1
|
A coregulator shift, rather than the canonical switch, underlies thyroid hormone action in the liver. Genes Dev 2021; 35:367-378. [PMID: 33602873 PMCID: PMC7919419 DOI: 10.1101/gad.345686.120] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
In this study, Shabtai et al. investigated the mechanism of thyroid hormone (TH)-dependent gene repression, generated a mouse line in which endogenous thyroid hormone receptor TRβ1 was epitope-tagged to allow precise chromatin immunoprecipitation at the low physiological levels of thyroid hormone receptors (TR), and defined high-confidence binding sites where TR functioned at enhancers regulated in the same direction as the nearest gene in a TRβ-dependent manner. Their results demonstrate that, in contrast to the canonical “all or none” coregulator switch model, TH regulates gene expression by orchestrating a shift in the relative binding of corepressors and coactivators. Thyroid hormones (THs) are powerful regulators of metabolism with major effects on body weight, cholesterol, and liver fat that have been exploited pharmacologically for many years. Activation of gene expression by TH action is canonically ascribed to a hormone-dependent “switch” from corepressor to activator binding to thyroid hormone receptors (TRs), while the mechanism of TH-dependent repression is controversial. To address this, we generated a mouse line in which endogenous TRβ1 was epitope-tagged to allow precise chromatin immunoprecipitation at the low physiological levels of TR and defined high-confidence binding sites where TRs functioned at enhancers regulated in the same direction as the nearest gene in a TRβ-dependent manner. Remarkably, although positive and negative regulation by THs have been ascribed to different mechanisms, TR binding was highly enriched at canonical DR4 motifs irrespective of the transcriptional direction of the enhancer. The canonical NCoR1/HDAC3 corepressor complex was reduced but not completely dismissed by TH and, surprisingly, similar effects were seen at enhancers associated with negatively as well as positively regulated genes. Conversely, coactivator CBP was found at all TH-regulated enhancers, with transcriptional activity correlating with the ratio of CBP to NCoR rather than their presence or absence. These results demonstrate that, in contrast to the canonical “all or none” coregulator switch model, THs regulate gene expression by orchestrating a shift in the relative binding of corepressors and coactivators.
Collapse
|
2
|
Grijota-Martínez C, Samarut E, Scanlan TS, Morte B, Bernal J. In vivo activity of the thyroid hormone receptor beta- and α-selective agonists GC-24 and CO23 on rat liver, heart, and brain. Endocrinology 2011; 152:1136-42. [PMID: 21239431 PMCID: PMC3040061 DOI: 10.1210/en.2010-0813] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid hormone analogs with selective actions through specific thyroid hormone receptor (TR) subtypes are of great interest. They might offer the possibility of mimicking physiological actions of thyroid hormone with receptor subtype or tissue specificity with therapeutic aims. They are also pharmacological tools to dissect biochemical pathways mediated by specific receptor subtypes, in a complementary way to mouse genetic modifications. In this work, we studied the in vivo activity in developing rats of two thyroid hormone agonists, the TRβ-selective GC-24 and the TRα-selective CO23. Our principal goal was to check whether these compounds were active in the rat brain. Analog activity was assessed by measuring the expression of thyroid hormone target genes in liver, heart, and brain, after administration to hypothyroid rats. GC-24 was very selective for TRβ and lacked activity on the brain. On the other hand, CO23 was active in liver, heart, and brain on genes regulated by either TRα or TRβ. This compound, previously shown to be TRα-selective in tadpoles, displayed no selectivity in the rat in vivo.
Collapse
Affiliation(s)
- Carmen Grijota-Martínez
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
3
|
Vallejo CG, Seguido AM, Testillano PS, Risueño MC. Thyroid hormone regulates tubulin expression in mammalian liver. Effects of deleting thyroid hormone receptor-alpha or -beta. Am J Physiol Endocrinol Metab 2005; 289:E87-94. [PMID: 15713690 DOI: 10.1152/ajpendo.00436.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microtubules are made from polymers of alpha/beta dimers. We have observed in rat liver that, on the first day after birth, alpha-subunit is relatively high and beta-subunit low with respect to adult values. In the hypothyroid neonate, both subunits were found to be low, therefore indicating that thyroid hormone (TH) regulates these developmental changes. TH was also found to activate tubulin expression in adult liver, especially beta-subunit. To investigate the role of TH receptors (TRs) in tubulin expression, we analyzed mice lacking TRalpha or TRbeta compared with the wild type in both normal and TH-deprived adult animals. The results suggest that, in vivo, beta-tubulin protein expression in the liver is primarily under TRbeta positive control. In euthyroid mice lacking TRbeta, beta-tubulin expression was low. However, in the corresponding hypothyroid animals, it was found increased, therefore suggesting that the unliganded TRalpha might also upregulate beta-tubulin expression. Accordingly, TH administration to hypothyroid TRbeta-deprived mice reduced their high beta-tubulin expression. In parallel, the relatively high messenger level observed with these hypothyroid animals was reduced to the euthyroid level after T(3) treatment. The microtubular network of the mutant livers appeared, by immunofluorescence confocal microscopy, generally disorganized and drastically reduced in beta-tubulin in mice lacking TRbeta. In conclusion, our results indicate that beta-tubulin is critically controlled by TRbeta in the liver and that both TRs are probably needed to maintain the microtubular network organization of the liver.
Collapse
Affiliation(s)
- Carmen G Vallejo
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain.
| | | | | | | |
Collapse
|
4
|
Barber TD, Barber MC, Tomescu O, Barr FG, Ruben S, Friedman TB. Identification of target genes regulated by PAX3 and PAX3-FKHR in embryogenesis and alveolar rhabdomyosarcoma. Genomics 2002; 79:278-84. [PMID: 11863357 DOI: 10.1006/geno.2002.6703] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PAX3 is a transcription factor important for neural, muscle, and facial development in vertebrates. To identify genes regulated by PAX3, we used a cyclic amplification and selection of targets (CASTing) strategy to isolate cis-regulatory elements bound by PAX3. CASTing libraries were constructed with mouse DNA fragments bound by mouse PAX3, and human genomic DNA fragments bound by human PAX3 and the fusion protein PAX3-FKHR. Approximately 1000 clones were sequenced from each of these three libraries. Numerous putative targets of PAX3 and PAX3-FKHR were identified and six genes, Itm2A, Fath, FLT1, TGFA, BVES, and EN2, were examined closely. The genomic DNA fragments near these genes contain PAX3 binding sites and confer PAX3-dependent regulation. The expression levels of these genes correlate with the PAX3 expression levels in mouse embryos or with PAX3-FKHR expression levels in rhabdomyosarcoma cell lines, and indicate they may be part of the PAX3 regulatory circuitry during embryogenesis and tumor formation.
Collapse
Affiliation(s)
- Thomas D Barber
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 5 Research Court, Rockville, Maryland 20850, USA
| | | | | | | | | | | |
Collapse
|
5
|
Martínez de Arrieta C, Morte B, Coloma A, Bernal J. The human RC3 gene homolog, NRGN contains a thyroid hormone-responsive element located in the first intron. Endocrinology 1999; 140:335-43. [PMID: 9886843 DOI: 10.1210/endo.140.1.6461] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NRGN is the human homolog of the neuron-specific rat RC3/neurogranin gene. This gene encodes a postsynaptic 78-amino acid protein kinase substrate that binds calmodulin in the absence of calcium, and that has been implicated in dendritic spine formation and synaptic plasticity. In the rat brain RC3 is under thyroid hormone control in specific neuronal subsets in both developing and adult animals. To evaluate whether the human gene is also a target of thyroid hormone we have searched for T3-responsive elements in NRGN cloned genomic fragments spanning the whole gene. Labeled DNA fragments were incubated with T3 receptors (T3R) and 9-cis-retinoic acid receptors and immunoprecipitated using an anti T3R antibody. A receptor-binding site was localized in the first intron, 3000 bp downstream from the origin of transcription. Footprinting analysis revealed the sequence GGATTAAATGAGGTAA, closely related to the consensus T3-responsive element of the direct repeat (DR4) type. This sequence binds the T3R-9-cis-retinoic acid receptors heterodimers, but not T3R monomers or homodimers, and is able to confer regulation by T3R and T3 when fused upstream of the NRGN or thymidine kinase promoters. The data reported in this work suggest that NRGN is a direct target of thyroid hormone in human brain, and that control of expression of this gene could underlay many of the consequences ofhypothyroidism on mental states during development as well as in adult subjects.
Collapse
Affiliation(s)
- C Martínez de Arrieta
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Cientificas, Universidad Autonoma de Madrid, Spain
| | | | | | | |
Collapse
|
6
|
|
7
|
García-Fernández LF, Urade Y, Hayaishi O, Bernal J, Muñoz A. Identification of a thyroid hormone response element in the promoter region of the rat lipocalin-type prostaglandin D synthase (beta-trace) gene. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 55:321-30. [PMID: 9582446 DOI: 10.1016/s0169-328x(98)00015-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have previously reported that mRNA levels for the rat lipocalin-type prostaglandin (PG) D synthase/beta-trace (PGDS) gene, the enzyme responsible for the production of PGD2 in the central nervous system, are regulated by thyroid hormone in vivo. In this study, we describe the identification of a thyroid hormone (T3) response element (T3RE) in the 5'-flanking region of the rat PGDS gene. By radioimmunoprecipitation of genomic fragments using thyroid hormone receptor (TR) protein and specific anti-TR antibodies, gel-shift, foot-printing, mutational analysis, and transactivation assays we have identified a spaced four imperfect direct repeat (DR4) element, GGTTCACTTCAGGGTA (positions -586/-571), which functions as a T3RE when fused to a heterologous promoter. Our results suggest that thyroid hormone regulates the expression of the rat lipocalin-type PGDS gene through this element. Remarkably, the element identified also confers regulation by retinoic acid. Giving the important roles proposed for the PGDS enzyme and its product, PGD2, the major PG in the mammalian brain, the altered expression of the PGDS gene may contribute to the deleterious effects of hypothyroidism in the central nervous system.
Collapse
Affiliation(s)
- L F García-Fernández
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Arturo Duperier 4, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
8
|
Herbst R, Nicklin MJ. SEZ-6: promoter selectivity, genomic structure and localized expression in the brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 44:309-22. [PMID: 9073173 DOI: 10.1016/s0169-328x(96)00274-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AP-1-binding elements from promoter proximal DNA (the small HpaII-digested fraction of mouse genomic DNA) were affinity-selected with recombinant AP-1 complexes. One of the selected AP-1-binding elements originated from 1 kb 3' of the transcription start site of SEZ-6. We show that the mouse SEZ-6 gene extends over 49 kbp and contains 17 exons. SEZ-6 has been reported as a mouse brain-specific transcript encoding an integral membrane protein with a short cytoplasmic tail which we note may have a signalling function. We show that SEZ-6 mRNA expression in rat brain is specific to neurons but shows sharp regional differences, unconnected with the localization of major neurotransmitters. Full-length and a 3' truncated transcript are also abundant in testis. We define the origins of all reported sequence variants. The hypothetical domain structure of the protein is in excellent agreement with the exonic structure of the gene. The SEZ-6 promoter is a CpG island. In transient transfections, even the smallest promoter fragment tested (157 bp) was extremely selective towards a mouse neuronal cell line, Neuro 2a, compared with NIH-3T3, a non-expressing line.
Collapse
Affiliation(s)
- R Herbst
- Department of Medicine and Pharmacology, University of Sheffield, UK
| | | |
Collapse
|
9
|
Iglesias T, Caubín J, Stunnenberg HG, Zaballos A, Bernal J, Muñoz A. Thyroid hormone-dependent transcriptional repression of neural cell adhesion molecule during brain maturation. EMBO J 1996; 15:4307-16. [PMID: 8861959 PMCID: PMC452156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Thyroid hormone (T3) is a main regulator of brain development acting as a transcriptional modulator. However, only a few T3-regulated brain genes are known. Using an improved whole genome PCR approach, we have isolated seven clones encoding sequences expressed in neonatal rat brain which are under the transcriptional control of T3. Six of them, including the neural cell adhesion molecule NCAM, alpha-tubulin and four other unidentified sequences (RBA3, RBA4, RBB3 and RBB5) were found to be upregulated in the hypothyroid brain, whereas another (RBE7) was downregulated. Binding sites for the T3 receptor (T3R/c-erbA) were identified in the isolated clones by gel-shift and footprinting assays. Sites in the NCAM (in an intron), alpha-tubulin (in an exon) and RBA4 clones mediated transcriptional regulation by T3 when inserted upstream of a reporter construct. However, no effect of the NCAM clone was found when located downstream of another reporter gene. Northern blotting and in situ hybridization studies showed a higher expression of NCAM in the brain of postnatal hypothyroid rats. Since NCAM is an important morphoregulatory molecule, abnormal NCAM expression is likely to contribute to the alterations present in the brain of thyroid-deficient humans and experimental animals.
Collapse
Affiliation(s)
- T Iglesias
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Vortkamp A, Gessler M, Grzeschik KH. Identification of optimized target sequences for the GLI3 zinc finger protein. DNA Cell Biol 1995; 14:629-34. [PMID: 7626222 DOI: 10.1089/dna.1995.14.629] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
GLI3 represents an important control gene for development and differentiation of several body structures. Reduction in gene dosage already leads to severe perturbation, especially of limb morphogenesis. The gene encodes a zinc finger protein that likely functions as a transcriptional modulator. Because the five zinc fingers should be capable of recognizing an extended stretch of genomic DNA, we sought to identify sequences bound by GLI3 that may facilitate the search for target genes acting downstream of GLI3. Starting from the nonamer DNA binding sequence of the highly related GLI protein, we employed an oligonucleotide selection protocol to determine an optimized binding sequence for the GLI3 protein. The resulting sequence bound by the GLI3 zinc fingers consists of 16 nucleotides and shows a high degree of similarity to sequences bound by the GLI and tra-1 proteins. Comparison with protein-DNA interactions in the known crystal structure of the GLI-DNA complex suggests relevant interactions of additional amino acids of GLI3 with its target site. The newly identified GLI3 target sequence should prove very useful for both the structural analysis of the protein-DNA complex and the search for genes whose expression is subject to regulation by the GLI3 gene product.
Collapse
Affiliation(s)
- A Vortkamp
- Institut für Humangenetik, Marburg, Germany
| | | | | |
Collapse
|