1
|
Brabec V, Hrabina O, Kasparkova J. Cytotoxic platinum coordination compounds. DNA binding agents. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.04.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
2
|
Sun H, Fan H, Eom H, Peng X. Coumarin-Induced DNA Ligation, Rearrangement to DNA Interstrand Crosslinks, and Photorelease of Coumarin Moiety. Chembiochem 2016; 17:2046-2053. [DOI: 10.1002/cbic.201600240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Huabing Sun
- Department of Chemistry and Biochemistry; University of Wisconsin-Milwaukee; 3210 N. Cramer St. Milwaukee WI 53211 USA
| | - Heli Fan
- Department of Chemistry and Biochemistry; University of Wisconsin-Milwaukee; 3210 N. Cramer St. Milwaukee WI 53211 USA
| | - Hyeyoung Eom
- Department of Chemistry and Biochemistry; University of Wisconsin-Milwaukee; 3210 N. Cramer St. Milwaukee WI 53211 USA
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry; University of Wisconsin-Milwaukee; 3210 N. Cramer St. Milwaukee WI 53211 USA
| |
Collapse
|
3
|
Fakhari F, Rokita SE. A walk along DNA using bipedal migration of a dynamic and covalent crosslinker. Nat Commun 2014; 5:5591. [DOI: 10.1038/ncomms6591] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 10/17/2014] [Indexed: 01/09/2023] Open
|
4
|
Malina J, Natile G, Brabec V. Spontaneous Translocation of Antitumor Oxaliplatin, its Enantiomeric Analogue, and Cisplatin from One Strand to Another in Double-Helical DNA. Chemistry 2013; 19:11984-91. [DOI: 10.1002/chem.201300946] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/22/2013] [Indexed: 11/11/2022]
|
5
|
Enoiu M, Jiricny J, Schärer OD. Repair of cisplatin-induced DNA interstrand crosslinks by a replication-independent pathway involving transcription-coupled repair and translesion synthesis. Nucleic Acids Res 2012; 40:8953-64. [PMID: 22810206 PMCID: PMC3467066 DOI: 10.1093/nar/gks670] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
DNA interstrand crosslinks (ICLs) formed by antitumor agents, such as cisplatin or mitomycin C, are highly cytotoxic DNA lesions. Their repair is believed to be triggered primarily by the stalling of replication forks at ICLs in S-phase. There is, however, increasing evidence that ICL repair can also occur independently of replication. Using a reporter assay, we describe a pathway for the repair of cisplatin ICLs that depends on transcription-coupled nucleotide excision repair protein CSB, the general nucleotide excision repair factors XPA, XPF and XPG, but not the global genome nucleotide excision repair factor XPC. In this pathway, Rev1 and Polζ are involved in the error-free bypass of cisplatin ICLs. The requirement for CSB, Rev1 or Polζ is specific for the repair of ICLs, as the repair of cisplatin intrastrand crosslinks does not require these genes under identical conditions. We directly show that this pathway contributes to the removal of ICLs outside of S-phase. Finally, our studies reveal that defects in replication- and transcription-dependent pathways are additive in terms of cellular sensitivity to treatment with cisplatin or mitomycin C. We conclude that transcription- and replication-dependent pathways contribute to cellular survival following treatment with crosslinking agents.
Collapse
Affiliation(s)
- Milica Enoiu
- Institute of Molecular Cancer Research, University of Zürich, 8057 Zürich, Switzerland
| | | | | |
Collapse
|
6
|
Wu K, Luo Q, Hu W, Li X, Wang F, Xiong S, Sadler PJ. Mechanism of interstrand migration of organoruthenium anticancer complexes within a DNA duplex. Metallomics 2012; 4:139-48. [PMID: 22262368 DOI: 10.1039/c2mt00162d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Organometallic ruthenium(ii) anticancer complexes [(η(6)-arene)Ru(en)Cl][PF(6)] (e.g. arene = biphenyl (bip, 1), indane (ind, 2); en = ethylenediamine) bind to N7 of guanine (G) in DNA selectively. The fragment {(η(6)-bip)Ru(en)}(2+) (1') bound to N7 of one guanine residue at a 14-mer duplex DNA migrates readily to other guanine residues in both the same strand and the complementary strand when the strands are hybridized at elevated temperature. In this work, by applying HPLC coupled to mass spectrometry, the mechanism of such intra- and interstrand migration was investigated using a 15-mer duplex, in which one strand 5'-CTCTCTTG(8)TCTTCTC-3' (I) contained a single guanine (G(8)). The results show that the interstrand migration of complexes 1 and 2 within the duplex involves an SN1 pathway, firstly solvent-assisted dissociation of the initially G(8)-bound adducts I-G(8)-1' and I-G(8)-2' (2' = {(η(6)-ind)Ru(en)}(2+)) as the rate-controlling step, and secondly the coordination of the dissociated 1' and 2' to guanine bases (G(21) for 1', either G(21) or G(18) for 2') on strand II. The high temperature used to anneal the single strands was found to increase the migration rate. The formation of the duplex acts as a key driving force to promote the dissociation of G(8)-bound 1' and 2' due to the competition of cytosine in II with the en-NH(2) groups in 1' and 2' for H-bonding with C6O of guanine. Complex 2 (t(1/2) = 18 h) containing a mono-ringed arene ligand dissociates more readily from the initially binding site G(8) than complex 1 (t(1/2) = 23 h). The extended biphenyl arene ligand which is intercalated into DNA stabilizes the adduct I-G(8)-1'. These results provide new insight into this unusual metal migration, and are of significance for the design and development of more active organometallic ruthenium anticancer complexes.
Collapse
Affiliation(s)
- Kui Wu
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | | | | | | | | | | | | |
Collapse
|
7
|
Mendez P, Taron M, Moran T, Fernandez MA, Requena G, Rosell R. A modified host-cell reactivation assay to quantify DNA repair capacity in cryopreserved peripheral lymphocytes. DNA Repair (Amst) 2011; 10:603-10. [PMID: 21546323 DOI: 10.1016/j.dnarep.2011.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 03/30/2011] [Accepted: 04/01/2011] [Indexed: 11/15/2022]
Abstract
The host-cell reactivation assay (HCRA) is a functional assay that allows the identification of the genes responsible for DNA repair-deficient syndromes, such as Xeroderma pigmentosum, by cross-complementation experiments. It has also been used in molecular epidemiology studies to correlate the low nucleotide excision repair pathway function in peripheral blood lymphocytes with an increased risk of bladder, head and neck, skin and lung cancers. Herein, we present the technical validation of a newly modified HCRA, where nucleofection is used for the transfection of the pmaxGFP plasmid into cryopreserved peripheral blood lymphocytes (PBLs) or lymphoblastoid cell lines. In each sample, 20-24h after transfection, the relative DNA repair capacity (DRC) was quantified by flow cytometry, comparing the transfection efficiency of nucleoporated cells with undamaged plasmid to those transfected with UV-light damaged plasmid in the seven cell lines that were characterized by different DNA repair phenotypes. Dead cells were excluded from the analysis. We observed a high reproducibility of the relative DRC, transfection efficiency and cell viability. The inter-experimental normalization of the flow cytometry resulted in an increased data accuracy and reproducibility. The amount of cells required for each transfection reaction was reduced fourfold, without affecting the final relative DRC. Furthermore, our HCRA demonstrated strong discrimination power in the UV-light dose-response, both in lymphoblastoid cell lines and cryopreserved PBLs. We also observed a strong correlation of the relative DRC data, when samples were measured against two independent batches of both damaged and undamaged plasmid DNA. The relative DRC variable shows a normal distribution when analyzed in the cryopreserved PBLs from a cohort of 35 lung cancer patients and a 5.59-fold variation in the relative DRC is identified among our patients. The mitotic dynamic was discarded as a confounding factor for the relative DRC measurement in this cohort of patients. The results indicate that our method is highly sensitive, reliable and reproducible, and thus, it suitable for population-based studies to quantify in vitro DNA-repair deficiencies.
Collapse
Affiliation(s)
- Pedro Mendez
- Health Science Research Institute Germans Trias i Pujol, Badalona, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
8
|
Malina J, Kasparkova J, Farrell NP, Brabec V. Walking of antitumor bifunctional trinuclear PtII complex on double-helical DNA. Nucleic Acids Res 2010; 39:720-8. [PMID: 20833634 PMCID: PMC3025560 DOI: 10.1093/nar/gkq803] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The trinuclear BBR3464 ([{trans-PtCl(NH3)2}2µ-(trans-Pt(NH3)2(H2N(CH2)6NH2)2)]4+) belongs to the polynuclear class of platinum-based anticancer agents. DNA adducts of this complex differ significantly in structure and type from those of clinically used mononuclear platinum complexes, especially, long-range (Pt, Pt) intrastrand and interstrand cross-links are formed in both 5′–5′ and 3′–3′ orientations. We show employing short oligonucleotide duplexes containing single, site-specific cross-links of BBR3464 and gel electrophoresis that in contrast to major DNA adducts of clinically used platinum complexes, under physiological conditions the coordination bonds between platinum and N7 of G residues involved in the cross-links of BBR3464 can be cleaved. This cleavage may lead to the linkage isomerization reactions between this metallodrug and double-helical DNA. Differential scanning calorimetry of duplexes containing single, site-specific cross-links of BBR3464 reveals that one of the driving forces that leads to the lability of DNA cross-links of this metallodrug is a difference between the thermodynamic destabilization induced by the cross-link and by the adduct into which it could isomerize. The rearrangements may proceed in the way that cross-links originally formed in one strand of DNA can spontaneously translocate from one DNA strand to its complementary counterpart, which may evoke walking of the platinum complex on DNA molecule.
Collapse
Affiliation(s)
- Jaroslav Malina
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | |
Collapse
|
9
|
Muniandy PA, Liu J, Majumdar A, Liu ST, Seidman MM. DNA interstrand crosslink repair in mammalian cells: step by step. Crit Rev Biochem Mol Biol 2010; 45:23-49. [PMID: 20039786 PMCID: PMC2824768 DOI: 10.3109/10409230903501819] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Interstrand DNA crosslinks (ICLs) are formed by natural products of metabolism and by chemotherapeutic reagents. Work in E. coli identified a two cycle repair scheme involving incisions on one strand on either side of the ICL (unhooking) producing a gapped intermediate with the incised oligonucleotide attached to the intact strand. The gap is filled by recombinational repair or lesion bypass synthesis. The remaining monoadduct is then removed by nucleotide excision repair (NER). Despite considerable effort, our understanding of each step in mammalian cells is still quite limited. In part this reflects the variety of crosslinking compounds, each with distinct structural features, used by different investigators. Also, multiple repair pathways are involved, variably operative during the cell cycle. G(1) phase repair requires functions from NER, although the mechanism of recognition has not been determined. Repair can be initiated by encounters with the transcriptional apparatus, or a replication fork. In the case of the latter, the reconstruction of a replication fork, stalled or broken by collision with an ICL, adds to the complexity of the repair process. The enzymology of unhooking, the identity of the lesion bypass polymerases required to fill the first repair gap, and the functions involved in the second repair cycle are all subjects of active inquiry. Here we will review current understanding of each step in ICL repair in mammalian cells.
Collapse
Affiliation(s)
- Parameswary A Muniandy
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
10
|
Kozelka J. Molecular origin of the sequence-dependent kinetics of reactions between cisplatin derivatives and DNA. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2008.04.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Pavelka M, Lucas MFA, Russo N. On the Hydrolysis Mechanism of the Second-Generation Anticancer Drug Carboplatin. Chemistry 2007; 13:10108-16. [PMID: 17896336 DOI: 10.1002/chem.200700887] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The hydrolysis reaction mechanisms of carboplatin, a second-generation anticancer drug, have been explored by combining density functional theory (DFT) with the conductor-like dielectric continuum model (CPCM) approach. The decomposition of carboplatin in water is expected to take place through a biphasic mechanism with a ring-opening process followed by the loss of the malonato ligand. We have investigated this reaction in water and acid conditions and established that the number of protons present in the malonato ligand has a direct effect on the energetics of this system. Close observation of the optimised structures revealed a necessary systematic water molecule in the vicinity of the amino groups of carboplatin. For this reason we have also investigated this reaction with an explicit water molecule. From the computed potential-energy surfaces it is established that the water hydrolysis takes place with an activation barrier of 30 kcal mol(-1), confirming the very slow reaction observed experimentally. The decomposition of carboplatin upon acidification was also investigated and we have computed a 21 kcal mol(-1) barrier to be overcome (experimental value 23 kcal mol(-1)). We have also established that the rate-limiting process is the first hydration, and ascertained the importance of a water molecule close to the two amine groups in lowering the activation barriers for the ring-opening reaction.
Collapse
Affiliation(s)
- Matej Pavelka
- Dipartimento di Chimica Università della Calabria, Via P. Bucci, cubo 14c, 87036 Arcavacata di Rende (CS), Italy
| | | | | |
Collapse
|
12
|
Lehoczký P, McHugh PJ, Chovanec M. DNA interstrand cross-link repair in Saccharomyces cerevisiae. FEMS Microbiol Rev 2006; 31:109-33. [PMID: 17096663 DOI: 10.1111/j.1574-6976.2006.00046.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
DNA interstrand cross-links (ICL) present a formidable challenge to the cellular DNA repair apparatus. For Escherichia coli, a pathway which combines nucleotide excision repair (NER) and homologous recombination repair (HRR) to eliminate ICL has been characterized in detail, both genetically and biochemically. Mechanisms of ICL repair in eukaryotes have proved more difficult to define, primarily as a result of the fact that several pathways appear compete for ICL repair intermediates, and also because these competing activities are regulated in the cell cycle. The budding yeast Saccharomyces cerevisiae has proven a powerful tool for dissecting ICL repair. Important roles for NER, HRR and postreplication/translesion synthesis pathways have all been identified. Here we review, with reference to similarities and differences in higher eukaryotes, what has been discovered to date concerning ICL repair in this simple eukaryote.
Collapse
Affiliation(s)
- Peter Lehoczký
- Department of Molecular Genetics, Cancer Research Institute, Bratislava, Slovak Republic
| | | | | |
Collapse
|
13
|
Pavelka M, Burda JV. Pt-bridges in various single-strand and double-helix DNA sequences. DFT and MP2 study of the cisplatin coordination with guanine, adenine, and cytosine. J Mol Model 2006; 13:367-79. [PMID: 17024406 DOI: 10.1007/s00894-006-0151-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 06/23/2006] [Indexed: 10/24/2022]
Abstract
In this study, various platinum cross-links in DNA bases were explored. Some of these structures occur in many cis/trans-platinated double-helixes or single-stranded adducts. However, in the models studied, no steric hindrance from sugar-phosphate backbone or other surroundings is considered. Such restrictions can change the bonding picture partially but hopefully the basic energy characteristics will not be changed substantially. The optimization of the structures explored was performed at the DFT level with the B3LYP functional and the 6-31G(d) basis set. Perturbation theory at the MP2/6-31++G(2df,2pd) level was used for the single-point energy and 6-31+G(d) basis set for the electron-property analyses. It was found that the most stable structures are the diguanine complexes followed by guanine-cytosine Pt-cross-links, ca 5 kcal mol(-1) less stable. The adenine-containing complexes are about 15 kcal mol(-1) below the stability of diguanine structures. This stability order was also confirmed by the BE of Pt-N bonds. For a detailed view on dative and electrostatic contributions to Pt-N bonds, Natural Population Analysis, determination of electrostatic potentials, and canonical Molecular Orbitals description of the examined systems were used.
Collapse
Affiliation(s)
- Matej Pavelka
- Faculty of Mathematics and Physics, Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 121 16, Prague 2, Czech Republic
| | | |
Collapse
|
14
|
Affiliation(s)
- Zahid H Siddik
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
15
|
Malinge JM, Giraud-Panis MJ, Leng M. Interstrand cross-links of cisplatin induce striking distortions in DNA. J Inorg Biochem 1999; 77:23-9. [PMID: 10626349 DOI: 10.1016/s0162-0134(99)00148-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the reaction between cellular DNA and cisplatin, different bifunctional adducts are formed including intrastrand and interstrand cross-links. The respective role of these lesions in the cytotoxicity of the drug is not yet elucidated. This paper deals with the current knowledge on cisplatin interstrand cross-links and presents results on the formation, stability and structure of these adducts. A key step in the studies of these lesions is the recent determination of solution and crystallographic structures of double-stranded oligonucleotides containing a unique interstrand cross-link. The DNA distortions induced by this adduct exhibit unprecedented features such as the location of the platinum residue in the minor groove, the extrusion of the cytosines of the cross-linked d(GpC).d(GpC) site, the bending of the helix axis towards the minor groove and a large DNA unwinding. In addition to a detailed determination of the distortions, the high resolution of the crystal structure allowed us to locate the water molecules surrounding the adduct. The possible implications of this structure for the chemical properties and the cellular processing of cisplatin interstrand cross-links are discussed.
Collapse
Affiliation(s)
- J M Malinge
- Centre de Biophysique Moléculaire, CNRS, Orléans, France.
| | | | | |
Collapse
|
16
|
Kozelka J, Legendre F, Reeder F, Chottard JC. Kinetic aspects of interactions between DNA and platinum complexes. Coord Chem Rev 1999. [DOI: 10.1016/s0010-8545(99)00065-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
|
18
|
Coste F, Malinge JM, Serre L, Shepard W, Roth M, Leng M, Zelwer C. Crystal structure of a double-stranded DNA containing a cisplatin interstrand cross-link at 1.63 A resolution: hydration at the platinated site. Nucleic Acids Res 1999; 27:1837-46. [PMID: 10101191 PMCID: PMC148391 DOI: 10.1093/nar/27.8.1837] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
cis-diamminedichloroplatinum (II) (cisplatin) is a powerful anti-tumor drug whose target is cellular DNA. In the reaction between DNA and cisplatin, covalent intrastrand and interstrand cross-links (ICL) are formed. Two solution structures of the ICL have been published recently. In both models the double-helix is bent and unwound but with significantly different angle values. We solved the crystal structure at 100K of a double-stranded DNA decamer containing a single cisplatin ICL, using the anomalous scattering (MAD) of platinum as a unique source of phase information. We found 47 degrees for double-helix bending and 70 degrees for unwinding in agreement with previous electrophoretic assays. The crystals are stabilized by intermolecular contacts involving two cytosines extruded from the double-helix, one of which makes a triplet with a terminal G.C pair. The platinum coordination is nearly square and the platinum residue is embedded into a cage of nine water molecules linked to the cross-linked guanines, to the two amine groups, and to the phosphodiester backbone through other water molecules. This water molecule organization is discussed in relation with the chemical stability of the ICL.
Collapse
Affiliation(s)
- F Coste
- Centre de Biophysique Moléculaire, Centre de National de la Recherche Scientifique, affiliated to the Université d'Orléans, rue Charles Sadron, 45071 Orleans Cedex, France
| | | | | | | | | | | | | |
Collapse
|
19
|
|