1
|
Camara MB, Sobeh AM, Eichhorn CD. Progress in 7SK ribonucleoprotein structural biology. Front Mol Biosci 2023; 10:1154622. [PMID: 37051324 PMCID: PMC10083321 DOI: 10.3389/fmolb.2023.1154622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
The 7SK ribonucleoprotein (RNP) is a dynamic and multifunctional regulator of RNA Polymerase II (RNAPII) transcription in metazoa. Comprised of the non-coding 7SK RNA, core proteins, and numerous accessory proteins, the most well-known 7SK RNP function is the sequestration and inactivation of the positive transcription elongation factor b (P-TEFb). More recently, 7SK RNP has been shown to regulate RNAPII transcription through P-TEFb-independent pathways. Due to its fundamental role in cellular function, dysregulation has been linked with human diseases including cancers, heart disease, developmental disorders, and viral infection. Significant advances in 7SK RNP structural biology have improved our understanding of 7SK RNP assembly and function. Here, we review progress in understanding the structural basis of 7SK RNA folding, biogenesis, and RNP assembly.
Collapse
Affiliation(s)
- Momodou B. Camara
- Department of Chemistry, University of Nebraska, Lincoln, NE, United States
| | - Amr M. Sobeh
- Department of Chemistry, University of Nebraska, Lincoln, NE, United States
| | - Catherine D. Eichhorn
- Department of Chemistry, University of Nebraska, Lincoln, NE, United States
- Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE, United States
- *Correspondence: Catherine D. Eichhorn,
| |
Collapse
|
2
|
Seal RL, Chen LL, Griffiths-Jones S, Lowe TM, Mathews MB, O'Reilly D, Pierce AJ, Stadler PF, Ulitsky I, Wolin SL, Bruford EA. A guide to naming human non-coding RNA genes. EMBO J 2020; 39:e103777. [PMID: 32090359 PMCID: PMC7073466 DOI: 10.15252/embj.2019103777] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 12/15/2022] Open
Abstract
Research on non-coding RNA (ncRNA) is a rapidly expanding field. Providing an official gene symbol and name to ncRNA genes brings order to otherwise potential chaos as it allows unambiguous communication about each gene. The HUGO Gene Nomenclature Committee (HGNC, www.genenames.org) is the only group with the authority to approve symbols for human genes. The HGNC works with specialist advisors for different classes of ncRNA to ensure that ncRNA nomenclature is accurate and informative, where possible. Here, we review each major class of ncRNA that is currently annotated in the human genome and describe how each class is assigned a standardised nomenclature.
Collapse
Affiliation(s)
- Ruth L Seal
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, Shanghai, China
| | - Sam Griffiths-Jones
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Todd M Lowe
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA
| | - Michael B Mathews
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Dawn O'Reilly
- Computational Biology and Integrative Genomics Lab, MRC/CRUK Oxford Institute and Department of Oncology, University of Oxford, Oxford, UK
| | - Andrew J Pierce
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.,Institute of Theoretical Chemistry, University of Vienna, Vienna, Austria.,Facultad de Ciencias, Universidad National de Colombia, Sede Bogotá, Colombia.,Santa Fe Institute, Santa Fe, USA
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Sandra L Wolin
- RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Elspeth A Bruford
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| |
Collapse
|
3
|
Iben JR, Epstein JA, Bayfield MA, Bruinsma MW, Hasson S, Bacikova D, Ahmad D, Rockwell D, Kittler ELW, Zapp ML, Maraia RJ. Comparative whole genome sequencing reveals phenotypic tRNA gene duplication in spontaneous Schizosaccharomyces pombe La mutants. Nucleic Acids Res 2011; 39:4728-42. [PMID: 21317186 PMCID: PMC3113579 DOI: 10.1093/nar/gkr066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We used a genetic screen based on tRNA-mediated suppression (TMS) in a Schizosaccharomyces pombe La protein (Sla1p) mutant. Suppressor pre-tRNASerUCA-C47:6U with a debilitating substitution in its variable arm fails to produce tRNA in a sla1-rrm mutant deficient for RNA chaperone-like activity. The parent strain and spontaneous mutant were analyzed using Solexa sequencing. One synonymous single-nucleotide polymorphism (SNP), unrelated to the phenotype, was identified. Further sequence analyses found a duplication of the tRNASerUCA-C47:6U gene, which was shown to cause the phenotype. Ninety percent of 28 isolated mutants contain duplicated tRNASerUCA-C47:6U genes. The tRNA gene duplication led to a disproportionately large increase in tRNASerUCA-C47:6U levels in sla1-rrm but not sla1-null cells, consistent with non-specific low-affinity interactions contributing to the RNA chaperone-like activity of La, similar to other RNA chaperones. Our analysis also identified 24 SNPs between ours and S. pombe 972h- strain yFS101 that was recently sequenced using Solexa. By including mitochondrial (mt) DNA in our analysis, overall coverage increased from 52% to 96%. mtDNA from our strain and yFS101 shared 14 mtSNPs relative to a ‘reference’ mtDNA, providing the first identification of these S. pombe mtDNA discrepancies. Thus, strain-specific and spontaneous phenotypic mutations can be mapped in S. pombe by Solexa sequencing.
Collapse
Affiliation(s)
- James R Iben
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Huang Y, Bayfield MA, Intine RV, Maraia RJ. Separate RNA-binding surfaces on the multifunctional La protein mediate distinguishable activities in tRNA maturation. Nat Struct Mol Biol 2006; 13:611-8. [PMID: 16799560 DOI: 10.1038/nsmb1110] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 05/15/2006] [Indexed: 11/08/2022]
Abstract
By sequence-specific binding to 3' UUU-OH, the La protein shields precursor (pre)-RNAs from 3' end digestion and is required to protect defective pre-transfer RNAs from decay. Although La is comprised of a La motif and an RNA-recognition motif (RRM), a recent structure indicates that the RRM beta-sheet surface is not involved in UUU-OH recognition, raising questions as to its function. Progressively defective suppressor tRNAs in Schizosaccharomyces pombe reveal differential sensitivities to La and Rrp6p, a 3' exonuclease component of pre-tRNA decay. 3' end protection is compromised by mutations to the La motif but not the RRM surface. The most defective pre-tRNAs require a second activity of La, in addition to 3' protection, that requires an intact RRM surface. The two activities of La in tRNA maturation map to its two conserved RNA-binding surfaces and suggest a modular model that has implications for its other ligands.
Collapse
Affiliation(s)
- Ying Huang
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, US National Institutes of Health, 31 Center Dr., Rm. 2A25, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
5
|
Desmots F, Rauch C, Henry C, Guillouzo A, Morel F. Genomic organization, 5'-flanking region and chromosomal localization of the human glutathione transferase A4 gene. Biochem J 1998; 336 ( Pt 2):437-42. [PMID: 9820822 PMCID: PMC1219889 DOI: 10.1042/bj3360437] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have isolated and characterized a human glutathione transferase A4 (hGSTA4) subunit gene from a yeast artificial chromosome containing several other glutathione transferase alpha genes and pseudogenes. The homodimeric protein hGSTA4-4, is involved in the detoxification of 4-hydroxynonenal and other reactive electrophiles produced by oxidative metabolism, and may have a significant role in protecting intracellular components from oxidative damage. The hGSTA4 gene spans nearly 18 kb, contains seven exons, maps onto chromosome 6p12, and lies in close proximity to the 7SK small nuclear RNA gene in a head-to-tail orientation. The intron/exon borders conform to the standard rules, an open reading frame is present beginning at position 154 in exon 2, and the stop codon is at position 822 in exon 7. The transcription initiation site has been determined by primer extension analysis and is located 135 bp upstream of intron 1. Isolation and sequencing of the hGSTA4 gene 5'-flanking region revealed it to be devoid of TATA or CCAAT boxes but it does contain an initiator element overlapping the transcription start site, a GC box and putative binding sites for transcription factors AP1, STAT, GATA1 and NF-kappaB. Reverse transcription-PCR analysis revealed that hGSTA4 mRNA was present in all the tissues tested, although in low amounts, suggesting that this subunit may be ubiquitously expressed.
Collapse
Affiliation(s)
- F Desmots
- INSERM U456, Détoxication et Réparation Tissulaire, Faculté de Pharmacie, 2 Avenue du Pr. Léon Bernard, 35043 Rennes, France
| | | | | | | | | |
Collapse
|
6
|
Maraia RJ, Sasaki-Tozawa N, Driscoll CT, Green ED, Darlington GJ. The human Y4 small cytoplasmic RNA gene is controlled by upstream elements and resides on chromosome 7 with all other hY scRNA genes. Nucleic Acids Res 1994; 22:3045-52. [PMID: 7520568 PMCID: PMC310274 DOI: 10.1093/nar/22.15.3045] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Ro ribonucleoproteins (RNP) constitute a class of evolutionarily conserved small cytoplasmic (sc) RNPs whose functions are unknown. In human cells four distinctive scRNAs designated hY1, hY3, hY4 and hY5 are synthesized by RNA polymerase III (pol III) and accumulate as components of Ro scRNPs. The previously isolated hY1 and hY3 genes contain upstream sequences similar to the class III promoters for U6 and 7SK snRNAs. Additional mammalian Y scRNA genes have been refractory to cloning due to interference from numerous hY-homologous pseudogenes and studies of hY RNA genes have been sparse. Although homologs of hY1 and hY3 RNAs exist in rodent cells, the smaller Y4 and Y5 RNAs do not which has allowed us to localize the hY4 scRNA gene to human chromosome 7 by assaying for its transcript in rodent X human somatic cell hybrids (SCH). A chromosome 7-enriched yeast artificial chromosome (YAC) library was then screened and the authentic hY4 sequence was isolated by strepavidin--biotin-mediated hybrid-selection followed by poly(dA)-tailing and hemispecific PCR. The region upstream of the hY4 sequence contains a TATAAAA motif centered at -26, a candidate proximal sequence element at -63, and three octamer-like sequences located between -260 and -200. hY4 RNA is readily detectable on Northern blots after transient transfection of the hY4 gene into mouse cells but not after transfection of a construct in which the 5' flanking region was deleted. SCHs and chromosome 7-enriched YACs were used to demonstrate that all four hY RNA genes reside on human chromosome 7.
Collapse
Affiliation(s)
- R J Maraia
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|