1
|
Okuda M, Suwa T, Suzuki H, Yamaguchi Y, Nishimura Y. Three human RNA polymerases interact with TFIIH via a common RPB6 subunit. Nucleic Acids Res 2022; 50:1-16. [PMID: 34268577 PMCID: PMC8754651 DOI: 10.1093/nar/gkab612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
In eukaryotes, three RNA polymerases (RNAPs) play essential roles in the synthesis of various types of RNA: namely, RNAPI for rRNA; RNAPII for mRNA and most snRNAs; and RNAPIII for tRNA and other small RNAs. All three RNAPs possess a short flexible tail derived from their common subunit RPB6. However, the function of this shared N-terminal tail (NTT) is not clear. Here we show that NTT interacts with the PH domain (PH-D) of the p62 subunit of the general transcription/repair factor TFIIH, and present the structures of RPB6 unbound and bound to PH-D by nuclear magnetic resonance (NMR). Using available cryo-EM structures, we modelled the activated elongation complex of RNAPII bound to TFIIH. We also provide evidence that the recruitment of TFIIH to transcription sites through the p62-RPB6 interaction is a common mechanism for transcription-coupled nucleotide excision repair (TC-NER) of RNAPI- and RNAPII-transcribed genes. Moreover, point mutations in the RPB6 NTT cause a significant reduction in transcription of RNAPI-, RNAPII- and RNAPIII-transcribed genes. These and other results show that the p62-RPB6 interaction plays multiple roles in transcription, TC-NER, and cell proliferation, suggesting that TFIIH is engaged in all RNAP systems.
Collapse
Affiliation(s)
- Masahiko Okuda
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tetsufumi Suwa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Hidefumi Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Yuki Yamaguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8258, Japan
| |
Collapse
|
2
|
Martínez-Matías N, Chorna N, González-Crespo S, Villanueva L, Montes-Rodríguez I, Melendez-Aponte LM, Roche-Lima A, Carrasquillo-Carrión K, Santiago-Cartagena E, Rymond BC, Babu M, Stagljar I, Rodríguez-Medina JR. Toward the discovery of biological functions associated with the mechanosensor Mtl1p of Saccharomyces cerevisiae via integrative multi-OMICs analysis. Sci Rep 2021; 11:7411. [PMID: 33795741 PMCID: PMC8016984 DOI: 10.1038/s41598-021-86671-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Functional analysis of the Mtl1 protein in Saccharomyces cerevisiae has revealed that this transmembrane sensor endows yeast cells with resistance to oxidative stress through a signaling mechanism called the cell wall integrity pathway (CWI). We observed upregulation of multiple heat shock proteins (HSPs), proteins associated with the formation of stress granules, and the phosphatase subunit of trehalose 6-phosphate synthase which suggests that mtl1Δ strains undergo intrinsic activation of a non-lethal heat stress response. Furthermore, quantitative global proteomic analysis conducted on TMT-labeled proteins combined with metabolome analysis revealed that mtl1Δ strains exhibit decreased levels of metabolites of carboxylic acid metabolism, decreased expression of anabolic enzymes and increased expression of catabolic enzymes involved in the metabolism of amino acids, with enhanced expression of mitochondrial respirasome proteins. These observations support the idea that Mtl1 protein controls the suppression of a non-lethal heat stress response under normal conditions while it plays an important role in metabolic regulatory mechanisms linked to TORC1 signaling that are required to maintain cellular homeostasis and optimal mitochondrial function.
Collapse
Affiliation(s)
- Nelson Martínez-Matías
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| | - Nataliya Chorna
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| | - Sahily González-Crespo
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| | - Lilliam Villanueva
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| | - Ingrid Montes-Rodríguez
- Comprehensive Cancer Center, University of Puerto Rico, Puerto Rico Medical Center, Rio Piedras, PR 00936-3027 USA
| | - Loyda M. Melendez-Aponte
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| | - Abiel Roche-Lima
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| | - Kelvin Carrasquillo-Carrión
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| | - Ednalise Santiago-Cartagena
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| | - Brian C. Rymond
- grid.266539.d0000 0004 1936 8438Department of Biology, University of Kentucky, Lexington, KY 40506 USA
| | - Mohan Babu
- grid.57926.3f0000 0004 1936 9131Department of Biochemistry, University of Regina, Regina, SK S4S 0A2 Canada
| | - Igor Stagljar
- grid.17063.330000 0001 2157 2938Donnelly Centre, Department of Biochemistry, Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1 Canada ,grid.482535.d0000 0004 4663 8413Mediterranean Institute for Life Sciences, Split, Croatia
| | - José R. Rodríguez-Medina
- grid.267033.30000 0004 0462 1680Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067 USA
| |
Collapse
|
3
|
Kwon Y, Cha J, Chiang J, Tran G, Giaever G, Nislow C, Hur JS, Kwak YS. A chemogenomic approach to understand the antifungal action of Lichen-derived vulpinic acid. J Appl Microbiol 2016; 121:1580-1591. [DOI: 10.1111/jam.13300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/15/2016] [Accepted: 09/11/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Y. Kwon
- Division of Applied Life Science; Gyeongsang National University; Jinju Korea
| | - J. Cha
- Department of Plant Medicine and Institute of Agriculture & Life Science; Gyeongsang National University; Jinju Korea
| | - J. Chiang
- Pharmaceutical Sciences; University of British Columbia; Vancouver BC Canada
| | - G. Tran
- Pharmaceutical Sciences; University of British Columbia; Vancouver BC Canada
| | - G. Giaever
- Pharmaceutical Sciences; University of British Columbia; Vancouver BC Canada
| | - C. Nislow
- Pharmaceutical Sciences; University of British Columbia; Vancouver BC Canada
| | - J.-S. Hur
- Korean Lichen Research Institute; Suncheon National University; Suncheon Korea
| | - Y.-S. Kwak
- Department of Plant Medicine and Institute of Agriculture & Life Science; Gyeongsang National University; Jinju Korea
| |
Collapse
|
4
|
Garrido-Godino AI, García-López MC, García-Martínez J, Pelechano V, Medina DA, Pérez-Ortín JE, Navarro F. Rpb1 foot mutations demonstrate a major role of Rpb4 in mRNA stability during stress situations in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:731-43. [PMID: 27001033 DOI: 10.1016/j.bbagrm.2016.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 01/22/2023]
Abstract
The RPB1 mutants in the foot region of RNA polymerase II affect the assembly of the complex by altering the correct association of both the Rpb6 and the Rpb4/7 dimer. Assembly defects alter both transcriptional activity as well as the amount of enzyme associated with genes. Here, we show that the global transcriptional analysis of foot mutants reveals the activation of an environmental stress response (ESR), which occurs at a permissive temperature under optimal growth conditions. Our data indicate that the ESR that occurs in foot mutants depends mostly on a global post-transcriptional regulation mechanism which, in turn, depends on Rpb4-mRNA imprinting. Under optimal growth conditions, we propose that Rpb4 serves as a key to globally modulate mRNA stability as well as to coordinate transcription and decay. Overall, our results imply that post-transcriptional regulation plays a major role in controlling the ESR at both the transcription and mRNA decay levels.
Collapse
Affiliation(s)
- A I Garrido-Godino
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Paraje de las Lagunillas, s/n, 23071 Jaén, Spain
| | - M C García-López
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Paraje de las Lagunillas, s/n, 23071 Jaén, Spain
| | - J García-Martínez
- Departamento de Genética, Facultad de Biológicas, Universitat de València, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain; ERI Biotecmed, Universitat de València, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - V Pelechano
- European Molecular Biology Laboratories (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - D A Medina
- ERI Biotecmed, Universitat de València, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Biológicas, Universitat de València, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - J E Pérez-Ortín
- ERI Biotecmed, Universitat de València, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Biológicas, Universitat de València, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain.
| | - F Navarro
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Paraje de las Lagunillas, s/n, 23071 Jaén, Spain.
| |
Collapse
|
5
|
Correct assembly of RNA polymerase II depends on the foot domain and is required for multiple steps of transcription in Saccharomyces cerevisiae. Mol Cell Biol 2013; 33:3611-26. [PMID: 23836886 DOI: 10.1128/mcb.00262-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recent papers have provided insight into the cytoplasmic assembly of RNA polymerase II (RNA pol II) and its transport to the nucleus. However, little is known about the mechanisms governing its nuclear assembly, stability, degradation, and recycling. We demonstrate that the foot of RNA pol II is crucial for the assembly and stability of the complex, by ensuring the correct association of Rpb1 with Rpb6 and of the dimer Rpb4-Rpb7 (Rpb4/7). Mutations at the foot affect the assembly and stability of the enzyme, a defect that is offset by RPB6 overexpression, in coordination with Rpb1 degradation by an Asr1-independent mechanism. Correct assembly is a prerequisite for the proper maintenance of several transcription steps. In fact, assembly defects alter transcriptional activity and the amount of enzyme associated with the genes, affect C-terminal domain (CTD) phosphorylation, interfere with the mRNA-capping machinery, and possibly increase the amount of stalled RNA pol II. In addition, our data show that TATA-binding protein (TBP) occupancy does not correlate with RNA pol II occupancy or transcriptional activity, suggesting a functional relationship between assembly, Mediator, and preinitiation complex (PIC) stability. Finally, our data help clarify the mechanisms governing the assembly and stability of RNA pol II.
Collapse
|
6
|
Minakhin L, Bhagat S, Brunning A, Campbell EA, Darst SA, Ebright RH, Severinov K. Bacterial RNA polymerase subunit omega and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. Proc Natl Acad Sci U S A 2001; 98:892-7. [PMID: 11158566 PMCID: PMC14680 DOI: 10.1073/pnas.98.3.892] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial DNA-dependent RNA polymerase (RNAP) has subunit composition beta'betaalpha(I)alpha(II)omega. The role of omega has been unclear. We show that omega is homologous in sequence and structure to RPB6, an essential subunit shared in eukaryotic RNAP I, II, and III. In Escherichia coli, overproduction of omega suppresses the assembly defect caused by substitution of residue 1362 of the largest subunit of RNAP, beta'. In yeast, overproduction of RPB6 suppresses the assembly defect caused by the equivalent substitution in the largest subunit of RNAP II, RPB1. High-resolution structural analysis of the omega-beta' interface in bacterial RNAP, and comparison with the RPB6-RPB1 interface in yeast RNAP II, confirms the structural relationship and suggests a "latching" mechanism for the role of omega and RPB6 in promoting RNAP assembly.
Collapse
Affiliation(s)
- L Minakhin
- Waksman Institute, Department of Genetics, Department of Chemistry and Howard Hughes Medical Institute, Rutgers, The State University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Suppressor analysis is a commonly used strategy to identify functional relationships between genes that might not have been revealed through other genetic or biochemical means. Many mechanisms that explain the phenomenon of genetic suppression have been described, but the wide variety of possible mechanisms can present a challenge to defining the relationship between a suppressor and the original gene. This article provides a broad framework for classifying suppression mechanisms and describes a series of genetic tests that can be applied to determine the most likely mechanism of suppression.
Collapse
Affiliation(s)
- G Prelich
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA.
| |
Collapse
|