1
|
He J, Hu X, Gao X, Meng C, Li Y, Li X, Fan L, Yu HZ. A versatile fluorometric in situ hybridization method for the quantitation of hairpin conformations in DNA self-assembled monolayers. Analyst 2020; 145:4522-4531. [PMID: 32418997 DOI: 10.1039/d0an00657b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As the performance of hairpin DNA (hpDNA)-based biosensors is highly dependent on the yield of stem-loop (hairpin) conformations, we report herein a versatile fluorometric in situ hybridization protocol for examining hpDNA self-assembled monolayers (SAMs) on popularly used biochip substrates. Specifically, the ratio of fluorescence (FL) intensities of hpDNA SAMs (in an array format) before and after hybridization was adopted as the key parameter for performing such a determination. Upon confirming the existence of mixed and tunable DNA conformations in binary deposition solutions and efficient hybridization of the hairpin strands with the target DNA via gel electrophoresis assays, we tested the fluorometric protocol for determining the coverages of hpDNA in hpDNA/ssDNA SAMs prepared on gold; its accuracy was validated by Exonuclease I (Exo I)-assisted electrochemical quantitation. To further confirm its versatility, this FL protocol was adopted for quantifying hairpin conformations formed on glass and polycarbonate (PC) substrates. The molar ratios of surface-tethered hairpin conformations on the three different substrates were all found to be proportional to but less than those in the binary deposition solutions, and were dependent on the substrate morphology. The findings reported herein are beneficial for the construction of highly efficient DNA hairpin-based sensing surfaces, which essentially facilitates the creation of hpDNA-based biosensors with optimal detection performance.
Collapse
Affiliation(s)
- Jiale He
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Gao X, Wang X, Li Y, He J, Yu HZ. Exonuclease I-Hydrolysis Assisted Electrochemical Quantitation of Surface-Immobilized DNA Hairpins and Improved HIV-1 Gene Detection. Anal Chem 2018; 90:8147-8153. [DOI: 10.1021/acs.analchem.8b01445] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xiaoyi Gao
- Department of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Xinglin Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Yunchao Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Jiale He
- Department of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Hua-Zhong Yu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
3
|
Geng J, Aioub M, El-Sayed MA, Barry BA. An Ultraviolet Resonance Raman Spectroscopic Study of Cisplatin and Transplatin Interactions with Genomic DNA. J Phys Chem B 2017; 121:8975-8983. [PMID: 28925698 DOI: 10.1021/acs.jpcb.7b08156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultraviolet resonance Raman (UVRR) spectroscopy is a label-free method to define biomacromolecular interactions with anticancer compounds. Using UVRR, we describe the binding interactions of two Pt(II) compounds, cisplatin (cis-diamminedichloroplatinum(II)) and its isomer, transplatin, with nucleotides and genomic DNA. Cisplatin binds to DNA and other cellular components and triggers apoptosis, whereas transplatin is clinically ineffective. Here, a 244 nm UVRR study shows that purine UVRR bands are altered in frequency and intensity when mononucleotides are treated with cisplatin. This result is consistent with previous suggestions that purine N7 provides the cisplatin-binding site. The addition of cisplatin to DNA also causes changes in the UVRR spectrum, consistent with binding of platinum to purine N7 and disruption of hydrogen-bonding interactions between base pairs. Equally important is that transplatin treatment of DNA generates similar UVRR spectral changes, when compared to cisplatin-treated samples. Kinetic analysis, performed by monitoring decreases of the 1492 cm-1 band, reveals biphasic kinetics and is consistent with a two-step binding mechanism for both platinum compounds. For cisplatin-DNA, the rate constants (6.8 × 10-5 and 6.5 × 10-6 s-1) are assigned to the formation of monofunctional adducts and to bifunctional, intrastrand cross-linking, respectively. In transplatin-DNA, there is a 3.4-fold decrease in the rate constant of the slow phase, compared with the cisplatin samples. This change is attributed to generation of interstrand, rather than intrastrand, adducts. This longer reaction time may result in increased competition in the cellular environment and account, at least in part, for the lower pharmacological efficacy of transplatin.
Collapse
Affiliation(s)
- Jiafeng Geng
- School of Chemistry and Biochemistry, ‡Parker H. Petit Institute of Bioengineering and Bioscience, and §Laser Dynamics Laboratory, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Mena Aioub
- School of Chemistry and Biochemistry, ‡Parker H. Petit Institute of Bioengineering and Bioscience, and §Laser Dynamics Laboratory, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Mostafa A El-Sayed
- School of Chemistry and Biochemistry, ‡Parker H. Petit Institute of Bioengineering and Bioscience, and §Laser Dynamics Laboratory, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Bridgette A Barry
- School of Chemistry and Biochemistry, ‡Parker H. Petit Institute of Bioengineering and Bioscience, and §Laser Dynamics Laboratory, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Ramer G, Ashton L. Two-dimensional codistribution spectroscopy applied to UVRR and ROA investigations of biomolecular transitions. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.02.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Chen Y, Eldho NV, Dayie TK, Carey PR. Probing adenine rings and backbone linkages using base specific isotope-edited Raman spectroscopy: application to group II intron ribozyme domain V. Biochemistry 2010; 49:3427-35. [PMID: 20225830 DOI: 10.1021/bi902117w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Raman difference spectroscopy is used to probe the properties of a 36-nt RNA molecule, "D5", which lies at the heart of the catalytic apparatus in group II introns. For D5 that has all of its adenine residues labeled with (13)C and (15)N and utilizing Raman difference spectroscopy, we identify the conformationally sensitive -C-O-P-O-C- stretching modes of the unlabeled bonds adjacent to adenine bases, as well as the adenine ring modes themselves. The phosphodiester modes can be assigned to individual adenine residues based on earlier NMR data. The effect of Mg(2+) binding was explored by analyzing the Raman difference spectra for [D5 + Mg(2+)] minus [D5 no Mg(2+)], for D5 unlabeled, or D5 labeled with (13)C/(15)N-enriched adenine. In both sets of data we assign differential features to G ring modes perturbed by Mg(2+) binding at the N7 position. In the A-labeled spectra we attribute a Raman differential near 1450 cm(-1) and changes of intensity at 1296 cm(-1) to Mg binding at the N7 position of adenine bases. The A and G bases involved in Mg(2+) binding again can be identified using earlier NMR results. For the unlabeled D5, a change in the C-O-P-O-C stretch profile at 811 cm(-1) upon magnesium binding is due to a "tightening up" (in the sense of a more rigid molecule with less dynamic interchange among competing ribose conformers) of the D5 structure. For adenine-labeled D5, small changes in the adenine backbone bond signatures in the 810-830 cm(-1) region suggest that small conformational changes occur in the tetraloop and bulge regions upon binding of Mg(2+). The PO(2)(-) stretching vibration, near 1100 cm(-1), from the nonbridging phosphate groups, probes the effect of Mg(2+)-hydrate inner-sphere interactions that cause an upshift. In turn, the upshift is modulated by the presence of monovalent cations since in the presence of Na(+) and Li(+) the upshift is 23 +/- 2 cm(-1) while in the presence of K(+) and Cs(+) it is 13 +/- 3 cm(-1), a finding that correlates with the differences in hydration radii. These subtle differences in electrostatic interactions may be related to observed variations in catalytic activity. For a reconstructed ribozyme comprising domains 1-3 (D123) connected in cis plus domain 5 (D5) supplied in trans, cleavage of spliced exon substrates in the presence of magnesium and K(+) or Cs(+) is more efficient than that in the presence of magnesium with Na(+) or Li(+).
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-4935, USA
| | | | | | | |
Collapse
|
6
|
Gogia S, Jain A, Puranik M. Structures, ionization equilibria, and tautomerism of 6-oxopurines in solution. J Phys Chem B 2010; 113:15101-18. [PMID: 19839604 DOI: 10.1021/jp9057753] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
6-Oxopurine and its analogues form an important class of biological molecules that include nucleobases and their precursors and are substrates of a wide range of enzymes. Solution structures of purines have been debated in the literature because of the many possible tautomers and protonation states in which they can exist in solution. Substitutions on the pyrimidine and imidazole rings alter tautomerization and protonation equilibria, and as a consequence, the solution compositions and structures of closely related analogues can be significantly different. We have obtained resonance Raman spectra of 6-oxopurines: hypoxanthine, xanthine, their riboside phosphates, guanine monophosphate in the protonated and deprotonated forms with UV excitation at 260 nm. The species present in solution under different pH conditions were identified by isotopic labeling with deuterium as well as by comparison with extensive density functional theoretical calculations. At physiological pH, while N7H and N9H tautomeric forms of hypoxanthine exist in equilibrium, in xanthine, the additional carbonyl group at C2 shifts the equilibrium in favor of the N7H tautomer. The corresponding nucleotide of xanthine, xanthosine monophosphate, on the other hand, is in the anionic form (pK(a) 5.5). We find that Raman spectra show systematic shifts with change in the protonation state and substitution on the ring. In general, deprotonation of the neutral molecule is marked by a downshift in the observed Raman wavenumbers, and protonation is accompanied by an upshift.
Collapse
Affiliation(s)
- Spriha Gogia
- National Centre for Biological Sciences, GKVK Campus, Bellary Road, Bangalore 560065, India
| | | | | |
Collapse
|
7
|
Spectroscopic and molecular dynamics evidence for a sequential mechanism for the A-to-B transition in DNA. Biophys J 2008; 95:257-72. [PMID: 18326653 DOI: 10.1529/biophysj.107.117606] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The A-to-B form transition has been examined in three DNA duplexes, d(CGCGAATTCGCG)(2), d(CGCGAATTGCGC), and d(CGCAAATTTCGC), using circular dichroism spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and molecular dynamics (MD) simulation. Circular dichroism spectra confirm that these molecules adopt the A form under conditions of reduced water activity. UVRR results, obtained under similar conditions, suggest that the transition involves a series of intermediate forms between A and B. Cooperative and distinct transitions were observed for the bases and the sugars. Independent MD simulations on d(CGCGAATTCGCG)(2) show a spontaneous change from the A to B form in aqueous solution and describe a kinetic model that agrees well with UVRR results. Based on these observations, we predict that the mechanism of the transition involves a series of A/B hybrid forms and is sequential in nature, similar to previous crystallographic studies of derivatized duplexes. A simulation in which waters were restrained in the major groove of B DNA shows a rapid, spontaneous change from B to A at reduced water activity. These results indicate that a quasiergodic sampling of the solvent distribution may be a problem in going from B to A at reduced water activity in the course of an MD simulation.
Collapse
|
8
|
|
9
|
Affiliation(s)
- Thomas G Spiro
- Chemistry Department, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
10
|
Srivastava S, Srivastava S, Pandey MK, Naman SK, Srivastava S, Gupta VD. Phonon Dispersion in Polyadenylic Acid. J MACROMOL SCI B 2007. [DOI: 10.1080/00222340701265516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | | | - M. K. Pandey
- a Department of Physics , Integral University , Lucknow, India
| | - S. K. Naman
- a Department of Physics , Integral University , Lucknow, India
| | | | | |
Collapse
|
11
|
Kejnovská I, Kypr J, Vondrusková J, Vorlícková M. Towards a better understanding of the unusual conformations of the alternating guanine–adenine repeat strands of DNA. Biopolymers 2006; 85:19-27. [PMID: 16958066 DOI: 10.1002/bip.20597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Alternating guanine-adenine strands of DNA are known to self-associate into a parallel-stranded homoduplex at neutral pH, fold into an ordered single-stranded structure at acid pH, and adopt yet another ordered single-stranded conformer in aqueous ethanol. The unusual conformers melt cooperatively and exhibit distinct circular dichroism spectra suggestive of a substantial conformational order, but their molecular structures are not known yet. Here, we have probed the molecular structures using guanine and adenine analogs lacking the N7 atom, and thus unable of Hoogsteen pairing, or those restrained in the less-frequent syn glycosidic orientation. The studies showed that the syn glycosidic orientation of dA residues promoted the neutral homoduplex, whereas the syn orientation of dG was incompatible with the homoduplex. In addition, Hoogsteen pairing of dA seemed to be a crucial property of the homoduplex whereas dG did not pair in this way. The situation was the same in both single-stranded conformers with the dG residues. On the other hand, the presence of N7 was important with dA but its syn geometry was not favorable. The present data can be used as restraints to model the unusual molecular structures of the alternating guanine-adenine strands of DNA.
Collapse
Affiliation(s)
- Iva Kejnovská
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-61265 Brno, Czech Republic
| | | | | | | |
Collapse
|
12
|
Wojtuszewski K, Mukerji I. The HU-DNA binding interaction probed with UV resonance Raman spectroscopy: structural elements of specificity. Protein Sci 2005; 13:2416-28. [PMID: 15322284 PMCID: PMC2280020 DOI: 10.1110/ps.04730204] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Escherichia coli protein HU functions as an architectural DNA-binding protein by facilitating DNA looping or bending to form multiprotein complexes. Although HU does not recognize a specific DNA sequence, site-specific binding to a number of discontinuous, looped, or bent DNA substrates has been observed. In this study UV resonance Raman (UVRR) spectroscopy is used to identify structural elements associated with low- and high-affinity binding by examining three different HU-DNA complexes. UVRR spectra obtained with an excitation wavelength of 210 nm, which preferentially enhances protein backbone amide vibrations, indicate that HU secondary structure content increases and the protein structure becomes more rigid upon binding to DNA. The increase in alpha-helical content is attributed to the C-terminal helix, which interacts with the DNA and may play a role in binding affinity and specificity. UVRR spectra obtained with a 215 nm excitation wavelength demonstrate that Pro mode intensity at 1455 cm(-1) decreases upon complex formation. This intensity decrease is attributed to the intercalation of Pro residues between DNA base pairs to induce a bend in the DNA, as has been observed previously in the IHF-DNA and HU-DNA cocrystal structures. DNA vibrational modes are also indicative of significant base unstacking and opening of the minor groove upon protein binding, consistent with bending and distortion of the DNA. In all three complexes, A-DNA conformational features are indicated by deoxyribose-phosphate backbone modes. These and other results suggest that protein-induced bending plays an important role in HU site-specific binding and supports a model of a mutually induced fit.
Collapse
Affiliation(s)
- Kristi Wojtuszewski
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459-0175, USA
| | | |
Collapse
|
13
|
|
14
|
Dolinnaya NG, Fresco JR. Conformational polymorphism of d(A-G)n and related oligonucleotide sequences. ACTA ACUST UNITED AC 2004; 75:321-47. [PMID: 14604016 DOI: 10.1016/s0079-6603(03)75009-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Nina G Dolinnaya
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
15
|
Kejnovská I, Kypr J, Vorlícková M. Circular dichroism spectroscopy of conformers of (guanine + adenine) repeat strands of DNA. Chirality 2003; 15:584-92. [PMID: 12840822 DOI: 10.1002/chir.10249] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
(Guanine+adenine) strands of DNA are known to associate into guanine tetraplexes, homodimerize into parallel or antiparallel duplexes, and fold into a cooperatively melting single strand resembling the protein alpha helix. Using CD spectroscopy and other methods, we studied how this conformational polymorphism depended on the primary structure of DNA. The study showed that d(GGGA)(5) and d(GGA)(7) associated into homoduplexes at low salt or in the presence of LiCl but were prone to guanine tetraplex formation, especially in the presence of KCl. In addition, they yielded essentially the same CD spectrum in the presence of ethanol as observed with the ordered single strand of d(GA)(10). Strands of d(GA)(10), d(GGAA)(5), d(GAA)(7), and d(GAAA)(5) associated into homoduplexes in both LiCl and KCl solutions, but not into guanine tetraplexes. d(GAAA)(5) and d(GAA)(7) further failed to form the single-stranded conformer in aqueous ethanol. Adenine protonation, however, stabilized the single-stranded conformer even in these adenine-rich fragments. The ordered single strands, homoduplexes as well as the guanine tetraplexes, all provided strikingly similar CD spectra, indicating that all of the conformers shared similar base stacking geometries. The increasing adenine content only decreased the conformer thermostability.
Collapse
Affiliation(s)
- Iva Kejnovská
- Academy of Sciences of the Czech Republic, Institute of Biophysics, Brno, Czech Republic
| | | | | |
Collapse
|
16
|
Rajani C, Kincaid JR, Petering DH. The presence of two modes of binding to calf thymus DNA by metal-free bleomycin: a low frequency Raman study. Biopolymers 2001; 52:129-46. [PMID: 11169381 DOI: 10.1002/1097-0282(1999)52:3<129::aid-bip30>3.0.co;2-n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Double-stranded DNA is targeted by bleomycin in cancer cells and ambiguity exists as to its mode of DNA binding. A conventional Raman study was performed on drug/DNA complexes in which the low frequency spectral region (560-930 cm(-1)) was examined at two temperatures (19 and 30 degrees C). At 30 degrees C, a global Raman hypochromism was observed consistent with partial intercalation of the bithiazole moiety. At 19 degrees C, Raman hypochromism (increased base pair stacking) was detected for bands associated with GC base pairs while Raman hyperchromism (base pair destacking) was evident for bands associated with AT base pairs. These results suggest that intercalation of the bithiazole moiety occurs with greater disruption of the more efficiently stacked AT base pairs at the lower temperature. Evidence for minor groove binding was indicated by an increase in the population of bands corresponding to C3' endo sugar conformations resulting from drug induced local desolvation of the DNA polymer.
Collapse
Affiliation(s)
- C Rajani
- Department of Chemistry, University of Wisconsin-Milwaukee, P. O. Box 413, Milwaukee, WI 53211, USA
| | | | | |
Collapse
|
17
|
Rajani C, Kincaid JR, Petering DH. A systematic approach toward the analysis of drug-DNA interactions using Raman spectroscopy: the binding of metal-free bleomycins A(2) and B(2) to calf thymus DNA. Biopolymers 2001; 52:110-28. [PMID: 11169380 DOI: 10.1002/1097-0282(1999)52:3<110::aid-bip20>3.0.co;2-#] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bleomycins A(2) and B(2) are the two active components in the antineoplastic drug Blenoxane. DNA is targeted by this drug in cancer cells and the mode of action of this drug involves DNA binding. Ambiguity exists as to the way in which bleomycin binds to DNA. Raman spectroscopy was used to examine both calf thymus DNA and a bleomycin/DNA complex at two temperatures. A curvefitting technique was applied to these spectra for a spectral region obscured by many overlapping bands associated with the nucleotide bases in order to derive information about frequencies, bandwidths, and intensities of the vibrational modes in this region. This allowed identification and analysis of bands associated with specific assigned nucleotide base residues. Upon binding of bleomycin, several significant changes in bandwidth, intensities, and frequencies relative to uncomplexed DNA were observed consistently at both higher (30 degrees C) and lower (19 degrees C) temperature. The data presented here support at least a partial intercalation mode of binding for bleomycin that is temperature dependent and more pronounced at the more physiologically relevant temperature of 30 degrees C.
Collapse
Affiliation(s)
- C Rajani
- Department of Chemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | | | |
Collapse
|
18
|
Kamath S, Sarma MH, Zhurkin VB, Turner CJ, Sarma RH. DNA Bending and Sugar Switching. J Biomol Struct Dyn 2000; 17 Suppl 1:317-25. [DOI: 10.1080/07391102.2000.10506637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Sokolov L, Wojtuszewski K, Tsukroff E, Mukerji I. Nucleic Acid Structure Investigated by UV Resonance Raman Spectroscopy: Protonation Effects and A-Tract Structure. J Biomol Struct Dyn 2000; 17 Suppl 1:327-34. [DOI: 10.1080/07391102.2000.10506638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Suen W, Spiro TG, Sowers LC, Fresco JR. Identification by UV resonance Raman spectroscopy of an imino tautomer of 5-hydroxy-2'-deoxycytidine, a powerful base analog transition mutagen with a much higher unfavored tautomer frequency than that of the natural residue 2'-deoxycytidine. Proc Natl Acad Sci U S A 1999; 96:4500-5. [PMID: 10200291 PMCID: PMC16361 DOI: 10.1073/pnas.96.8.4500] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
UV resonance Raman spectroscopy was used to detect and estimate the frequency of the unfavored imino tautomer of the transition mutagen 5-hydroxy-2'-deoxycytidine (HO5dCyt) in its anionic form. In DNA, this 2'-deoxycytidine analog arises from the oxidation of 2'-deoxycytidine and induces C --> T transitions with 10(2) greater frequency than such spontaneous transitions. An imino tautomer marker carbonyl band (approximately 1650 cm-1) is enhanced at approximately 65 degrees C against an otherwise stable spectrum of bands associated with the favored amino tautomer. This band is similarly present in the UV resonance Raman spectra of the imino cytidine analogs N3-methylcytidine at high pH and N4-methoxy-2'-deoxycytidine at pH 7 and displays features attributable to the imino form of C residues and their derivatives. The fact that the imino tautomer of HO5dCyt occurs at a frequency consistent with its high mutagenic enhancement lends strong support to the hypothesis that unfavored base tautomers play important roles in the mispair intermediates of replication leading to substitution mutations.
Collapse
Affiliation(s)
- W Suen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
21
|
Vorlícková M, Kejnovská I, Kovanda J, Kypr J. Dimerization of the guanine-adenine repeat strands of DNA. Nucleic Acids Res 1999; 27:581-6. [PMID: 9862983 PMCID: PMC148218 DOI: 10.1093/nar/27.2.581] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Jovin and co-workers have demonstrated that DNA strands containing guanine-adenine repeats generate a parallel-stranded homoduplex. Here we propose that the homoduplex is a dimer of the ordered single strand discovered by Fresco and co-workers at acid pH. The Fresco single strand is shown here to be stabilized in aqueous ethanol where adenine is not protonated. Furthermore, we demonstrate that the strands dimerize at higher salt concentrations without significantly changing their conformation, so that the dimerization is non-cooperative. Hence, the Jovin homoduplex can form through a non-cooperative dimerization of two cooperatively melting single strands. The available data indicate that the guanines stabilize the Fresco single strand whereas the adenines cause dimerization owing to their known intercalation or clustering tendency. The guanine-adenine repeat dimer seems to be a DNA analog of the leucine zipper causing dimerization of proteins.
Collapse
Affiliation(s)
- M Vorlícková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-61265 Brno,Czech Republic
| | | | | | | |
Collapse
|
22
|
Mukerji I, Sokolov L, Mihailescu MR. A UV resonance Raman investigation of poly(rI): Evidence for cation-dependent structural perturbations. Biopolymers 1998. [DOI: 10.1002/(sici)1097-0282(199812)46:7<475::aid-bip5>3.0.co;2-u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Kalisch BW, Germann MW, van de Sande JH. Antiparallel DNA duplex formation between alternating alpha d(GA)n and beta d(GA)n sequences. FEBS Lett 1998; 427:301-4. [PMID: 9607333 DOI: 10.1016/s0014-5793(98)00453-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alternating polypurine d(GA)n, sequences exhibit a considerable polymorphism. Here we report that alpha d(GA) x d(GA) sequences form an antiparallel stranded duplex DNA at neutral pH. The spectroscopic, electrophoretic and thermodynamic properties of the alpha/beta chimeric oligodeoxynucleotide, 5'-d(GA)4(T)4 alpha d(AG)4T-3', support the formation of a hairpin structure with antiparallel strands in the stem. The optical properties of this novel antiparallel structure are different from the parallel stranded homoduplex formed by d(GA)G7. This alpha/beta hairpin has a remarkably high Tm of 44.5 degrees C in 0.4 M NaCl with a van't Hoff enthalpy comparable to that of a parallel d(GA)n duplex. Base pairing was confirmed by T4 polynucleotide ligase catalyzed joining of the alpha/beta hairpin to an antiparallel bimolecular duplex and by non-denaturing gel electrophoresis using duplexes containing sequence constraints. Both support the presence of alphaG-G and alphaA-A base pairing in the antiparallel 5'-d(GA)4(T)4 alpha d(AG)4T-3' intramolecular duplex. This study adds to the polymorphic nature of alternating d(GA)n sequences as well as providing novel homopurine base pairing approaches for probing polypurine polypyrimidine sequences.
Collapse
Affiliation(s)
- B W Kalisch
- Department of Medical Biochemistry, Faculty of Medicine, The University of Calgary, Alta, Canada
| | | | | |
Collapse
|
24
|
Vorlicková M, Kejnovská I, Kovanda J, Kypr J. Conformational properties of DNA strands containing guanine-adenine and thymine-adenine repeats. Nucleic Acids Res 1998; 26:1509-14. [PMID: 9490799 PMCID: PMC147418 DOI: 10.1093/nar/26.6.1509] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CD spectroscopy and PAGE were used to cooperatively analyze melting conformers of DNA strands containing GA and TA dinucleotide repeats. The 20mer (GA)10 formed a homoduplex in neutral solutions containing physiological concentrations of salts and this homoduplex was not destabilized even in the terminal (GA)3 hexamers of (GA)3(TA)4(GA)3, although the central (TA)4 portion of this oligonucleotide preserved the conformation adopted by (TA)10. This observation demonstrates that homoduplexes of alternating GA and TA sequences can co-exist in a single DNA molecule. Another 20mer, (GATA)5, adopted as a whole either the AT duplex, like (TA)10, or the GA duplex, like (GA)10, and switched between them reversibly. The concentration of salt controlled the conformational switching. Hence, guanine and thymine share significant properties regarding complementarity to adenine, while the TA and GA sequences can stack in at least two mutually compatible ways within the DNA duplexes analyzed here. These properties extend our knowledge of non-canonical structures of DNA.
Collapse
Affiliation(s)
- M Vorlicková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic.
| | | | | | | |
Collapse
|
25
|
Dolinnaya NG, Ulku A, Fresco JR. Parallel-stranded linear homoduplexes of d(A+-G)n > 10 and d(A-G)n > 10 manifesting the contrasting ionic strength sensitivities of poly(A+.A+) and DNA. Nucleic Acids Res 1997; 25:1100-7. [PMID: 9092616 PMCID: PMC146566 DOI: 10.1093/nar/25.6.1100] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In contrast to shorter homologs which only form a single-stranded nucleic acid alpha-helix in acid solution at [Na+]</=0.02 M Na+, d(A-G)20,30 form in addition a parallel-stranded duplex with (A+.A+) and (G.G) base pairs and interstrand dA+...PO2-ionic and dA+NH2... O=P H-bonds. Under conditions where duplex prevails over alpha-helix, the contribution of the base-backbone interactions to stability varies directly with [H+] and inversely with [Na+], just as in poly(A+.A+). These duplexes are characterized by intense circular dichroism and a large cooperative thermally-induced hyperchromic transition that is dependent on oligomer concentration. Dimethylsulfate reactivity of the dG residues indicates G.G and therefore dA+.dA+rather than dA+.G base pairs. At much higher ionic strength (Na+>/=0.2 M) the protonated base-backbone interactions are so weakened that duplex stability becomes increasingly dependent upon H-bonded base pairing and stacking and almost independent of pH. Between pH 6 and 8 this duplex structure is devoid of protonated dA residues and shows positive dependence of T m on ionic strength similar to that of DNA.
Collapse
Affiliation(s)
- N G Dolinnaya
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | | | | |
Collapse
|
26
|
|
27
|
Shiber MC, Braswell EH, Klump H, Fresco JR. Duplex-tetraplex equilibrium between a hairpin and two interacting hairpins of d(A-G)10 at neutral pH. Nucleic Acids Res 1996; 24:5004-12. [PMID: 9016673 PMCID: PMC146359 DOI: 10.1093/nar/24.24.5004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
d(A-G)10 forms two helical structures at neutrality, at low ionic strength a single-hairpin duplex, and at higher ionic strength a double-hairpin tetraplex. An ionic strength-dependent equilibrium between these forms is indicated by native PAGE, which also reveals additional single-stranded species below 0.3 M Na+, probably corresponding to partially denatured states. The equilibrium also depends upon oligomer concentration: at very low concentrations, d(A-G)10 migrates faster than the random coil d(C-T)10, probably because it is a more compact single hairpin; at high concentrations, it co-migrates with the linear duplex d(A-G)10 x d(C-T)10, probably because it is a two-hairpin tetraplex. Molecular weights measured by equilibrium sedimentation in 0.1 M Na+, pH 7, reveal a mixture of monomer and dimer species at 1 degree C, but only a monomer at 40 degrees C; in 0.6 M Na+, pH 7, only a dimer species is observed at 4 degrees C. That the single- and double-stranded species are hairpin helices, is indicated by preferential S1 nuclease cleavage at the center of the oligomer(s), i.e., the loop of the hairpin(s). The UV melting transition below 0.3 M Na+ or K+, exhibits a dTm/dlog[Na+/K+] of 33 or 36 degrees C, respectively, consistent with conversion of a two-hairpin tetraplex to a single-hairpin duplex with extrahelical residues. When [Na+/K+] > or = 0.3 M, dTm/dlog [Na+/K+] is 19 or 17 degrees C, respectively, consistent with conversion of a two-hairpin tetraplex directly to single strands. A two-hairpin structure stabilized by G-tetrads is indicated by differential scanning calorimetry in 0.15 M Na+/5 mM Mg2+, with deltaH of formation per mole of the two-hairpin tetraplex of -116.9 kcal or -29.2 kcal/mol of G-tetrad.
Collapse
Affiliation(s)
- M C Shiber
- Department of Molecular Biology, Princeton University, NJ 08544-1014, USA
| | | | | | | |
Collapse
|