophilic archaeon Thermococcus pacificus. J Biotechnol 2013; 164:363-70. [DOI: 10.1016/j.jbiotec.2013.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 01/28/2013] [Indexed: 11/25/2022]
|
33
|
Lim S, Song I, Guengerich FP, Choi JY. Effects of N(2)-alkylguanine, O(6)-alkylguanine, and abasic lesions on DNA binding and bypass synthesis by the euryarchaeal B-family DNA polymerase vent (exo(-)). Chem Res Toxicol 2012; 25:1699-707. [PMID: 22793782 DOI: 10.1021/tx300168p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Archaeal and eukaryotic B-family DNA polymerases (pols) mainly replicate chromosomal DNA but stall at lesions, which are often bypassed with Y-family pols. In this study, a B-family pol Vent (exo(-)) from the euryarchaeon Thermococcus litoralis was studied with three types of DNA lesions-N(2)-alkylG, O(6)-alkylG, and an abasic (AP) site-in comparison with a model Y-family pol Dpo4 from Sulfolobus solfataricus, to better understand the effects of various DNA modifications on binding, bypass efficiency, and fidelity of pols. Vent (exo(-)) readily bypassed N(2)-methyl(Me)G and O(6)-MeG, but was strongly blocked at O(6)-benzyl(Bz)G and N(2)-BzG, whereas Dpo4 efficiently bypassed N(2)-MeG and N(2)-BzG and partially bypassed O(6)-MeG and O(6)-BzG. Vent (exo(-)) bypassed an AP site to an extent greater than Dpo4, corresponding with steady-state kinetic data. Vent (exo(-)) showed ~110-, 180-, and 300-fold decreases in catalytic efficiency (k(cat)/K(m)) for nucleotide insertion opposite an AP site, N(2)-MeG, and O(6)-MeG but ~1800- and 5000-fold decreases opposite O(6)-BzG and N(2)-BzG, respectively, as compared to G, whereas Dpo4 showed little or only ~13-fold decreases opposite N(2)-MeG and N(2)-BzG but ~260-370-fold decreases opposite O(6)-MeG, O(6)-BzG, and the AP site. Vent (exo(-)) preferentially misinserted G opposite N(2)-MeG, T opposite O(6)-MeG, and A opposite an AP site and N(2)-BzG, while Dpo4 favored correct C insertion opposite those lesions. Vent (exo(-)) and Dpo4 both bound modified DNAs with affinities similar to unmodified DNA. Our results indicate that Vent (exo(-)) is as or more efficient as Dpo4 in synthesis opposite O(6)-MeG and AP lesions, whereas Dpo4 is much or more efficient opposite (only) N(2)-alkylGs than Vent (exo(-)), irrespective of DNA-binding affinity. Our data also suggest that Vent (exo(-)) accepts nonbulky DNA lesions (e.g., N(2)- or O(6)-MeG and an AP site) as manageable substrates despite causing error-prone synthesis, whereas Dpo4 strongly favors minor-groove N(2)-alkylG lesions over major-groove or noninstructive lesions.
Collapse
Affiliation(s)
- Seonhee Lim
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | | | | | | |
Collapse
|
34
|
Genome sequence of the model hyperthermophilic archaeon Thermococcus litoralis NS-C. J Bacteriol 2012; 194:2375-6. [PMID: 22493191 DOI: 10.1128/jb.00123-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The hyperthermophilic archaeon Thermococcus litoralis strain NS-C, first isolated in 1985, has been a foundational organism for archaeal research in biocatalysis, DNA replication, metabolism, and the discovery of inteins. Here, we present the genome sequence of T. litoralis with a focus on the replication machinery and inteins.
Collapse
|
35
|
Cağlayan M, Bilgin N. Temperature dependence of accuracy of DNA polymerase I from Geobacillus anatolicus. Biochimie 2012; 94:1968-73. [PMID: 22652043 DOI: 10.1016/j.biochi.2012.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 05/21/2012] [Indexed: 11/30/2022]
Abstract
Klenow-like DNA polymerase I fragment from Geobacillus anatolicus (GF) was cloned and purified. The accuracy of GF was measured in vitro at three different temperatures under single turnover conditions as well as using a forward mutation assay. In pre-steady-state kinetic measurements, when temperature was raised from 22 °C to 50 °C, the rate (k(pol)) for cognate dTTP and non-cognate dATP nucleotide incorporations increased six- and four-fold, respectively, whereas the K(d) for both nucleotide incorporations changed only slightly. As a result, the error frequency was remained constant (∼4 × 10(-4)) over this temperature range. The accuracy of GF was also measured using a forward mutation assay during a single cycle of DNA synthesis of the lacZα complementation gene in M13mp2 DNA. In this assay, which scores various types of replication errors, mutant frequency of GF was 5 × 10(-3) at 72 °C which is four-fold higher than that of 37 °C.
Collapse
Affiliation(s)
- Melike Cağlayan
- Department of Molecular Biology and Genetics, Bogazici University, 34342 Istanbul, Turkey
| | | |
Collapse
|
36
|
GLOOR GREG, KARI LILA, GAASENBEEK MICHELLE, YU SHENG. TOWARDS A DNA SOLUTION TO THE SHORTEST COMMON SUPERSTRING PROBLEM. INT J ARTIF INTELL T 2011. [DOI: 10.1142/s0218213099000269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper proposes a DNA algorithm for solving an NP-complete problem (The Shortest Common Superstring Problem) by manipulation of biomolecules, and presents partial results of the experiment that implements our algorithm. We also discuss practical constraints that have to be taken into account when implementing the algorithm, propose a coding system as a solution to these practical restrictions, and discuss the control experiments performed for establishing the parameters controlling the specificity of the assay.
Collapse
Affiliation(s)
- GREG GLOOR
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - LILA KARI
- Department of Computer Science, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - MICHELLE GAASENBEEK
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - SHENG YU
- Department of Computer Science, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
37
|
Reis AMC, Mills WK, Ramachandran I, Friedberg EC, Thompson D, Queimado L. Targeted detection of in vivo endogenous DNA base damage reveals preferential base excision repair in the transcribed strand. Nucleic Acids Res 2011; 40:206-19. [PMID: 21911361 PMCID: PMC3245927 DOI: 10.1093/nar/gkr704] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Endogenous DNA damage is removed mainly via base excision repair (BER), however, whether there is preferential strand repair of endogenous DNA damage is still under intense debate. We developed a highly sensitive primer-anchored DNA damage detection assay (PADDA) to map and quantify in vivo endogenous DNA damage. Using PADDA, we documented significantly higher levels of endogenous damage in Saccharomyces cerevisiae cells in stationary phase than in exponential phase. We also documented that yeast BER-defective cells have significantly higher levels of endogenous DNA damage than isogenic wild-type cells at any phase of growth. PADDA provided detailed fingerprint analysis at the single-nucleotide level, documenting for the first time that persistent endogenous nucleotide damage in CAN1 co-localizes with previously reported spontaneous CAN1 mutations. To quickly and reliably quantify endogenous strand-specific DNA damage in the constitutively expressed CAN1 gene, we used PADDA on a real-time PCR setting. We demonstrate that wild-type cells repair endogenous damage preferentially on the CAN1 transcribed strand. In contrast, yeast BER-defective cells accumulate endogenous damage preferentially on the CAN1 transcribed strand. These data provide the first direct evidence for preferential strand repair of endogenous DNA damage and documents the major role of BER in this process.
Collapse
Affiliation(s)
- António M C Reis
- Department of Dermatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
38
|
Kim KP, Cho SS, Lee KK, Youn MH, Kwon ST. Improved thermostability and PCR efficiency of Thermococcus celericrescens DNA polymerase via site-directed mutagenesis. J Biotechnol 2011; 155:156-63. [PMID: 21723333 DOI: 10.1016/j.jbiotec.2011.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 06/11/2011] [Accepted: 06/17/2011] [Indexed: 11/26/2022]
Abstract
The Thermococcus celericrescens (Tcel) DNA polymerase gene, which contains a 2328-bp open reading frame that encodes 775 amino acid residues, was expressed in the Escherichia coli strain Rosetta(DE3)pLysS. The expressed enzyme was purified through heat treatment, HisTrap™ HP column chromatography and then HiTrap™ SP HP column chromatography. Tcel DNA polymerase has poor thermostability and PCR efficiency compared to those of other family B DNA polymerases. To improve thermostability and PCR efficiency, mutant Tcel DNA polymerases were created via site-directed mutagenesis. Specifically, we targeted the A752 residue for enhanced thermostability and the N213 residue for improved PCR efficiency. The mutant Tcel DNA polymerases all showed enhanced PCR efficiency and thermostability compared to those of the wild-type Tcel DNA polymerase. Specifically, the double mutant TcelA752K/N213D DNA polymerase had an approximately three-fold increase in thermostability over that of the wild-type enzyme and amplified a long 10-kb PCR product in an extension time of 2min. However, there was a small change in the 3'→5' exonuclease activity compared with that of the wild-type Tcel DNA polymerase, even though the mutation is in the ExoII motif. The double mutant TcelA752K/N213D DNA polymerase had a 2.6-fold lower error rate compared to that of Taq DNA polymerase. It seems that the double mutant TcelA752K/N213D DNA polymerase can be used in LA (long and accurate) PCR.
Collapse
Affiliation(s)
- Kee Pum Kim
- Department of Genetic Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Republic of Korea
| | | | | | | | | |
Collapse
|
39
|
Ali SF, Rashid N, Imanaka T, Akhtar M. Family B DNA polymerase from a hyperthermophilic archaeon Pyrobaculum calidifontis: cloning, characterization and PCR application. J Biosci Bioeng 2011; 112:118-23. [PMID: 21504852 DOI: 10.1016/j.jbiosc.2011.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 02/26/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
Abstract
The 2352 bp gene coding for 783 amino acid family B DNA polymerase from Pyrobaculum calidifontis was cloned and expressed in Escherichia coli. Expression of the gene resulted in the production of Pca-Pol in soluble fraction. After heat denaturation of the host proteins, the Pca-Pol was further purified by ion exchange and hydrophobic interaction chromatographies. Activity gel analysis showed the presence of a catalytically active polypeptide of about 90 kDa. The mass of the protein, determined by Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry was found to be 89,156 Da. The isoelectric point of the enzyme was found to be 6.13. The optimal pH and magnesium ion concentration for the enzyme activity were 8.5 and 4mM, respectively. Unlike other commercially available DNA polymerases the enzyme activity of Pca-Pol was inhibited by monovalent cations such as ammonium and potassium. The half-life of the polymerase at 95 °C and 100 °C was 4.5h and 0.5h, respectively. The enzyme possessed 3'→5' exonuclease activity and was able to amplify, under suitable conditions, up to 7.5 kb DNA fragments by polymerase chain reaction which makes it a potential candidate for amplification of long DNA fragments.
Collapse
Affiliation(s)
- Syed Farhat Ali
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | | | | | | |
Collapse
|
40
|
Feng K, Zhao J, Wu ZS, Jiang J, Shen G, Yu R. High-sensitive electrochemical detection of point mutation based on polymerization-induced enzymatic amplification. Biosens Bioelectron 2010; 26:3187-91. [PMID: 21239161 DOI: 10.1016/j.bios.2010.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 12/11/2010] [Accepted: 12/13/2010] [Indexed: 11/27/2022]
Abstract
Here a highly sensitive electrochemical method is described for the detection of point mutation in DNA. Polymerization extension reaction is applied to specifically initiate enzymatic electrochemical amplification to improve the sensitivity and enhance the performance of point mutation detection. In this work, 5'-thiolated DNA probe sequences complementary to the wild target DNA are assembled on the gold electrode. In the presence of wild target DNA, the probe is extended by DNA polymerase over the free segment of target as the template. After washing with NaOH solution, the target DNA is removed while the elongated probe sequence remains on the sensing surface. Via hybridizing to the designed biotin-labeled detection probe, the extended sequence is capable of capturing detection probe. After introducing streptavidin-conjugated alkaline phosphatase (SA-ALP), the specific binding between streptavidin and biotin mediates a catalytic reaction of ascorbic acid 2-phosphate (AA-P) substrate to produce a reducing agent ascorbic acid (AA). Then the silver ions in solution are reduced by AA, leading to the deposition of silver metal onto the electrode surface. The amount of deposited silver which is determined by the amount of wild target can be quantified by the linear sweep voltammetry (LSV). The present approach proved to be capable of detecting the wild target DNA down to a detection limit of 1.0×10(-14) M in a wide target concentration range and identifying -28 site (A to G) of the β-thalassemia gene, demonstrating that this scheme offers a highly sensitive and specific approach for point mutation detection.
Collapse
Affiliation(s)
- Kejun Feng
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| | | | | | | | | | | |
Collapse
|
41
|
Cloning, expression, and PCR application of DNA polymerase from the hyperthermophilic archaeon, Thermococcus celer. Biotechnol Lett 2010; 33:339-46. [DOI: 10.1007/s10529-010-0434-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 10/01/2010] [Indexed: 11/26/2022]
|
42
|
Lee JI, Cho SS, Kil EJ, Kwon ST. Characterization and PCR application of a thermostable DNA polymerase from Thermococcus pacificus. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2010.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Davalieva KG, Efremov GD. A new thermostable DNA polymerase mixture for efficient amplification of long DNA fragments. APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810020183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Busch CR, DiRuggiero J. MutS and MutL are dispensable for maintenance of the genomic mutation rate in the halophilic archaeon Halobacterium salinarum NRC-1. PLoS One 2010; 5:e9045. [PMID: 20140215 PMCID: PMC2816208 DOI: 10.1371/journal.pone.0009045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 01/05/2010] [Indexed: 11/18/2022] Open
Abstract
Background The genome of the halophilic archaeon Halobacterium salinarum NRC-1 encodes for homologs of MutS and MutL, which are key proteins of a DNA mismatch repair pathway conserved in Bacteria and Eukarya. Mismatch repair is essential for retaining the fidelity of genetic information and defects in this pathway result in the deleterious accumulation of mutations and in hereditary diseases in humans. Methodology/Principal Findings We calculated the spontaneous genomic mutation rate of H. salinarum NRC-1 using fluctuation tests targeting genes of the uracil monophosphate biosynthesis pathway. We found that H. salinarum NRC-1 has a low incidence of mutation suggesting the presence of active mechanisms to control spontaneous mutations during replication. The spectrum of mutational changes found in H. salinarum NRC-1, and in other archaea, appears to be unique to this domain of life and might be a consequence of their adaption to extreme environmental conditions. In-frame targeted gene deletions of H. salinarum NRC-1 mismatch repair genes and phenotypic characterization of the mutants demonstrated that the mutS and mutL genes are not required for maintenance of the observed mutation rate. Conclusions/Significance We established that H. salinarum NRC-1 mutS and mutL genes are redundant to an alternative system that limits spontaneous mutation in this organism. This finding leads to the puzzling question of what mechanism is responsible for maintenance of the low genomic mutation rates observed in the Archaea, which for the most part do not have MutS and MutL homologs.
Collapse
Affiliation(s)
- Courtney R. Busch
- Department of Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Jocelyne DiRuggiero
- Department of Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
45
|
Accurate DNA synthesis by Sulfolobus solfataricus DNA polymerase B1 at high temperature. Extremophiles 2009; 14:107-17. [DOI: 10.1007/s00792-009-0292-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 11/23/2009] [Indexed: 11/24/2022]
|
46
|
Zhang L, Brown JA, Newmister SA, Suo Z. Polymerization fidelity of a replicative DNA polymerase from the hyperthermophilic archaeon Sulfolobus solfataricus P2. Biochemistry 2009; 48:7492-501. [PMID: 19456141 DOI: 10.1021/bi900532w] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sulfolobus solfataricus P2 is an aerobic crenarchaeon which grows optimally at 80 degrees C and pH 2-4. This organism encodes a B-family DNA polymerase, DNA polymerase B1 (PolB1), which faithfully replicates its genome of 3 million base pairs. Using pre-steady-state kinetic methods, we estimated the fidelity of PolB1 to be in the range of 10(-6) to 10(-8), or one error per 10(6) to 10(8) nucleotide incorporations in vivo. To discern how the polymerase and 3' --> 5' exonuclease activities contribute to the high fidelity of PolB1, an exonuclease-deficient mutant of PolB1 was constructed by mutating three conserved residues at the exonuclease active site. The base substitution fidelity of this mutant was kinetically measured to be in the range of 10(-4) to 10(-6) at 37 degrees C and pH 7.5. PolB1 exhibited high fidelity due to large differences in both ground-state nucleotide binding affinity and nucleotide incorporation rates between correct and incorrect nucleotides. The kinetic partitioning between the slow mismatch extension catalyzed by the polymerase activity and the fast mismatch excision catalyzed by the 3' --> 5' exonuclease activity further lowers the error frequency of PolB1 by 14-fold. Furthermore, the base substitution error frequency of the exonuclease-deficient PolB1 increased by 5-fold as the reaction temperature increased. Interestingly, the fidelity of the exonuclease-deficient PolB1 mutant increased by 36-fold when the buffer pH was lowered from 8.5 to 6.0. A kinetic basis for these temperature and pH changes altering the fidelity of PolB1 was established. The faithful replication of genomic DNA catalyzed by PolB1 is discussed.
Collapse
Affiliation(s)
- Likui Zhang
- Department of Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
47
|
Lee JI, Kil EJ, Song JG, Kim YJ, Choi JJ, Shim H, Kwon ST. Characterization and PCR optimization of the thermostable family B DNA polymerase from Thermococcus guaymasensis. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Biochemical Properties and PCR Performance of a Family B DNA Polymerase from Hyperthermophilic Euryarchaeon Thermococcus peptonophilus. Appl Biochem Biotechnol 2009; 160:1585-99. [DOI: 10.1007/s12010-009-8658-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 04/23/2009] [Indexed: 12/11/2022]
|
49
|
Bae H, Kim KP, Lee JI, Song JG, Kil EJ, Kim JS, Kwon ST. Characterization of DNA polymerase from the hyperthermophilic archaeon Thermococcus marinus and its application to PCR. Extremophiles 2009; 13:657-67. [PMID: 19412677 DOI: 10.1007/s00792-009-0248-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 04/16/2009] [Indexed: 11/25/2022]
Abstract
The family B DNA polymerase gene from the archaeon Thermococcus marinus (Tma) contains a long open reading frame of 3,939 bp that encodes 1,312 amino acid residues. The gene is split by one intervening sequence that forms a continuous open reading frame with the two polymerase exteins. In this study, the Tma DNA polymerase gene both with (precursor form) and without (mature form) its intein was expressed in Escherichia coli, purified by heat treatment and HiTrap Heparin HP column chromatography and characterized. Primary sequence analysis of the mature Tma polymerase showed high sequence identity with DNA polymerases in the genus Thermococcus. The expressed precursor form was easily spliced during purification steps. The molecular mass of the purified Tma DNA polymerases is about 90 kDa, as estimated by SDS-PAGE. Both Tma DNA polymerases showed the same properties. PCR performed with this enzyme was found to be optimal in the presence of 50 mM Tris-HCl (pH 8.4), 40 mM KCl, 12.5 mM (NH(4))(2)SO(4,) 2 mM MgCl(2,) 0.05% Triton X-100 and 0.0075% BSA. Furthermore, long-range PCR and time-saving PCR were performed using various specific ratios of Taq and Tma DNA polymerases (Tma plus DNA polymerase).
Collapse
Affiliation(s)
- Heejin Bae
- Department of Genetic Engineering, Sungkyunkwan University, Cheoncheon-dong, Jangan-gu, Suwon, Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Young DD, Lusic H, Lively MO, Deiters A. Restriction enzyme-free mutagenesis via the light regulation of DNA polymerization. Nucleic Acids Res 2009; 37:e58. [PMID: 19293272 PMCID: PMC2677887 DOI: 10.1093/nar/gkp150] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The effects of photocaged nucleosides on the DNA polymerization reaction was investigated, finding that most polymerases are unable to recognize and read through the presence of a single caging group on the DNA template. Based on this discovery, a new method of introducing mutations into plasmid DNA via a light-mediated mutagenesis protocol was developed. This methodology is advantageous over several common approaches in that it requires the use of only two polymerase chain reaction primers, and does not require any restriction sites or use of restriction enzymes. Additionally, this approach enables not only site-directed mutations, but also the insertion of DNA strands of any length into plasmids and the deletion of entire genes from plasmids.
Collapse
Affiliation(s)
- Douglas D Young
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607-8204, USA
| | | | | | | |
Collapse
|