1
|
Pérez-Lago L, Salas M, Camacho A. A precise DNA bend angle is essential for the function of the phage phi29 transcriptional regulator. Nucleic Acids Res 2005; 33:126-34. [PMID: 15642698 PMCID: PMC546135 DOI: 10.1093/nar/gki146] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Bacteriophage φ29 protein p4 is essential for the regulation of the switch from early to late phage transcription. The protein binds to two regions of the phage genome located between the regulated promoters. Each region contains two inverted repeats separated by 1 bp. We used circular permutation assays to study the topology of the DNA upon binding of the protein and found that p4 induced the same extent of bending independent of the topology of the binding region. In addition, the results revealed that the p4-induced bending is not dependent on the affinity to the binding site but is intrinsic to p4 binding. Independent binding sites were identified through the characterization of the minimal sequence required for p4 binding. The protein has different affinity for each of its binding sites, with those overlapping the A2c and A2b promoter cores (sites 1 and 3), having the highest affinity. The functionality of the p4 binding sites and the contribution of p4-mediated promoter restructuring in transcription regulation is discussed.
Collapse
Affiliation(s)
| | | | - Ana Camacho
- To whom correspondence should be addressed. Tel: +34 91 497 8435; Fax: +34 91 497 8490;
| |
Collapse
|
2
|
Camacho A, Salas M. Molecular Interplay Between RNA Polymerase and Two Transcriptional Regulators in Promoter Switch. J Mol Biol 2004; 336:357-68. [PMID: 14757050 DOI: 10.1016/j.jmb.2003.12.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Transcription regulation relies in the molecular interplay between the RNA polymerase (RNAP) and regulatory factors. Phage phi29 promoters A2c, A2b and A3 are coordinately regulated by the transcriptional regulator protein p4 and the histone-like protein p6. This study shows that protein p4 binds simultaneously to four sites: sites 1 and 2 located between promoters A2c and A2b and sites 3 and 4 between promoters A2b and A3, placed in such a way that bound p4 is equidistant from promoters A2c and A2b and one helix turn further upstream from promoter A3. The p4 molecules bound to sites 1 and 3 reorganise the binding of protein p6, giving rise to the nucleoprotein complex responsible for the switch from early to late transcription. We identify the positioning of the alphaCTD-RNAP domain at these promoters, and demonstrate that the domains are crucial for promoter A2b recognition and required for full activity of promoter A2c. Since binding of RNAP overlaps with p4 and p6 binding, repression of the early transcription relies on the synergy of the regulators able to antagonize the stable binding of the RNAP through competition for the same target, while activation of late transcription is carried out through the stabilization of the RNAP by the p4/p6 nucleoprotein complex. The control of promoters A2c and A2b by feed-back regulation is discussed.
Collapse
Affiliation(s)
- Ana Camacho
- Instituto de Biologi;a Molecular "Eladio Viñuela" (CSIC), Centro de Biologi;a Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, Canto Blanco, 28049, Madrid, Spain
| | | |
Collapse
|
3
|
Horcajadas JA, Monsalve M, Rojo F, Salas M. The switch from early to late transcription in phage GA-1: characterization of the regulatory protein p4G. J Mol Biol 1999; 290:917-28. [PMID: 10438592 DOI: 10.1006/jmbi.1999.2932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcription program of the Bacillus phage GA-1, a distant relative of phage Phi29, has been studied. Transcription of the GA-1 genome occurred in two stages, early and late. Early genes were expressed from two promoters equivalent to the Phi29 A2b and A2c promoters, whereas late transcription started at a site equivalent to the Phi29 late A3 promoter. The activity of the GA-1 early A2b and A2c promoters diminished 10 minutes after infection, a time at which expression of the late promoter increased significantly. The switch from early to late transcription required protein synthesis, suggesting the need for viral protein(s). An open reading frame was found in the GA-1 genome coding for a protein showing a 53 % similarity to Phi29 regulatory protein p4, and was named p4G. In Phi29, protein p4 represses the early A2b and A2c promoters and activates the late A3 promoter by recruiting RNA polymerase to it. A binding site for protein p4Gwas localized upstream from the GA-1 late A3 promoter, overlapping with the early A2b promoter. In vitro, protein p4Gprevented the binding of RNA polymerase to the GA-1 early A2b promoter but, unlike in Phi29, had no effect on the expression of the late A3 promoter: RNA polymerase could efficiently bind and initiate transcription from the A3 promoter in the absence of protein p4G. Therefore, activation of late transcription occurs differently in GA-1 and Phi29. We propose that protein p4Gis an anti-repressor which inhibits the binding to the late promoter of an unknown repressor factor present in the host strain.
Collapse
Affiliation(s)
- J A Horcajadas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049-Madrid, Spain
| | | | | | | |
Collapse
|
4
|
Monsalve M, Calles B, Mencía M, Rojo F, Salas M. Binding of phage phi29 protein p4 to the early A2c promoter: recruitment of a repressor by the RNA polymerase. J Mol Biol 1998; 283:559-69. [PMID: 9784366 DOI: 10.1006/jmbi.1998.2084] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulatory protein p4 from Bacillus subtilis phage Phi29 represses the early A2c promoter by binding upstream from RNA polymerase and interacting with the C-terminal domain of the RNA polymerase alpha subunit. This interaction stabilizes the RNA polymerase at the promoter in such a way that promoter clearance is prevented. Here, the binding of protein p4 to the A2c promoter has been studied. In the absence of RNA polymerase, protein p4 was found to bind with low affinity to a site centered at position -39 relative to the transcription start site. When RNA polymerase was present, protein p4 was displaced from this site and bound instead to a different target centered at position -71. Stable binding to this site requires the interaction of protein p4 with the C-terminal domain of the RNA polymerase alpha-subunit. Both sites contain sequences resembling the well-characterized p4 binding site present at the late A3 promoter, to which p4 binds with high affinity. A mutational analysis revealed that the site at -71 is critical for a stable interaction between protein p4 and RNA polymerase, and for efficient repression, whereas mutation of the site at -39 had only a small effect on repression efficiency. Therefore, RNA polymerase plays an active role in the repression mechanism by stabilizing the repressor at the promoter, generating a nucleoprotein complex that is too stable to allow promoter clearance.
Collapse
Affiliation(s)
- M Monsalve
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, Canto Blanco, 28049-Madrid, Spain
| | | | | | | | | |
Collapse
|
5
|
Rojo F, Mencía M, Monsalve M, Salas M. Transcription activation and repression by interaction of a regulator with the alpha subunit of RNA polymerase: the model of phage phi 29 protein p4. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 60:29-46. [PMID: 9594570 DOI: 10.1016/s0079-6603(08)60888-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Regulatory protein p4, encoded by Bacillus subtilis phage phi 29, has proved to be a very useful model to analyze the molecular mechanisms of transcription regulation. Protein p4 modulates the transcription of phage phi 29 genome by activating the late A3 promoter (PA3) and simultaneously repressing the two main early promoters, A2b and A2c (or PA2b and PA2c). This review describes in detail the regulatory mechanism leading to activation or repression, and discusses them in the context of the recent findings on the role of the RNA polymerase alpha subunit in transcription regulation. Activation of PA3 implies the p4-mediated stabilization of RNA polymerase at the promoter as a closed complex. Repression of the early A2b promoter occurs by binding of protein p4 to a site that partially overlaps the -35 consensus region of the promoter, therefore preventing the binding of RNA polymerase to the promoter. Repression of the A2c promoter, located 96 bp downstream from PA2b, occurs by a different mechanism that implies the simultaneous binding of protein p4 and RNA polymerase to the promoter in such a way that promoter clearance is inhibited. Interestingly, activation of PA3 and repression of PA2c require an interaction between protein p4 and RNA polymerase, and in both cases this interaction occurs between the same surface of protein p4 and the C-terminal domain of the alpha subunit of RNA polymerase, which provides new insights into how a protein can activate or repress transcription by subtle variations in the protein-DNA complexes formed at promoters.
Collapse
Affiliation(s)
- F Rojo
- Centro Nacional de Biotecnología (CSIC), Universidad Autónoma, Madrid, Spain
| | | | | | | |
Collapse
|
6
|
Mencía M, Monsalve M, Salas M, Rojo F. Transcriptional activator of phage phi 29 late promoter: mapping of residues involved in interaction with RNA polymerase and in DNA bending. Mol Microbiol 1996; 20:273-82. [PMID: 8733227 DOI: 10.1111/j.1365-2958.1996.tb02616.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Phage phi 29 regulatory protein p4 activates transcription from the late A3 promoter by stabilizing sigma A-RNA polymerase at the promoter as a closed complex. Activation requires interaction between both proteins. Protein p4 bends the DNA upon binding. We have performed a detailed mutagenesis study of the carboxyl end of the protein, which is involved in both transcription activation and DNA bending. The results indicate that Arg-120 is the most critical residue for activation, probably mediating the interaction with RNA polymerase. Several basic residues have been identified, including Arg-120, that contribute to maintenance of the DNA bending, probably via electrostatic interactions with the DNA backbone. The degree or stability of the induced bend apparently relies on the additive contribution of all basic residues of the carboxyl end of the protein. Therefore, the activation and DNA bending surfaces overlap, and Arg-120 should interact with both DNA and RNA polymerase. As we show that protein p4 is a dimer in solution, and is bound to DNA as a tetramer, the results suggest a model in which two of the p4 subunits interact with the DNA, bending it, while the other two subunits remain accessible to interact with RNA polymerase.
Collapse
Affiliation(s)
- M Mencía
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Madrid, Spain
| | | | | | | |
Collapse
|
7
|
Pérez-Martín J, Rojo F, de Lorenzo V. Promoters responsive to DNA bending: a common theme in prokaryotic gene expression. Microbiol Rev 1994; 58:268-90. [PMID: 8078436 PMCID: PMC372964 DOI: 10.1128/mr.58.2.268-290.1994] [Citation(s) in RCA: 209] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The early notion of DNA as a passive target for regulatory proteins has given way to the realization that higher-order DNA structures and DNA-protein complexes are at the basis of many molecular processes, including control of promoter activity. Protein binding may direct the bending of an otherwise linear DNA, exacerbate the angle of an intrinsic bend, or assist the directional flexibility of certain sequences within prokaryotic promoters. The important, sometimes essential role of intrinsic or protein-induced DNA bending in transcriptional regulation has become evident in virtually every system examined. As discussed throughout this article, not every function of DNA bends is understood, but their presence has been detected in a wide variety of bacterial promoters subjected to positive or negative control. Nonlinear DNA structures facilitate and even determine proximal and distal DNA-protein and protein-protein contacts involved in the various steps leading to transcription initiation.
Collapse
Affiliation(s)
- J Pérez-Martín
- Centro de Investigaciones Biológicas, (CSIC), Madrid, Spain
| | | | | |
Collapse
|
8
|
Nuez B, Salas M. Bacteriophage Nf DNA region controlling late transcription: structural and functional homology with bacteriophage phi 29. Nucleic Acids Res 1993; 21:2861-5. [PMID: 8332494 PMCID: PMC309670 DOI: 10.1093/nar/21.12.2861] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The putative region for the control of late transcription of the Bacillus subtilis phage Nf has been identified by DNA sequence homology with the equivalent region of the evolutionary related phage phi 29. A similar arrangement of early and late promoters has been detected in the two phages, suggesting that viral transcription could be regulated in a similar way at late times of the infection. Transcription of late genes requires the presence of a viral early protein, gpF in phage Nf and p4 in phage phi 29, being the latter known to bind to a DNA region located upstream from the phage phi 29 late promoter. We have identified a DNA region located upstream from the putative late promoter of phage Nf that is probably involved in binding protein gpF. Furthermore, we show that the phage phi 29 protein p4 is able to bind to this region and activate transcription from the phage Nf putative late promoter. Sequence alignment has also revealed the existence of significant internal homology between the two early promoters contained in this region of each phage.
Collapse
Affiliation(s)
- B Nuez
- Centro de Biología Molecular (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | |
Collapse
|
9
|
Rojo F, Nuez B, Mencía M, Salas M. The main early and late promoters of Bacillus subtilis phage phi 29 form unstable open complexes with sigma A-RNA polymerase that are stabilized by DNA supercoiling. Nucleic Acids Res 1993; 21:935-40. [PMID: 8451193 PMCID: PMC309227 DOI: 10.1093/nar/21.4.935] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Most Escherichia coli promoters studied so far form stable open complexes with sigma 70-RNA polymerase which have relatively long half-lives and, therefore, are resistant to a competitor challenge. A few exceptions are nevertheless known. The analysis of a number of promoters in Bacillus subtilis has suggested that the instability of open complexes formed by the vegetative sigma A-RNA polymerase may be a more general phenomenon than in Escherichia coli. We show that the main early and late promoters from the Bacillus subtilis phage phi 29 form unstable open complexes that are stabilized either by the formation of the first phosphodiester bond between the initiating nucleoside triphosphates or by DNA supercoiling. The functional characteristics of these two strong promoters suggest that they are not optimized for a tight and stable RNA polymerase binding. Their high activity is probably the consequence of the efficiency of further steps leading to the formation of an elongation complex.
Collapse
Affiliation(s)
- F Rojo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | | | | | |
Collapse
|
10
|
Abstract
An increasing number of transcription factors both from prokaryotic and eukaryotic sources are found to bend the DNA upon binding to their recognition site. Bending can easily be detected by the anomalous electrophoretic behaviour of the DNA-protein complex or by increased cyclization of DNA fragments containing the protein-induced bend. Induction of DNA bending by transcription factors could regulate transcription in various ways. Bending may bring distantly bound transcription factors closer together by facilitating DNA-looping or it could mediate the interaction between transcription factors and the general transcription machinery by formation of large nucleoprotein structures in which the DNA is wrapped around the protein complex. Alternatively, the energy stored in a protein-induced bend could be used to favour formation of an open transcription complex or to dissociate the RNA polymerase in the transition from initiation to elongation. Modification of the bend angles and bending centers, caused by homodimerization or heterodimerization of transcription factors, may well turn out to be an important way to enlarge the range of interactions required for regulation of gene expression.
Collapse
Affiliation(s)
- P C van der Vliet
- Laboratory for Physiological Chemistry, University of Utrecht, Vondellaan, The Netherlands
| | | |
Collapse
|
11
|
Rojo F, Barthelemy I, Nuez B, Serrano M, Salas M. Transcription regulation in Bacillus subtilis phage phi 29. Res Microbiol 1991; 142:771-7. [PMID: 1784815 DOI: 10.1016/0923-2508(91)90054-e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- F Rojo
- Centro de Biología Molecular (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid
| | | | | | | | | |
Collapse
|