1
|
Wang Y, Duan Y, Liu M, Ren M, Gao Y, Liu Z, Zhang P, He L, Fan R, Zhou X, Yang J. Target gene selection for sprayable dsRNA-based biopesticide against Tetranychus urticae Koch (Acari: Tetranychidae). PEST MANAGEMENT SCIENCE 2025; 81:3055-3065. [PMID: 39887845 PMCID: PMC12074632 DOI: 10.1002/ps.8675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Because of the excessive use of synthetic chemicals, the two-spotted spider mite, Tetranychus urticae Koch, a highly polyphagous pest, has developed comprehensive resistance to a broad spectrum of pesticides with diverse modes of action, raising severe concerns over agroecosystems and human health. To resolve this emerging issue, we initiated a project to develop double-stranded RNA (dsRNA)-based biopesticides against T. urticae, aiming for a species-specific and sustainable pest management alternative. RESULTS To examine the uptake of dsRNAs using the egg-soaking delivery method, we fluorescently labeled extraneous dsRNAs, and later showed that T. urticae dsRNAs can permeate through eggshell in a time-dependent manner within the first 24 h. For target gene screening, silencing of Prosbeta-1 and -5 resulted in the highest mortality (>90%) and a dark body phenotype in T. urticae. Notably, each target gene was effective in both avermectin laboratory susceptible and field resistant populations. As such, Prosbeta-5 was selected as the candidate target gene for subsequent spray-induced gene silencing (SIGS). After two rounds of spray at day 5 and day 12, SIGS led to a substantial suppression of T. urticae populations (>90%). CONCLUSION Our combined results suggest viable molecular targets, confirm the feasibility of SIGS against T. urticae, and lay the foundation for the development of dsRNA-based biopesticides to control this devastating pest. © 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yifei Wang
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Yuanpeng Duan
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Meibin Liu
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Meifeng Ren
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Yue Gao
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Zhongfang Liu
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Pengjiu Zhang
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Lifei He
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Renjun Fan
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| | - Xuguo Zhou
- Department of Entomology, School of Integrative Biology, College of Liberal Arts & SciencesUniversity of Illinois Urbana‐ChampaignUrbanaILUSA
| | - Jing Yang
- Shanxi Key Laboratory of Integrated Pest Management in AgricultureCollege of Plant Protection, Shanxi Agricultural UniversityTaiyuanChina
| |
Collapse
|
2
|
Katalinić J, Richards M, Auyang A, Millett JH, Kogenaru M, Windbichler N. Do the Shuffle: Expanding the Synthetic Biology Toolkit for Shufflon-like Recombination Systems. ACS Synth Biol 2025; 14:363-372. [PMID: 39869770 PMCID: PMC11852207 DOI: 10.1021/acssynbio.4c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/29/2025]
Abstract
Naturally occurring DNA inversion systems play an important role in the generation of genetic variation and adaptation in prokaryotes. Shufflon invertase (SI) Rci from plasmid R64, recognizing asymmetric sfx sites, has been adopted as a tool for synthetic biology. However, the availability of a single enzyme with moderate rates of recombination has hampered the more widespread use of SIs. We identified 14 previously untested SI genes and their sfx sites in public databases. We established an assay based on single-molecule sequencing that allows the quantification of the inversion rates of these enzymes and determined cross-recognition to identify orthogonal SI/sfx pairs. We describe SI enzymes with substantially improved shuffling rates when expressed in an inducible manner in E. coli. Our findings will facilitate the use of SIs in engineering biology where synthetic shufflons enable the generation of millions of sequence variants in vivo for applications such as barcoding or experimental selection.
Collapse
Affiliation(s)
- Jan Katalinić
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Morgan Richards
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Alex Auyang
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - James H. Millett
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | | | | |
Collapse
|
3
|
Matlock W, Shaw LP, Stoesser N. Global genomic epidemiology of bla GES-5 carbapenemase-associated integrons. Microb Genom 2024; 10:001312. [PMID: 39630499 PMCID: PMC11616780 DOI: 10.1099/mgen.0.001312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/27/2024] [Indexed: 12/07/2024] Open
Abstract
Antimicrobial resistance (AMR) gene cassettes comprise an AMR gene flanked by short recombination sites (attI and attC or attC and attC). Integrons are genetic elements able to capture, excise and shuffle these cassettes, providing 'adaptation on demand', and can be found on both chromosomes and plasmids. Understanding the patterns of integron diversity may help to understand the epidemiology of AMR genes. As a case study, we examined the clinical resistance gene bla GES-5, an integron-associated class A carbapenemase first reported in Greece in 2004 and since observed worldwide, which to our knowledge has not been the subject of a previous global analysis. Using a dataset comprising all de-duplicated NCBI contigs containing bla GES-5 (n=104), we developed a pangenome graph-based workflow to characterize and cluster the diversity of bla GES-5-associated integrons. We demonstrate that bla GES-5-associated integrons on plasmids are different to those on chromosomes. Chromosomal integrons were almost all identified in Pseudomonas aeruginosa ST235, with a consistent gene cassette content and order. We observed instances where insertion sequence IS110 disrupted attC sites, which might immobilize the gene cassettes and explain the conserved integron structure despite the presence of intI1 integrase promoters, which would typically facilitate capture or excision and rearrangement. The plasmid-associated integrons were more diverse in their gene cassette content and order, which could be an indication of greater integrase activity and 'shuffling' of integrons on plasmids.
Collapse
Affiliation(s)
- William Matlock
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Liam P. Shaw
- Department of Biology, University of Oxford, Oxford, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
4
|
Liu X, Dong H, Wang H, Ren X, Yang X, Li T, Fu G, Xia M, Fang H, Du G, Jin Z, Zhang D. Recent Advances in Genetic Engineering Strategies of Sinorhizobium meliloti. ACS Synth Biol 2024; 13:3497-3506. [PMID: 39481116 PMCID: PMC11574922 DOI: 10.1021/acssynbio.4c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Sinorhizobium meliloti is a free-living soil Gram-negative bacterium that participates in nitrogen-fixation symbiosis with several legumes. S. meliloti has the potential to be utilized for the production of high-value nutritional compounds, such as vitamin B12. Advances in gene editing tools play a vital role in the development of S. meliloti strains with enhanced characteristics for biotechnological applications. Several novel genetic engineering strategies have emerged in recent years to investigate genetic modifications in S. meliloti. This review provides a comprehensive overview of the mechanism and application of the extensively used Tn5-mediated genetic engineering strategies. Strategies based on homologous recombination and site-specific recombination were also discussed. Subsequently, the development and application of the genetic engineering strategies utilizing various CRISPR/Cas systems in S. meliloti are summarized. This review may stimulate research interest among scientists, foster studies in the application areas of S. meliloti, and serve as a reference for the utilization of genome editing tools for other Rhizobium species.
Collapse
Affiliation(s)
- Xuan Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huina Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huiying Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xinyi Ren
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xia Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Tingting Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Gang Fu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Miaomiao Xia
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Guangqing Du
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhaoxia Jin
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
5
|
Foster MP, Benedek MJ, Billings TD, Montgomery JS. Dynamics in Cre-loxP site-specific recombination. Curr Opin Struct Biol 2024; 88:102878. [PMID: 39029281 PMCID: PMC11616326 DOI: 10.1016/j.sbi.2024.102878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/21/2024]
Abstract
Cre recombinase is a phage-derived enzyme that has found utility for precise manipulation of DNA sequences. Cre recognizes and recombines pairs of loxP sequences characterized by an inverted repeat and asymmetric spacer. Cre cleaves and religates its DNA targets such that error-prone repair pathways are not required to generate intact DNA products. Major obstacles to broader applications are lack of knowledge of how Cre recognizes its targets, and how its activity is controlled. The picture emerging from high resolution methods is that the dynamic properties of both the enzyme and its DNA target are important determinants of its activity in both sequence recognition and DNA cleavage. Improved understanding of the role of dynamics in the key steps along the pathway of Cre-loxP recombination should significantly advance our ability to both redirect Cre to new sequences and to control its DNA cleavage activity in the test tube and in cells.
Collapse
Affiliation(s)
- Mark P Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| | - Matthew J Benedek
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Tyler D Billings
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Jonathan S Montgomery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
6
|
Gluck-Thaler E, Vogan A. Systematic identification of cargo-mobilizing genetic elements reveals new dimensions of eukaryotic diversity. Nucleic Acids Res 2024; 52:5496-5513. [PMID: 38686785 PMCID: PMC11162782 DOI: 10.1093/nar/gkae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Cargo-mobilizing mobile elements (CMEs) are genetic entities that faithfully transpose diverse protein coding sequences. Although common in bacteria, we know little about eukaryotic CMEs because no appropriate tools exist for their annotation. For example, Starships are giant fungal CMEs whose functions are largely unknown because they require time-intensive manual curation. To address this knowledge gap, we developed starfish, a computational workflow for high-throughput eukaryotic CME annotation. We applied starfish to 2 899 genomes of 1 649 fungal species and found that starfish recovers known Starships with 95% combined precision and recall while expanding the number of annotated elements ten-fold. Extant Starship diversity is partitioned into 11 families that differ in their enrichment patterns across fungal classes. Starship cargo changes rapidly such that elements from the same family differ substantially in their functional repertoires, which are predicted to contribute to diverse biological processes such as metabolism. Many elements have convergently evolved to insert into 5S rDNA and AT-rich sequence while others integrate into random locations, revealing both specialist and generalist strategies for persistence. Our work establishes a framework for advancing mobile element biology and provides the means to investigate an emerging dimension of eukaryotic genetic diversity, that of genomes within genomes.
Collapse
Affiliation(s)
- Emile Gluck-Thaler
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Neuchâtel 2000, Switzerland
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Wisconsin Institute for Discovery, Madison, WI 53706, USA
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, 752 36, Sweden
| |
Collapse
|
7
|
Debatisse K, Lopez P, Poli M, Rousseau P, Campos M, Coddeville M, Cocaign-Bousquet M, Le Bourgeois P. Redefining the bacteriophage mv4 site-specific recombination system and the sequence specificity of its attB and core-attP sites. Mol Microbiol 2024; 121:1200-1216. [PMID: 38705589 DOI: 10.1111/mmi.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Through their involvement in the integration and excision of a large number of mobile genetic elements, such as phages and integrative and conjugative elements (ICEs), site-specific recombination systems based on heterobivalent tyrosine recombinases play a major role in genome dynamics and evolution. However, despite hundreds of these systems having been identified in genome databases, very few have been described in detail, with none from phages that infect Bacillota (formerly Firmicutes). In this study, we reanalyzed the recombination module of Lactobacillus delbrueckii subsp. bulgaricus phage mv4, previously considered atypical compared with classical systems. Our results reveal that mv4 integrase is a 369 aa protein with all the structural hallmarks of recombinases from the Tn916 family and that it cooperatively interacts with its recombination sites. Using randomized DNA libraries, NGS sequencing, and other molecular approaches, we show that the 21-bp core-attP and attB sites have structural similarities to classical systems only if considering the nucleotide degeneracy, with two 7-bp inverted regions corresponding to mv4Int core-binding sites surrounding a 7-bp strand-exchange region. We also examined the different compositional constraints in the core-binding regions, which define the sequence space of permissible recombination sites.
Collapse
Affiliation(s)
- Kevin Debatisse
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Pierre Lopez
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Maryse Poli
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Philippe Rousseau
- CBI, LMGM, Université de Toulouse, CNRS, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Manuel Campos
- CBI, LMGM, Université de Toulouse, CNRS, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Michèle Coddeville
- CBI, LMGM, Université de Toulouse, CNRS, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| | | | - Pascal Le Bourgeois
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| |
Collapse
|
8
|
Yano H, Hayashi W, Kawakami S, Aoki S, Anzai E, Zuo H, Kitamura N, Hirabayashi A, Kajihara T, Kayama S, Sugawara Y, Yahara K, Sugai M. Nationwide genome surveillance of carbapenem-resistant Pseudomonas aeruginosa in Japan. Antimicrob Agents Chemother 2024; 68:e0166923. [PMID: 38564665 PMCID: PMC11064530 DOI: 10.1128/aac.01669-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Japan is a country with an approximate 10% prevalence rate of carbapenem-resistant Pseudomonas aeruginosa (CRPA). Currently, a comprehensive overview of the genotype and phenotype patterns of CRPA in Japan is lacking. Herein, we conducted genome sequencing and quantitative antimicrobial susceptibility testing for 382 meropenem-resistant CRPA isolates that were collected from 78 hospitals across Japan from 2019 to 2020. CRPA exhibited susceptibility rates of 52.9%, 26.4%, and 88.0% against piperacillin-tazobactam, ciprofloxacin, and amikacin, respectively, whereas 27.7% of CRPA isolates was classified as difficult-to-treat resistance P. aeruginosa. Of the 148 sequence types detected, ST274 (9.7%) was predominant, followed by ST235 (7.6%). The proportion of urine isolates in ST235 was higher than that in other STs (P = 0.0056, χ2 test). Only 4.1% of CRPA isolates carried the carbapenemase genes: blaGES (2) and blaIMP (13). One ST235 isolate carried the novel blaIMP variant blaIMP-98 in the chromosome. Regarding chromosomal mutations, 87.1% of CRPA isolates possessed inactivating or other resistance mutations in oprD, and 28.8% showed mutations in the regulatory genes (mexR, nalC, and nalD) for the MexAB-OprM efflux pump. Additionally, 4.7% of CRPA isolates carried a resistance mutation in the PBP3-encoding gene ftsI. The findings from this study and other surveillance studies collectively demonstrate that CRPA exhibits marked genetic diversity and that its multidrug resistance in Japan is less prevailed than in other regions. This study contributes a valuable data set that addresses a gap in genotype/phenotype information regarding CRPA in the Asia-Pacific region, where the epidemiological background markedly differs between regions.
Collapse
Affiliation(s)
- Hirokazu Yano
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Wataru Hayashi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Sayoko Kawakami
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Sadao Aoki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Eiko Anzai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Hui Zuo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Norikazu Kitamura
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Aki Hirabayashi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Toshiki Kajihara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Shizuo Kayama
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| |
Collapse
|
9
|
Van Duyne GD, Landy A. Bacteriophage lambda site-specific recombination. Mol Microbiol 2024; 121:895-911. [PMID: 38372210 PMCID: PMC11096046 DOI: 10.1111/mmi.15241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
The site-specific recombination pathway of bacteriophage λ encompasses isoenergetic but highly directional and tightly regulated integrative and excisive reactions that integrate and excise the vial chromosome into and out of the bacterial chromosome. The reactions require 240 bp of phage DNA and 21 bp of bacterial DNA comprising 16 protein binding sites that are differentially used in each pathway by the phage-encoded Int and Xis proteins and the host-encoded integration host factor and factor for inversion stimulation proteins. Structures of higher-order protein-DNA complexes of the four-way Holliday junction recombination intermediates provided clarifying insights into the mechanisms, directionality, and regulation of these two pathways, which are tightly linked to the physiology of the bacterial host cell. Here we review our current understanding of the mechanisms responsible for regulating and executing λ site-specific recombination, with an emphasis on key studies completed over the last decade.
Collapse
Affiliation(s)
- Gregory D Van Duyne
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arthur Landy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
10
|
Yano H, Suzuki M, Nonaka L. Mobile class A β-lactamase gene bla GMA-1. Microbiol Spectr 2024; 12:e0258923. [PMID: 38078722 PMCID: PMC10782965 DOI: 10.1128/spectrum.02589-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/12/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Despite increasing reports, class A β-lactamases of environmental bacteria remain very poorly characterized, with limited understanding of their transmission patterns. To address this knowledge gap, we focused on a recently designated GMA family β-lactamase gene, bla GMA-1, found in marine bacterial genera such as Vibrio. This study shows that gammaproteobacterial mobile class A β-lactamase is specialized for penicillin degradation, and bla GMA-1 is frequently linked to strand-biased circularizing integrative elements (SEs) in sequences in the RefSeq/GenBank database. Evidence for the implication of SEs in β-lactamase environmental transmission provides insights for future surveillance studies of antimicrobial resistance genes in human clinical settings.
Collapse
Affiliation(s)
- Hirokazu Yano
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Lisa Nonaka
- Faculty of Human Life Sciences, Shokei University, Kumamoto, Japan
| |
Collapse
|
11
|
Lorenzi A, Arvin MJ, Burke GR, Strand MR. Functional characterization of Microplitis demolitor bracovirus genes that encode nucleocapsid components. J Virol 2023; 97:e0081723. [PMID: 37877717 PMCID: PMC10688341 DOI: 10.1128/jvi.00817-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE Understanding how bracoviruses (BVs) function in wasps is of broad interest in the study of virus evolution. This study characterizes most of the Microplitis demolitor bracovirus (MdBV) genes whose products are nucleocapsid components. Results indicate several genes unknown outside of nudiviruses and BVs are essential for normal capsid assembly. Results also indicate most MdBV tyrosine recombinase family members and the DNA binding protein p6.9-1 are required for DNA processing and packaging into nucleocapsids.
Collapse
Affiliation(s)
- Ange Lorenzi
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Michael J. Arvin
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Gaelen R. Burke
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Michael R. Strand
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
12
|
Idola D, Mori H, Nagata Y, Nonaka L, Yano H. Host range of strand-biased circularizing integrative elements: a new class of mobile DNA elements nesting in Gammaproteobacteria. Mob DNA 2023; 14:7. [PMID: 37237359 DOI: 10.1186/s13100-023-00295-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The strand-biased circularizing integrative elements (SEs) are putatively non-mobilizable integrative elements for transmitting antimicrobial resistance genes. The transposition mode and the prevalence of SEs in prokaryotes remain vague. RESULTS To corroborate the transposition mode and the prevalence of SEs, hypothetical transposition intermediates of an SE were searched for in genomic DNA fractions of an SE host. Then, the SE core genes were defined based on gene knockout experiments, and the synteny blocks of their distant homologs were searched for in the RefSeq complete genome sequence database using PSI-BLAST. A genomic DNA fractionation experiment revealed that SE copies are present in a double-stranded nicked circular form in vivo. Operonic structure of three conserved coding sequences (intA, tfp, intB) and srap located at the left end of SEs were identified as essential for attL × attR recombination. The synteny blocks of tfp and srap homologs were detected in 3.6% of the replicons of Gammaproteobacteria but not in other taxa, implying that SE movement is host-dependent. SEs have been discovered most frequently in the orders Vibrionales (19% of replicons), Pseudomonadales (18%), Alteromonadales (17%), and Aeromonadales (12%). Genomic comparisons revealed 35 new SE members with identifiable termini. SEs are present at 1 to 2 copies per replicon and have a median length of 15.7 kb. Three newly identified SE members carry antimicrobial resistance genes, like tmexCD-toprJ, mcr-9, and blaGMA-1. Further experiments validated that three new SE members possess the strand-biased attL × attR recombination activity. CONCLUSIONS This study suggested that transposition intermediates of SEs are double-stranded circular DNA. The main hosts of SEs are a subset of free-living Gammaproteobacteria; this represents a rather narrow host range compared to those of mobile DNA element groups discovered to date. As the host range, genetic organization, and movements are unique among the mobile DNA elements, SEs provide a new model system for host-mobile DNA element coevolution studies.
Collapse
Affiliation(s)
- Desmila Idola
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aobaku, Sendai, 980-8577, Japan
| | - Hiroshi Mori
- Department of Informatics, National Institute of Genetics, 1111 Yata, Mishima, 411-8540, Japan
| | - Yuji Nagata
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aobaku, Sendai, 980-8577, Japan
| | - Lisa Nonaka
- Faculty of Human Life Sciences, Shokei University, 2-6-78 Kuhonji, Kumamoto, 862-8678, Japan
| | - Hirokazu Yano
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aobaku, Sendai, 980-8577, Japan.
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo, 189-0002, Japan.
| |
Collapse
|
13
|
Systematic Discovery of a New Catalogue of Tyrosine-Type Integrases in Bacterial Genomic Islands. Appl Environ Microbiol 2023; 89:e0173822. [PMID: 36719242 PMCID: PMC9972944 DOI: 10.1128/aem.01738-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Site-specific recombinases (integrases) can mediate the horizontal transfer of genomic islands. The ability to integrate large DNA sequences into target sites is very important for genetic engineering in prokaryotic and eukaryotic cells. Here, we characterized an unprecedented catalogue of 530 tyrosine-type integrases by examining genes potentially encoding tyrosine integrases in bacterial genomic islands. The phylogeny of putative tyrosine integrases revealed that these integrases form an evolutionary clade that is distinct from those already known and are affiliated with novel integrase groups. We systematically searched for candidate integrase genes, and their integration activities were validated in a bacterial model. We verified the integration functions of six representative novel integrases by using a two-plasmid integration system consisting of a donor plasmid carrying the integrase gene and attP site and a recipient plasmid harboring an attB site in recA-deficient Escherichia coli. Further quantitative reverse transcription-PCR (qRT-PCR) assays validated that the six selected integrases can be expressed with their native promoters in E. coli. The attP region reductions showed that the extent of attP sites of integrases is approximately 200 bp for integration capacity. In addition, mutational analysis showed that the conserved tyrosine at the C terminus is essential for catalysis, confirming that these candidate proteins belong to the tyrosine-type recombinase superfamily, i.e., tyrosine integrases. This study revealed that the novel integrases from bacterial genomic islands have site-specific recombination functions, which is of physiological significance for their genomic islands in bacterial chromosomes. More importantly, our discovery expands the toolbox for genetic engineering, especially for efficient integration activity. IMPORTANCE Site-specific recombinases or integrases have high specificity for DNA large fragment integration, which is urgently needed for gene editing. However, known integrases are not sufficient for meeting multiple integrations. In this work, we discovered an array of integrases through bioinformatics analysis in bacterial genomes. Phylogeny and functional assays revealed that these new integrases belong to tyrosine-type integrases and have the ability to conduct site-specific recombination. Moreover, attP region extent and catalysis site analysis were characterized. Our study provides the methodology for discovery of novel integrases and increases the capacity of weapon pool for genetic engineering in bacteria.
Collapse
|
14
|
Liao Q, Ren Z, Wiesler EE, Fuqua C, Wang X. A dicentric bacterial chromosome requires XerC/D site-specific recombinases for resolution. Curr Biol 2022; 32:3609-3618.e7. [PMID: 35797999 PMCID: PMC9398967 DOI: 10.1016/j.cub.2022.06.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 06/15/2022] [Indexed: 12/18/2022]
Abstract
Unlike eukaryotes and archaea, which have multiple replication origins on their chromosomes, bacterial chromosomes usually contain a single replication origin.1 Here, we discovered a dicentric bacterial chromosome with two replication origins, which has resulted from the fusion of the circular and linear chromosomes in Agrobacterium tumefaciens. The fused chromosome is well tolerated, stably maintained, and retains similar subcellular organization and genome-wide DNA interactions found for the bipartite chromosomes. Strikingly, the two replication origins and their partitioning systems are both functional and necessary for cell survival. Finally, we discovered that the site-specific recombinases XerC and XerD2 are essential in cells harboring the fused chromosome but not in cells with bipartite chromosomes. Analysis of actively dividing cells suggests a model in which XerC/D are required to recombine the sister fusion chromosomes when the two centromeres on the same chromosome are segregated to opposite cell poles. Thus, faithful segregation of dicentric chromosomes in bacteria can occur because of site-specific recombination between the sister chromatids during chromosome partitioning. Our study provides a natural comparative platform to examine a bacterial chromosome with multiple origins and a possible explanation for the fundamental difference in bacterial genome architecture relative to eukaryotes and archaea.1.
Collapse
Affiliation(s)
- Qin Liao
- Department of Biology, Indiana University, 1001 E 3(rd) Street, Bloomington, IN 47405, USA
| | - Zhongqing Ren
- Department of Biology, Indiana University, 1001 E 3(rd) Street, Bloomington, IN 47405, USA
| | - Emma E Wiesler
- Department of Biology, Indiana University, 1001 E 3(rd) Street, Bloomington, IN 47405, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, 1001 E 3(rd) Street, Bloomington, IN 47405, USA
| | - Xindan Wang
- Department of Biology, Indiana University, 1001 E 3(rd) Street, Bloomington, IN 47405, USA.
| |
Collapse
|
15
|
Atypical integrative element with strand-biased circularization activity assists interspecies antimicrobial resistance gene transfer from Vibrio alfacsensis. PLoS One 2022; 17:e0271627. [PMID: 35917316 PMCID: PMC9345347 DOI: 10.1371/journal.pone.0271627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
The exchange of antimicrobial resistance (AMR) genes between aquaculture and terrestrial microbial populations has emerged as a serious public health concern. However, the nature of the mobile genetic elements in marine bacteria is poorly documented. To gain insight into the genetic mechanisms underlying AMR gene transfer from marine bacteria, we mated a multidrug-resistant Vibrio alfacsensis strain with an Escherichia coli strain, and then determined the complete genome sequences of the donor and the transconjugant strains. Sequence analysis revealed a conjugative multidrug resistance plasmid in the donor strain, which was integrated into the chromosome of the recipient. The plasmid backbone in the transconjugant chromosome was flanked by two copies of a 7.1 kb unclassifiable integrative element harboring a β-lactamase gene. The 7.1 kb element and the previously reported element Tn6283 share four coding sequences, two of which encode the catalytic R-H-R-Y motif of tyrosine recombinases. Polymerase chain reaction and sequencing experiments revealed that these elements generate a circular copy of one specific strand without leaving an empty site on the donor molecule, in contrast to the movement of integron gene cassettes or ICE/IMEs discovered to date. These elements are termed SEs (strand-biased circularizing integrative elements): SE-6945 (the 7.1 kb element) and SE-6283 (Tn6283). The copy number and location of SE-6945 in the chromosome affected the antibiotic resistance levels of the transconjugants. SEs were identified in the genomes of other Vibrio species. Overall, these results suggest that SEs are involved in the spread of AMR genes among marine bacteria.
Collapse
|
16
|
Ayala Nuñez T, Cerbino GN, Rapisardi MF, Quiroga C, Centrón D. Novel Mobile Integrons and Strain-Specific Integrase Genes within Shewanella spp. Unveil Multiple Lateral Genetic Transfer Events within The Genus. Microorganisms 2022; 10:microorganisms10061102. [PMID: 35744620 PMCID: PMC9229058 DOI: 10.3390/microorganisms10061102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Shewanella spp. are Gram-negative bacteria that thrive in aquatic niches and also can cause infectious diseases as opportunistic pathogens. Chromosomal (CI) and mobile integrons (MI) were previously described in some Shewanella isolates. Here, we evaluated the occurrence of integrase genes, the integron systems and their genetic surroundings in the genus. We identified 22 integrase gene types, 17 of which were newly described, showing traits of multiple events of lateral genetic transfer (LGT). Phylogenetic analysis showed that most of them were strain-specific, except for Shewanella algae, where SonIntIA-like may have co-evolved within the host as typical CIs. It is noteworthy that co-existence of up to five different integrase genes within a strain, as well as their wide dissemination to Alteromonadales, Vibrionales, Chromatiales, Oceanospirillales and Enterobacterales was observed. In addition, identification of two novel MIs suggests that continuous LGT events may have occurred resembling the behavior of class 1 integrons. The constant emergence of determinants associated to antimicrobial resistance worldwide, concomitantly with novel MIs in strains capable to harbor several types of integrons, may be an alarming threat for the recruitment of novel antimicrobial resistance gene cassettes in the genus Shewanella, with its consequent contribution towards multidrug resistance in clinical isolates.
Collapse
Affiliation(s)
- Teolincacihuatl Ayala Nuñez
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires CP1121, Argentina; (T.A.N.); (G.N.C.); (M.F.R.)
| | - Gabriela N. Cerbino
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires CP1121, Argentina; (T.A.N.); (G.N.C.); (M.F.R.)
| | - María Florencia Rapisardi
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires CP1121, Argentina; (T.A.N.); (G.N.C.); (M.F.R.)
| | - Cecilia Quiroga
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires CP1121, Argentina; (T.A.N.); (G.N.C.); (M.F.R.)
- Laboratorio de Investigación en Biología del ARN Bacteriano IMPaM (UBA/CONICET), Faculty of Medicine, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires CP1121, Argentina
- Correspondence: or (C.Q.); (D.C.); Tel.: +54-11-5285-3500 (C.Q.); +54-911-50987496 (D.C.)
| | - Daniela Centrón
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires CP1121, Argentina; (T.A.N.); (G.N.C.); (M.F.R.)
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos IMPaM (UBA/CONICET), Faculty of Medicine, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires CP1121, Argentina
- Correspondence: or (C.Q.); (D.C.); Tel.: +54-11-5285-3500 (C.Q.); +54-911-50987496 (D.C.)
| |
Collapse
|
17
|
Antelo V, Giménez M, Azziz G, Valdespino‐Castillo P, Falcón LI, Ruberto LAM, Mac Cormack WP, Mazel D, Batista S. Metagenomic strategies identify diverse integron-integrase and antibiotic resistance genes in the Antarctic environment. Microbiologyopen 2021; 10:e1219. [PMID: 34713606 PMCID: PMC8435808 DOI: 10.1002/mbo3.1219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/24/2021] [Indexed: 11/08/2022] Open
Abstract
The objective of this study is to identify and analyze integrons and antibiotic resistance genes (ARGs) in samples collected from diverse sites in terrestrial Antarctica. Integrons were studied using two independent methods. One involved the construction and analysis of intI gene amplicon libraries. In addition, we sequenced 17 metagenomes of microbial mats and soil by high-throughput sequencing and analyzed these data using the IntegronFinder program. As expected, the metagenomic analysis allowed for the identification of novel predicted intI integrases and gene cassettes (GCs), which mostly encode unknown functions. However, some intI genes are similar to sequences previously identified by amplicon library analysis in soil samples collected from non-Antarctic sites. ARGs were analyzed in the metagenomes using ABRIcate with CARD database and verified if these genes could be classified as GCs by IntegronFinder. We identified 53 ARGs in 15 metagenomes, but only four were classified as GCs, one in MTG12 metagenome (Continental Antarctica), encoding an aminoglycoside-modifying enzyme (AAC(6´)acetyltransferase) and the other three in CS1 metagenome (Maritime Antarctica). One of these genes encodes a class D β-lactamase (blaOXA-205) and the other two are located in the same contig. One is part of a gene encoding the first 76 amino acids of aminoglycoside adenyltransferase (aadA6), and the other is a qacG2 gene.
Collapse
Affiliation(s)
- Verónica Antelo
- Laboratorio de Microbiología MolecularInstituto de Investigaciones Biológicas Clemente Estable (MECAv. Italia 3318MontevideoCP 11600Uruguay
| | - Matías Giménez
- Laboratorio de Microbiología MolecularInstituto de Investigaciones Biológicas Clemente Estable (MECAv. Italia 3318MontevideoCP 11600Uruguay
- Laboratorio de Genómica MicrobianaInstitut Pasteur Montevideo. Mataojo 2020MontevideoUruguay
| | - Gastón Azziz
- Laboratorio de MicrobiologíaFacultad de AgronomíaUdelaR. Av. Garzón 780. CP 12900MontevideoUruguay
| | - Patricia Valdespino‐Castillo
- Molecular Biophysics and Integrated Bioimaging DivisionBSISB ProgramLawrence Berkeley National LaboratoryOne Cyclotron RdBerkeleyCA94720USA
| | - Luisa I. Falcón
- Laboratorio de Ecología BacterianaInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoCDMX04510Mexico
- UNAMParque Científico y Tecnológico de Yucatán97302Mexico
| | - Lucas A. M. Ruberto
- Instituto Antártico Argentino. Av25 de Mayo 1143San Martín, Buenos Aires1650Argentina
- Cátedra de BiotecnologíaFacultad de Farmacia y Bioquímica e Instituto Nanobiotec UBA‐CONICET. Ave. Junín 956Buenos Aires1113Argentina
| | - Walter P. Mac Cormack
- Instituto Antártico Argentino. Av25 de Mayo 1143San Martín, Buenos Aires1650Argentina
- Cátedra de BiotecnologíaFacultad de Farmacia y Bioquímica e Instituto Nanobiotec UBA‐CONICET. Ave. Junín 956Buenos Aires1113Argentina
| | - Didier Mazel
- Département Génomes et GénétiqueInstitut PasteurUnité Plasticité du Génome BactérienParisFrance
- CNRSUMR3525ParisFrance
| | - Silvia Batista
- Laboratorio de Microbiología MolecularInstituto de Investigaciones Biológicas Clemente Estable (MECAv. Italia 3318MontevideoCP 11600Uruguay
| |
Collapse
|
18
|
Characteristics and genome analysis of a novel bacteriophage IME1323_01, the first temperate bacteriophage induced from Staphylococcus caprae. Virus Res 2021; 305:198569. [PMID: 34555434 DOI: 10.1016/j.virusres.2021.198569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/21/2023]
Abstract
Temperate phages play an important role in the evolution of bacteria. So far, lytic phages have been wildly reported, but there is still limited knowledge regarding temperate phages in the genome of pathogenic Staphylococcus caprae. Here we present the characteristics and genome analysis of a novel bacteriophage IME1323_01, which is the first isolated bacteriophage of S. caprae. The phage genome is a 44282-bp linear dsDNA molecule with a GC content of 34.18%, which is similar to its host. The genome of IME1323_01 is most closely related with that of temperate phage IME1318_01, whereas the homology coverage is just 34%. Genome and proteome analyses confirmed the lysogenic nature of phage IME1323_01, which encodes the typical lysogen-related proteins integrase, CI, Cro, and anti-repressor proteins. Genomic and phylogenetic analysis revealed that phage IME1323_01 is a newly discovered phage, which belongs to subfamily Azeredovirinae in the family Siphoviridae. The goal of this study is to increase our knowledge about the phages of S. caprae and expand our armamentarium against the escalating threat of pathogenic bacteria.
Collapse
|
19
|
Badel C, Da Cunha V, Oberto J. Archaeal tyrosine recombinases. FEMS Microbiol Rev 2021; 45:fuab004. [PMID: 33524101 PMCID: PMC8371274 DOI: 10.1093/femsre/fuab004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022] Open
Abstract
The integration of mobile genetic elements into their host chromosome influences the immediate fate of cellular organisms and gradually shapes their evolution. Site-specific recombinases catalyzing this integration have been extensively characterized both in bacteria and eukarya. More recently, a number of reports provided the in-depth characterization of archaeal tyrosine recombinases and highlighted new particular features not observed in the other two domains. In addition to being active in extreme environments, archaeal integrases catalyze reactions beyond site-specific recombination. Some of these integrases can catalyze low-sequence specificity recombination reactions with the same outcome as homologous recombination events generating deep rearrangements of their host genome. A large proportion of archaeal integrases are termed suicidal due to the presence of a specific recombination target within their own gene. The paradoxical maintenance of integrases that disrupt their gene upon integration implies novel mechanisms for their evolution. In this review, we assess the diversity of the archaeal tyrosine recombinases using a phylogenomic analysis based on an exhaustive similarity network. We outline the biochemical, ecological and evolutionary properties of these enzymes in the context of the families we identified and emphasize similarities and differences between archaeal recombinases and their bacterial and eukaryal counterparts.
Collapse
Affiliation(s)
- Catherine Badel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Violette Da Cunha
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Jacques Oberto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
20
|
Smyshlyaev G, Bateman A, Barabas O. Sequence analysis of tyrosine recombinases allows annotation of mobile genetic elements in prokaryotic genomes. Mol Syst Biol 2021; 17:e9880. [PMID: 34018328 PMCID: PMC8138268 DOI: 10.15252/msb.20209880] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
Mobile genetic elements (MGEs) sequester and mobilize antibiotic resistance genes across bacterial genomes. Efficient and reliable identification of such elements is necessary to follow resistance spreading. However, automated tools for MGE identification are missing. Tyrosine recombinase (YR) proteins drive MGE mobilization and could provide markers for MGE detection, but they constitute a diverse family also involved in housekeeping functions. Here, we conducted a comprehensive survey of YRs from bacterial, archaeal, and phage genomes and developed a sequence-based classification system that dissects the characteristics of MGE-borne YRs. We revealed that MGE-related YRs evolved from non-mobile YRs by acquisition of a regulatory arm-binding domain that is essential for their mobility function. Based on these results, we further identified numerous unknown MGEs. This work provides a resource for comparative analysis and functional annotation of YRs and aids the development of computational tools for MGE annotation. Additionally, we reveal how YRs adapted to drive gene transfer across species and provide a tool to better characterize antibiotic resistance dissemination.
Collapse
Affiliation(s)
- Georgy Smyshlyaev
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitHeidelbergGermany
- Department of Molecular BiologyUniversity of GenevaGenevaSwitzerland
| | - Alex Bateman
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
| | - Orsolya Barabas
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitHeidelbergGermany
- Department of Molecular BiologyUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
21
|
Llarena AK, Aspholm M, O'Sullivan K, Wêgrzyn G, Lindbäck T. Replication Region Analysis Reveals Non-lambdoid Shiga Toxin Converting Bacteriophages. Front Microbiol 2021; 12:640945. [PMID: 33868197 PMCID: PMC8044961 DOI: 10.3389/fmicb.2021.640945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/16/2021] [Indexed: 11/22/2022] Open
Abstract
Shiga toxin is the major virulence factor of enterohemorrhagic Escherichia coli (EHEC), and the gene encoding it is carried within the genome of Shiga toxin-converting phages (Stx phages). Numerous Stx phages have been sequenced to gain a better understanding of their contribution to the virulence potential of EHEC. The Stx phages are classified into the lambdoid phage family based on similarities in lifestyle, gene arrangement, and nucleotide sequence to the lambda phages. This study explores the replication regions of non-lambdoid Stx phages that completely lack the O and P genes encoding the proteins involved in initiating replication in the lambdoid phage genome. Instead, they carry sequences encoding replication proteins that have not been described earlier, here referred to as eru genes (after EHEC phage replication unit genes). This study identified three different types of Eru-phages, where the Eru1-type is carried by the highly pathogenic EHEC strains that caused the Norwegian O103:H25 outbreak in 2006 and the O104:H4 strain that caused the large outbreak in Europe in 2011. We show that Eru1-phages exhibit a less stable lysogenic state than the classical lambdoid Stx phages. As production of phage particles is accompanied by production of Stx toxin, the Eru1-phage could be associated with a high-virulence phenotype of the host EHEC strain. This finding emphasizes the importance of classifying Stx phages according to their replication regions in addition to their Stx-type and could be used to develop a novel strategy to identify highly virulent EHEC strains for improved risk assessment and management.
Collapse
Affiliation(s)
- Ann-Katrin Llarena
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Marina Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kristin O'Sullivan
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Grzegorz Wêgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdañsk, Gdañsk, Poland
| | - Toril Lindbäck
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
22
|
Roy PH, Partridge SR, Hall RM. Comment on "Conserved phylogenetic distribution and limited antibiotic resistance of class 1 integrons revealed by assessing the bacterial genome and plasmid collection" by A.N. Zhang et al. MICROBIOME 2021; 9:3. [PMID: 33397505 PMCID: PMC7784347 DOI: 10.1186/s40168-020-00950-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/06/2020] [Indexed: 05/31/2023]
Abstract
An article published in Microbiome in July 2018 uses incorrect definitions of integron integrase IntI1 and of class 1 integrons that affect the interpretation of the data.
Collapse
Affiliation(s)
- Paul H Roy
- Centre de Recherche en Infectiologie, CHU de Québec, Québec, QC, Canada.
- Department de Biochimie, de Microbiologie, et de Bio-informatique, Université Laval, Québec, QC, Canada.
| | - Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, 2145, Australia
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| |
Collapse
|
23
|
Escudero JA, Nivina A, Kemble HE, Loot C, Tenaillon O, Mazel D. Primary and promiscuous functions coexist during evolutionary innovation through whole protein domain acquisitions. eLife 2020; 9:58061. [PMID: 33319743 PMCID: PMC7790495 DOI: 10.7554/elife.58061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Molecular examples of evolutionary innovation are scarce and generally involve point mutations. Innovation can occur through larger rearrangements, but here experimental data is extremely limited. Integron integrases innovated from double-strand- toward single-strand-DNA recombination through the acquisition of the I2 α-helix. To investigate how this transition was possible, we have evolved integrase IntI1 to what should correspond to an early innovation state by selecting for its ancestral activity. Using synonymous alleles to enlarge sequence space exploration, we have retrieved 13 mutations affecting both I2 and the multimerization domains of IntI1. We circumvented epistasis constraints among them using a combinatorial library that revealed their individual and collective fitness effects. We obtained up to 104-fold increases in ancestral activity with various asymmetrical trade-offs in single-strand-DNA recombination. We show that high levels of primary and promiscuous functions could have initially coexisted following I2 acquisition, paving the way for a gradual evolution toward innovation.
Collapse
Affiliation(s)
- José Antonio Escudero
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.,CNRS, UMR3525, Paris, France.,Molecular Basis of Adaptation, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,VISAVET Health Surveillance Centre. Universidad Complutense Madrid. Avenida Puerta de Hierro, Madrid, Spain
| | - Aleksandra Nivina
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.,CNRS, UMR3525, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Harry E Kemble
- Infection, Antimicrobials, Modelling, Evolution, INSERM, UMR 1137, Université Paris Diderot, Université Paris Nord, Paris, France
| | - Céline Loot
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.,CNRS, UMR3525, Paris, France
| | - Olivier Tenaillon
- Infection, Antimicrobials, Modelling, Evolution, INSERM, UMR 1137, Université Paris Diderot, Université Paris Nord, Paris, France
| | - Didier Mazel
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.,CNRS, UMR3525, Paris, France
| |
Collapse
|
24
|
Zhang Z, Qin F, Chen F, Chu X, Luo H, Zhang R, Du S, Tian Z, Zhao Y. Culturing novel and abundant pelagiphages in the ocean. Environ Microbiol 2020; 23:1145-1161. [PMID: 33047445 DOI: 10.1111/1462-2920.15272] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/27/2020] [Accepted: 10/03/2020] [Indexed: 11/26/2022]
Abstract
Viruses play a key role in biogeochemical cycling and host mortality, metabolism, physiology and evolution in the ocean. Viruses that infect the globally abundant SAR11 bacteria (pelagiphages) were reported to be an important component of the marine viral communities. Our current knowledge of pelagiphages is based on a few studies and therefore is limited. In this study, 10 new pelagiphages were isolated and genomically characterized. These pelagiphages represent the first cultivated representatives of four viral lineages only found in metagenomic sequencing datasets previously. Many abundant environmental viral sequences, i.e., single-virus vSAG 37-F6 and several Global Ocean Viromes (GOV) viral populations, are now further confirmed with these pelagiphages. Viromic read mapping reveals that these new pelagiphages are globally distributed in the ocean and can be detected throughout the water column. Remarkably, isolation of these pelagiphages contributed up to 12% of all viromic reads annotated in the analysed viromes. Altogether, this study has greatly broadened our understanding of pelagiphages regarding their morphology, genetic diversity, infection strategies, and distribution pattern. The availability of these newly isolated pelagiphages and their genome sequences will allow us to further explore their infectivities and ecological strategies.
Collapse
Affiliation(s)
- Zefeng Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Fang Qin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Xiao Chu
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, Fujian, China
| | - Sen Du
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhen Tian
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
25
|
DNA binding induces a cis-to- trans switch in Cre recombinase to enable intasome assembly. Proc Natl Acad Sci U S A 2020; 117:24849-24858. [PMID: 32968014 DOI: 10.1073/pnas.2011448117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanistic understanding of DNA recombination in the Cre-loxP system has largely been guided by crystallographic structures of tetrameric synaptic complexes. Those studies have suggested a role for protein conformational dynamics that has not been well characterized at the atomic level. We used solution nuclear magnetic resonance (NMR) spectroscopy to discover the link between intrinsic flexibility and function in Cre recombinase. Transverse relaxation-optimized spectroscopy (TROSY) NMR spectra show the N-terminal and C-terminal catalytic domains (CreNTD and CreCat) to be structurally independent. Amide 15N relaxation measurements of the CreCat domain reveal fast-timescale dynamics in most regions that exhibit conformational differences in active and inactive Cre protomers in crystallographic tetramers. However, the C-terminal helix αN, implicated in assembly of synaptic complexes and regulation of DNA cleavage activity via trans protein-protein interactions, is unexpectedly rigid in free Cre. Chemical shift perturbations and intra- and intermolecular paramagnetic relaxation enhancement (PRE) NMR data reveal an alternative autoinhibitory conformation for the αN region of free Cre, wherein it packs in cis over the protein DNA binding surface and active site. Moreover, binding to loxP DNA induces a conformational change that dislodges the C terminus, resulting in a cis-to-trans switch that is likely to enable protein-protein interactions required for assembly of recombinogenic Cre intasomes. These findings necessitate a reexamination of the mechanisms by which this widely utilized gene-editing tool selects target sites, avoids spurious DNA cleavage activity, and controls DNA recombination efficiency.
Collapse
|
26
|
Srirangan K, Loignon M, Durocher Y. The use of site-specific recombination and cassette exchange technologies for monoclonal antibody production in Chinese Hamster ovary cells: retrospective analysis and future directions. Crit Rev Biotechnol 2020; 40:833-851. [DOI: 10.1080/07388551.2020.1768043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kajan Srirangan
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Martin Loignon
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Yves Durocher
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
27
|
Cury J, Oliveira PH, de la Cruz F, Rocha EPC. Host Range and Genetic Plasticity Explain the Coexistence of Integrative and Extrachromosomal Mobile Genetic Elements. Mol Biol Evol 2020; 35:2230-2239. [PMID: 29905872 PMCID: PMC6107060 DOI: 10.1093/molbev/msy123] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Self-transmissible mobile genetic elements drive horizontal gene transfer between prokaryotes. Some of these elements integrate in the chromosome, whereas others replicate autonomously as plasmids. Recent works showed the existence of few differences, and occasional interconversion, between the two types of elements. Here, we enquired on why evolutionary processes have maintained the two types of mobile genetic elements by comparing integrative and conjugative elements (ICE) with extrachromosomal ones (conjugative plasmids) of the highly abundant MPFT conjugative type. We observed that plasmids encode more replicases, partition systems, and antibiotic resistance genes, whereas ICEs encode more integrases and metabolism-associated genes. ICEs and plasmids have similar average sizes, but plasmids are much more variable, have more DNA repeats, and exchange genes more frequently. On the other hand, we found that ICEs are more frequently transferred between distant taxa. We propose a model where the different genetic plasticity and amplitude of host range between elements explain the co-occurrence of integrative and extrachromosomal elements in microbial populations. In particular, the conversion from ICE to plasmid allows ICE to be more plastic, while the conversion from plasmid to ICE allows the expansion of the element's host range.
Collapse
Affiliation(s)
- Jean Cury
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France.,CNRS, UMR3525, Paris, France
| | - Pedro H Oliveira
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France.,CNRS, UMR3525, Paris, France
| | - Fernando de la Cruz
- Departamento de Biologia Molecular e Instituto de Biomedicina y Biotecnologia de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France.,CNRS, UMR3525, Paris, France
| |
Collapse
|
28
|
Wang J, Liu Y, Liu Y, Du K, Xu S, Wang Y, Krupovic M, Chen X. A novel family of tyrosine integrases encoded by the temperate pleolipovirus SNJ2. Nucleic Acids Res 2019; 46:2521-2536. [PMID: 29361162 PMCID: PMC5861418 DOI: 10.1093/nar/gky005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/08/2018] [Indexed: 01/19/2023] Open
Abstract
Genomes of halophilic archaea typically contain multiple loci of integrated mobile genetic elements (MGEs). Despite the abundance of these elements, however, mechanisms underlying their site-specific integration and excision have not been investigated. Here, we identified and characterized a novel recombination system encoded by the temperate pleolipovirus SNJ2, which infects haloarchaeon Natrinema sp. J7-1. SNJ2 genome is inserted into the tRNAMet gene and flanked by 14 bp direct repeats corresponding to attachment core sites. We showed that SNJ2 encodes an integrase (IntSNJ2) that excises the proviral genome from its host cell chromosome, but requires two small accessory proteins, Orf2 and Orf3, for integration. These proteins were co-transcribed with IntSNJ2 to form an operon. Homology searches showed that IntSNJ2-type integrases are widespread in haloarchaeal genomes and are associated with various integrated MGEs. Importantly, we confirmed that SNJ2-like recombination systems are encoded by haloarchaea from three different genera and are critical for integration and excision. Finally, phylogenetic analysis suggested that IntSNJ2-type recombinases belong to a novel family of archaeal integrases distinct from previously characterized recombinases, including those from the archaeal SSV- and pNOB8-type families.
Collapse
Affiliation(s)
- Jiao Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingchun Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Unit of Molecular Biology of the Gene in Extremophiles, Department of Microbiology, Institut Pasteur, Paris 75015, France
| | - Kaixin Du
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shuqi Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuchen Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mart Krupovic
- Unit of Molecular Biology of the Gene in Extremophiles, Department of Microbiology, Institut Pasteur, Paris 75015, France
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
29
|
Bessen JL, Afeyan LK, Dančík V, Koblan LW, Thompson DB, Leichner C, Clemons PA, Liu DR. High-resolution specificity profiling and off-target prediction for site-specific DNA recombinases. Nat Commun 2019; 10:1937. [PMID: 31028261 PMCID: PMC6486577 DOI: 10.1038/s41467-019-09987-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/05/2019] [Indexed: 12/26/2022] Open
Abstract
The development of site-specific recombinases (SSRs) as genome editing agents is limited by the difficulty of altering their native DNA specificities. Here we describe Rec-seq, a method for revealing the DNA specificity determinants and potential off-target substrates of SSRs in a comprehensive and unbiased manner. We applied Rec-seq to characterize the DNA specificity determinants of several natural and evolved SSRs including Cre, evolved variants of Cre, and other SSR family members. Rec-seq profiling of these enzymes and mutants thereof revealed previously uncharacterized SSR interactions, including specificity determinants not evident from SSR:DNA structures. Finally, we used Rec-seq specificity profiles to predict off-target substrates of Tre and Brec1 recombinases, including endogenous human genomic sequences, and confirmed their ability to recombine these off-target sequences in human cells. These findings establish Rec-seq as a high-resolution method for rapidly characterizing the DNA specificity of recombinases with single-nucleotide resolution, and for informing their further development. The development of site-specific recombinases as genome editing tools is limited by the difficulty of altering their DNA sequence specificity. Here the authors present Rec-seq, a method for identifying specificity determinants and off-target substrates of recombinases in an unbiased manner.
Collapse
Affiliation(s)
- Jeffrey L Bessen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Lena K Afeyan
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Vlado Dančík
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Luke W Koblan
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
| | - David B Thompson
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
| | | | - Paul A Clemons
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA. .,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA. .,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
30
|
Novovic KD, Malesevic MJ, Filipic BV, Mirkovic NL, Miljkovic MS, Kojic MO, Jovčić BU. PsrA Regulator Connects Cell Physiology and Class 1 Integron Integrase Gene Expression Through the Regulation of lexA Gene Expression in Pseudomonas spp. Curr Microbiol 2019; 76:320-328. [DOI: 10.1007/s00284-019-01626-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022]
|
31
|
Zhao Y, Qin F, Zhang R, Giovannoni SJ, Zhang Z, Sun J, Du S, Rensing C. Pelagiphages in thePodoviridaefamily integrate into host genomes. Environ Microbiol 2018; 21:1989-2001. [DOI: 10.1111/1462-2920.14487] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life SciencesFujian Agriculture and Forestry University Fuzhou Fujian China
| | - Fang Qin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life SciencesFujian Agriculture and Forestry University Fuzhou Fujian China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University Xiamen Fujian China
| | | | - Zefeng Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life SciencesFujian Agriculture and Forestry University Fuzhou Fujian China
| | - Jing Sun
- Department of MicrobiologyOregon State University Corvallis OR USA
| | - Sen Du
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life SciencesFujian Agriculture and Forestry University Fuzhou Fujian China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and EnvironmentFujian Agriculture and Forestry University Fuzhou Fujian China
| |
Collapse
|
32
|
Nakamura Y. Prediction of Horizontally and Widely Transferred Genes in Prokaryotes. Evol Bioinform Online 2018; 14:1176934318810785. [PMID: 30546254 PMCID: PMC6287321 DOI: 10.1177/1176934318810785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 11/16/2022] Open
Abstract
Horizontal gene transfer (HGT) is the process whereby an organism acquires
exogenous genes (horizontally transferred genes or HT genes) that are not
inherited from the parent, but are derived from another organism. In
prokaryotes, HGT has been considered as one of the important driving forces of
evolution. Previously, genome-wide analyses have been conducted for estimating
the proportion of HT genes in prokaryotic genomes, but the number of species
examined at the time was limited, and gene annotation was relatively poor.
Currently, tens of thousands of prokaryotic genomes have been published and gene
annotation resources have improved. In the present study, HT gene prediction
method was modified so that the estimate was robust to gene length, conducting a
comprehensive search using 3017 representative prokaryotic genomes belonging to
1348 species. The result showed that an average of 13% (ranging from 0% to 30%
across species) of protein-coding genes was predicted as being of horizontal
origin. The proportion of the predicted HT genes per species was associated with
the species’ habitat, while a positive correlation between the proportion and
genomic nucleotide frequency was also observed. Moreover, the functions of the
predicted HT genes were inferred and compared according to two popular
databases, the Clusters of Orthologous Groups and the Kyoto Encyclopedia of
Genes and Genomes. As a result, both databases indicated that many of the widely
transferred genes were involved in mobile genetic elements (transposons, phages,
and plasmids) as expected. Notably, the present study predicted that six
as-yet-uncharacterized genes were widely distributed HT genes, and therefore,
will be interesting targets for evolutionary studies. Thus, this study
demonstrates that a data-driven approach using massive sequence data may
contribute to a broader understanding of HGT in prokaryotes.
Collapse
Affiliation(s)
- Yoji Nakamura
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Japan
| |
Collapse
|
33
|
Purcell O, Wang J, Siuti P, Lu TK. Encryption and steganography of synthetic gene circuits. Nat Commun 2018; 9:4942. [PMID: 30467337 PMCID: PMC6250736 DOI: 10.1038/s41467-018-07144-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/10/2018] [Indexed: 12/29/2022] Open
Abstract
Synthetic biologists use artificial gene circuits to control and engineer living cells. As engineered cells become increasingly commercialized, it will be desirable to protect the intellectual property contained in these circuits. Here, we introduce strategies to hide the design of synthetic gene circuits, making it more difficult for an unauthorized third party to determine circuit structure and function. We present two different approaches: the first uses encryption by overlapping uni-directional recombinase sites to scramble circuit topology and the second uses steganography by adding genes and interconnections to obscure circuit topology. We also discuss a third approach: to use synthetic genetic codes to mask the function of synthetic circuits. For each approach, we discuss relative strengths, weaknesses, and practicality of implementation, with the goal to inspire further research into this important and emerging area.
Collapse
Affiliation(s)
- Oliver Purcell
- Synthetic Biology Center, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, MA, 02139, USA
| | - Jerry Wang
- Synthetic Biology Center, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, MA, 02139, USA
| | - Piro Siuti
- Synthetic Biology Center, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, MA, 02139, USA
| | - Timothy K Lu
- Synthetic Biology Center, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, MA, 02139, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA. .,Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
34
|
Beker M, Rose S, Lykkebo CA, Douthwaite S. Integrative and Conjugative Elements (ICEs) in Pasteurellaceae Species and Their Detection by Multiplex PCR. Front Microbiol 2018; 9:1329. [PMID: 29997583 PMCID: PMC6028734 DOI: 10.3389/fmicb.2018.01329] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/30/2018] [Indexed: 11/13/2022] Open
Abstract
Strains of the Pasteurellaceae bacteria Pasteurella multocida and Mannheimia haemolytica are major etiological agents of bovine respiratory disease (BRD). Treatment of BRD with antimicrobials is becoming more challenging due to the increasing occurrence of resistance in infecting strains. In Pasteurellaceae strains exhibiting resistance to multiple antimicrobials including aminoglycosides, beta-lactams, macrolides and sulfonamides, the resistance determinants are often chromosomally encoded within integrative and conjugative elements (ICEs). To gain a more comprehensive picture of ICE structures, we sequenced the genomes of six strains of P. multocida and four strains of M. haemolytica; all strains were independent isolates and eight of them were multiple-resistant. ICE sequences varied in size from 49 to 79 kb, and were comprised of an array of conserved genes within a core region and varieties of resistance genes within accessory regions. These latter regions mainly account for the variation in the overall ICE sizes. From the sequence data, we developed a multiplex PCR assay targeting four conserved core genes required for integration and maintenance of ICE structures. Application of this assay on 75 isolates of P. multocida and M. haemolytica reveals how the presence and structures of ICEs are related to their antibiotic resistance phenotypes. The assay is also applicable to other members of the Pasteurellaceae family including Histophilus somni and indicates how clustering and dissemination of the resistance genes came about.
Collapse
Affiliation(s)
- Michal Beker
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Simon Rose
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Claus A Lykkebo
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Stephen Douthwaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
35
|
Luo J, Arbely E, Zhang J, Chou C, Uprety R, Chin JW, Deiters A. Genetically encoded optical activation of DNA recombination in human cells. Chem Commun (Camb) 2018; 52:8529-32. [PMID: 27277957 PMCID: PMC5048445 DOI: 10.1039/c6cc03934k] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We developed two tightly regulated, light-activated Cre recombinase enzymes through site-specific incorporation of two genetically-encoded photocaged amino acids in human cells. Excellent optical off to on switching of DNA recombination was achieved. Furthermore, we demonstrated precise spatial control of Cre recombinase through patterned illumination.
Collapse
Affiliation(s)
- J Luo
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, Pennsylvania 15260, USA.
| | - E Arbely
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Ave, Cambridge CB20QH, UK and Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - J Zhang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - C Chou
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - R Uprety
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - J W Chin
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Ave, Cambridge CB20QH, UK
| | - A Deiters
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, Pennsylvania 15260, USA.
| |
Collapse
|
36
|
Retraction: Site‐specific recombination of nitrogen‐fixation genes in cyanobacteria by XisF–XisH–XisI complex: Structures and models, William C. Hwang, James W. Golden, Jaime Pascual, Dong Xu, Anton Cheltsov, Adam Godzik. Proteins 2018; 86:268. [PMID: 30338965 PMCID: PMC5094899 DOI: 10.1002/prot.24679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The above article from the Proteins: Structure, Function, and Bioinformatics, published online on 1 September 2014 in Wiley Online Library as Accepted Article (http://onlinelibrary.wiley.com/doi/10.1002/prot.24679/full), has been retracted by agreement between William C. Hwang, James W. Golden, Jaime Pascual, Dong Xu, Anton Cheltsov, Adam Godzik, the Editor‐in‐Chief, Bertrand E. Garcia‐Moreno, and Wiley Periodicals, Inc. The retraction has been agreed because submission was made without agreement from co‐author Adam Godzik.
Collapse
|
37
|
Lambertsen L, Rubio-Cosials A, Patil KR, Barabas O. Conjugative transposition of the vancomycin resistance carrying Tn1549: enzymatic requirements and target site preferences. Mol Microbiol 2018; 107:639-658. [PMID: 29271522 DOI: 10.1111/mmi.13905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 11/30/2022]
Abstract
Rapid spread of resistance to vancomycin has generated difficult to treat bacterial pathogens worldwide. Though vancomycin resistance is often conferred by the conjugative transposon Tn1549, it is yet unclear whether Tn1549 moves actively between bacteria. Here we demonstrate, through development of an in vivo assay system, that a mini-Tn1549 can transpose in E. coli away from its natural Gram-positive host. We find the transposon-encoded INT enzyme and its catalytic tyrosine Y380 to be essential for transposition. A second Tn1549 protein, XIS is important for efficient and accurate transposition. We further show that DNA flanking the left transposon end is critical for excision, with changes to nucleotides 7 and 9 impairing movement. These mutations could be partially compensated for by changing the final nucleotide of the right transposon end, implying concerted excision of the two ends. With changes in these essential DNA sequences, or without XIS, a large amount of flanking DNA transposes with Tn1549. This rescues mobility and allows the transposon to capture and transfer flanking genomic DNA. We further identify the transposon integration target sites as TTTT-N6-AAAA. Overall, our results provide molecular insights into conjugative transposition and the adaptability of Tn1549 for efficient antibiotic resistance transfer.
Collapse
Affiliation(s)
- Lotte Lambertsen
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Anna Rubio-Cosials
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Kiran Raosaheb Patil
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Orsolya Barabas
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| |
Collapse
|
38
|
Cury J, Touchon M, Rocha EPC. Integrative and conjugative elements and their hosts: composition, distribution and organization. Nucleic Acids Res 2017; 45:8943-8956. [PMID: 28911112 PMCID: PMC5587801 DOI: 10.1093/nar/gkx607] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022] Open
Abstract
Conjugation of single-stranded DNA drives horizontal gene transfer between bacteria and was widely studied in conjugative plasmids. The organization and function of integrative and conjugative elements (ICE), even if they are more abundant, was only studied in a few model systems. Comparative genomics of ICE has been precluded by the difficulty in finding and delimiting these elements. Here, we present the results of a method that circumvents these problems by requiring only the identification of the conjugation genes and the species’ pan-genome. We delimited 200 ICEs and this allowed the first large-scale characterization of these elements. We quantified the presence in ICEs of a wide set of functions associated with the biology of mobile genetic elements, including some that are typically associated with plasmids, such as partition and replication. Protein sequence similarity networks and phylogenetic analyses revealed that ICEs are structured in functional modules. Integrases and conjugation systems have different evolutionary histories, even if the gene repertoires of ICEs can be grouped in function of conjugation types. Our characterization of the composition and organization of ICEs paves the way for future functional and evolutionary analyses of their cargo genes, composed of a majority of unknown function genes.
Collapse
Affiliation(s)
- Jean Cury
- Microbial Evolutionary Genomics, Institut Pasteur, 28, rue du Dr Roux, Paris 75015, France.,CNRS, UMR3525, 28, rue Dr Roux, Paris 75015, France
| | - Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, 28, rue du Dr Roux, Paris 75015, France.,CNRS, UMR3525, 28, rue Dr Roux, Paris 75015, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, 28, rue du Dr Roux, Paris 75015, France.,CNRS, UMR3525, 28, rue Dr Roux, Paris 75015, France
| |
Collapse
|
39
|
Ibryashkina EM, Solonin AS, Zakharova MV. Protein NCRII-18: the role of gene fusion in the molecular evolution of restriction endonucleases. FEBS Lett 2017; 591:1702-1711. [DOI: 10.1002/1873-3468.12669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Elena M. Ibryashkina
- FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms; Russian Academy of Sciences; Pushchino Moscow Region Russia
| | - Alexander S. Solonin
- FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms; Russian Academy of Sciences; Pushchino Moscow Region Russia
| | - Marina V. Zakharova
- FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms; Russian Academy of Sciences; Pushchino Moscow Region Russia
| |
Collapse
|
40
|
Jo M, Murayama Y, Tsutsui Y, Iwasaki H. In vitro site-specific recombination mediated by the tyrosine recombinase XerA of Thermoplasma acidophilum. Genes Cells 2017; 22:646-661. [PMID: 28557347 DOI: 10.1111/gtc.12503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/24/2017] [Indexed: 11/27/2022]
Abstract
In organisms with circular chromosomes, such as bacteria and archaea, an odd number of homologous recombination events can generate a chromosome dimer. Such chromosome dimers cannot be segregated unless they are converted to monomers before cell division. In Escherichia coli, dimer-to-monomer conversion is mediated by the paralogous XerC and XerD recombinases at a specific dif site in the replication termination region. Dimer resolution requires the highly conserved cell division protein/chromosome translocase FtsK, and this site-specific chromosome resolution system is present or predicted in most bacteria. However, most archaea have only XerA, a homologue of the bacterial XerC/D proteins, but no homologues of FtsK. In addition, the molecular mechanism of XerA-mediated chromosome resolution in archaea has been less thoroughly elucidated than those of the corresponding bacterial systems. In this study, we identified two XerA-binding sites (dif1 and dif2) in the Thermoplasma acidophilum chromosome. In vitro site-specific recombination assays showed that dif2, but not dif1, serves as a target site for XerA-mediated chromosome resolution. Mutational analysis indicated that not only the core consensus sequence of dif2, but also its flanking regions play important roles in the recognition and recombination reactions mediated by XerA.
Collapse
Affiliation(s)
- Minji Jo
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yasuto Murayama
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yasuhiro Tsutsui
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Hiroshi Iwasaki
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
41
|
Bebel A, Karaca E, Kumar B, Stark WM, Barabas O. Structural snapshots of Xer recombination reveal activation by synaptic complex remodeling and DNA bending. eLife 2016; 5. [PMID: 28009253 PMCID: PMC5241119 DOI: 10.7554/elife.19706] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
Bacterial Xer site-specific recombinases play an essential genome maintenance role by unlinking chromosome multimers, but their mechanism of action has remained structurally uncharacterized. Here, we present two high-resolution structures of Helicobacter pylori XerH with its recombination site DNA difH, representing pre-cleavage and post-cleavage synaptic intermediates in the recombination pathway. The structures reveal that activation of DNA strand cleavage and rejoining involves large conformational changes and DNA bending, suggesting how interaction with the cell division protein FtsK may license recombination at the septum. Together with biochemical and in vivo analysis, our structures also reveal how a small sequence asymmetry in difH defines protein conformation in the synaptic complex and orchestrates the order of DNA strand exchanges. Our results provide insights into the catalytic mechanism of Xer recombination and a model for regulation of recombination activity during cell division. DOI:http://dx.doi.org/10.7554/eLife.19706.001 Similar to humans, bacteria store their genetic material in the form of DNA and arrange it into structures called chromosomes. In fact, most bacteria have a single circular chromosome. Bacteria multiply by simply dividing in two, and before that happens they must replicate their DNA so that each of the newly formed cells receives one copy of the chromosome. Occasionally, mistakes during the DNA replication process can cause the two chromosomes to become tangled with each other; this prevents them from separating into the newly formed cells. For instance, the chromosomes can become physically connected like links in a chain, or merge into one long string. This kind of tangling can result in cell death, so bacteria encode enzymes called Xer recombinases that can untangle chromosomes. These enzymes separate the chromosomes by cutting and rejoining the DNA strands in a process known as Xer recombination. Although Xer recombinases have been studied in quite some detail, many questions remain unanswered about how they work. How do Xer recombinases interact with DNA? How do they ensure they only work on tangled chromosomes? And how does a protein called FtsK ensure that Xer recombination takes place at the correct time and place? Bebel et al. have now studied the Xer recombinase from a bacterium called Helicobacter pylori, which causes stomach ulcers, using a technique called X-ray crystallography. This enabled the three-dimensional structure of the Xer recombinase to be visualized as it interacted with DNA to form a Xer-DNA complex. Structures of the enzyme before and after it cut the DNA show that Xer-DNA complexes first assemble in an inactive state and are then activated by large conformational changes that make the DNA bend. Bebel et al. propose that the FtsK protein might trigger these changes and help to bend the DNA as it activates Xer recombination. Further work showed that the structures could be used to model and understand Xer recombinases from other species of bacteria. The next step is to analyze how FtsK activates Xer recombinases and to see if this process is universal amongst bacteria. Understanding how this process can be interrupted could help to develop new drugs that can kill harmful bacteria. DOI:http://dx.doi.org/10.7554/eLife.19706.002
Collapse
Affiliation(s)
- Aleksandra Bebel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ezgi Karaca
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Banushree Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - W Marshall Stark
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Orsolya Barabas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
42
|
Nivina A, Escudero JA, Vit C, Mazel D, Loot C. Efficiency of integron cassette insertion in correct orientation is ensured by the interplay of the three unpaired features of attC recombination sites. Nucleic Acids Res 2016; 44:7792-803. [PMID: 27496283 PMCID: PMC5027507 DOI: 10.1093/nar/gkw646] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/05/2016] [Accepted: 07/10/2016] [Indexed: 01/29/2023] Open
Abstract
The integron is a bacterial recombination system that allows acquisition, stockpiling and expression of cassettes carrying protein-coding sequences, and is responsible for the emergence and rise of multiresistance in Gram-negative bacteria. The functionality of this system depends on the insertion of promoterless cassettes in correct orientation, allowing their expression from the promoter located upstream of the cassette array. Correct orientation is ensured by strand selectivity of integron integrases for the bottom strand of cassette recombination sites (attC), recombined in form of folded single-stranded hairpins. Here, we investigated the basis of such strand selectivity by comparing recombination of wild-type and mutated attC sites with different lengths, sequences and structures. We show that all three unpaired structural features that distinguish the bottom and top strands contribute to strand selectivity. The localization of Extra-Helical Bases (EHBs) directly favors integrase binding to the bottom strand. The Unpaired Central Spacer (UCS) and the Variable Terminal Structure (VTS) influence strand selectivity indirectly, probably through the stabilization of the bottom strand and the resulting synapse due to the nucleotide skew between the two strands. These results underscore the importance of the single-stranded nature of the attC site that allows such tight control over integron cassette orientation.
Collapse
Affiliation(s)
- Aleksandra Nivina
- Institut Pasteur, Bacterial Genome Plasticity Unit, 75724 Paris, France CNRS UMR3525, 75724 Paris, France Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - José Antonio Escudero
- Institut Pasteur, Bacterial Genome Plasticity Unit, 75724 Paris, France CNRS UMR3525, 75724 Paris, France
| | - Claire Vit
- Institut Pasteur, Bacterial Genome Plasticity Unit, 75724 Paris, France CNRS UMR3525, 75724 Paris, France
| | - Didier Mazel
- Institut Pasteur, Bacterial Genome Plasticity Unit, 75724 Paris, France CNRS UMR3525, 75724 Paris, France
| | - Céline Loot
- Institut Pasteur, Bacterial Genome Plasticity Unit, 75724 Paris, France CNRS UMR3525, 75724 Paris, France
| |
Collapse
|
43
|
Kolakowski AJ, Gardner JF. The N-terminus of IntDOT forms hydrophobic interactions during Holliday Junction resolution. Plasmid 2016; 87-88:10-16. [PMID: 27422335 DOI: 10.1016/j.plasmid.2016.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 11/17/2022]
Abstract
DOT Integrase (IntDOT) is a member of the tyrosine recombinase family. It catalyzes the integration and excision reactions of an integrative and conjugative element (ICE) called CTnDOT. Like other tyrosine recombinases, the integration reaction proceeds by two sets of strand exchanges between the attDOT site on CTnDOT and an attB site in the host chromosome. The strand exchanges occur seven bases apart and define an overlap region. After the first strand exchanges a Holliday Junction (HJ) intermediate is formed. Previous work showed that a valine (V95) in a predicted alpha helix in the N-terminus of IntDOT is required for resolution of HJs to substrates and products. We have identified two additional hydrophobic residues in the helix (A92 and F99) that are involved in resolution of HJs. IntDOT proteins with substitutions at these residues form aberrant complexes in an electrophoretic mobility shift assay. We propose that these three residues participate in hydrophobic interactions that are involved in forming higher-order complexes and resolution of HJs.
Collapse
Affiliation(s)
- Adam J Kolakowski
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Jeffrey F Gardner
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
44
|
Flood BE, Fliss P, Jones DS, Dick GJ, Jain S, Kaster AK, Winkel M, Mußmann M, Bailey J. Single-Cell (Meta-)Genomics of a Dimorphic Candidatus Thiomargarita nelsonii Reveals Genomic Plasticity. Front Microbiol 2016; 7:603. [PMID: 27199933 PMCID: PMC4853749 DOI: 10.3389/fmicb.2016.00603] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/11/2016] [Indexed: 11/23/2022] Open
Abstract
The genus Thiomargarita includes the world's largest bacteria. But as uncultured organisms, their physiology, metabolism, and basis for their gigantism are not well understood. Thus, a genomics approach, applied to a single Candidatus Thiomargarita nelsonii cell was employed to explore the genetic potential of one of these enigmatic giant bacteria. The Thiomargarita cell was obtained from an assemblage of budding Ca. T. nelsonii attached to a provannid gastropod shell from Hydrate Ridge, a methane seep offshore of Oregon, USA. Here we present a manually curated genome of Bud S10 resulting from a hybrid assembly of long Pacific Biosciences and short Illumina sequencing reads. With respect to inorganic carbon fixation and sulfur oxidation pathways, the Ca. T. nelsonii Hydrate Ridge Bud S10 genome was similar to marine sister taxa within the family Beggiatoaceae. However, the Bud S10 genome contains genes suggestive of the genetic potential for lithotrophic growth on arsenite and perhaps hydrogen. The genome also revealed that Bud S10 likely respires nitrate via two pathways: a complete denitrification pathway and a dissimilatory nitrate reduction to ammonia pathway. Both pathways have been predicted, but not previously fully elucidated, in the genomes of other large, vacuolated, sulfur-oxidizing bacteria. Surprisingly, the genome also had a high number of unusual features for a bacterium to include the largest number of metacaspases and introns ever reported in a bacterium. Also present, are a large number of other mobile genetic elements, such as insertion sequence (IS) transposable elements and miniature inverted-repeat transposable elements (MITEs). In some cases, mobile genetic elements disrupted key genes in metabolic pathways. For example, a MITE interrupts hupL, which encodes the large subunit of the hydrogenase in hydrogen oxidation. Moreover, we detected a group I intron in one of the most critical genes in the sulfur oxidation pathway, dsrA. The dsrA group I intron also carried a MITE sequence that, like the hupL MITE family, occurs broadly across the genome. The presence of a high degree of mobile elements in genes central to Thiomargarita's core metabolism has not been previously reported in free-living bacteria and suggests a highly mutable genome.
Collapse
Affiliation(s)
- Beverly E Flood
- Department of Earth Sciences, University of Minnesota Minneapolis, MN, USA
| | - Palmer Fliss
- Department of Earth Sciences, University of Minnesota Minneapolis, MN, USA
| | - Daniel S Jones
- Department of Earth Sciences, University of MinnesotaMinneapolis, MN, USA; Biotechnology Institute, University of MinnesotaSt. Paul, MN, USA
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan Ann Arbor, MI, USA
| | - Sunit Jain
- Department of Earth and Environmental Sciences, University of Michigan Ann Arbor, MI, USA
| | - Anne-Kristin Kaster
- German Collection of Microorganisms and Cell Cultures, Leibniz Institute DSMZ Braunschweig, Germany
| | - Matthias Winkel
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences Potsdam, Germany
| | - Marc Mußmann
- Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Jake Bailey
- Department of Earth Sciences, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
45
|
Cury J, Jové T, Touchon M, Néron B, Rocha EP. Identification and analysis of integrons and cassette arrays in bacterial genomes. Nucleic Acids Res 2016; 44:4539-50. [PMID: 27130947 PMCID: PMC4889954 DOI: 10.1093/nar/gkw319] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/13/2016] [Indexed: 12/13/2022] Open
Abstract
Integrons recombine gene arrays and favor the spread of antibiotic resistance. Their broader roles in bacterial adaptation remain mysterious, partly due to lack of computational tools. We made a program – IntegronFinder – to identify integrons with high accuracy and sensitivity. IntegronFinder is available as a standalone program and as a web application. It searches for attC sites using covariance models, for integron-integrases using HMM profiles, and for other features (promoters, attI site) using pattern matching. We searched for integrons, integron-integrases lacking attC sites, and clusters of attC sites lacking a neighboring integron-integrase in bacterial genomes. All these elements are especially frequent in genomes of intermediate size. They are missing in some key phyla, such as α-Proteobacteria, which might reflect selection against cell lineages that acquire integrons. The similarity between attC sites is proportional to the number of cassettes in the integron, and is particularly low in clusters of attC sites lacking integron-integrases. The latter are unexpectedly abundant in genomes lacking integron-integrases or their remains, and have a large novel pool of cassettes lacking homologs in the databases. They might represent an evolutionary step between the acquisition of genes within integrons and their stabilization in the new genome.
Collapse
Affiliation(s)
- Jean Cury
- Microbial Evolutionary Genomics, Institut Pasteur, 28, rue Dr Roux, Paris, 75015, France CNRS, UMR3525, 28, rue Dr Roux, Paris, 75015, France
| | - Thomas Jové
- Univ. Limoges, INSERM, CHU Limoges, UMR_S 1092, F-87000 Limoges, France
| | - Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, 28, rue Dr Roux, Paris, 75015, France CNRS, UMR3525, 28, rue Dr Roux, Paris, 75015, France
| | - Bertrand Néron
- Centre d'Informatique pour la Biologie, C3BI, Institut Pasteur, Paris, France
| | - Eduardo Pc Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, 28, rue Dr Roux, Paris, 75015, France CNRS, UMR3525, 28, rue Dr Roux, Paris, 75015, France
| |
Collapse
|
46
|
Abstract
Bacteroides species are one of the most prevalent groups of bacteria present in the human colon. Many strains carry large, integrated elements including integrative and conjugative elements (ICEs). One such ICE is CTnDOT, which is 65 kb in size and encodes resistances to tetracycline and erythromycin. CTnDOT has been increasing in prevalence in Bacteroides spp., and is now found in greater than 80% of natural isolates. In recent years, CTnDOT has been implicated in the spread of antibiotic resistance among gut microbiota. Interestingly, the excision and transfer of CTnDOT is stimulated in the presence of tetracycline. The tyrosine recombinase IntDOT catalyzes the integration and excision reactions of CTnDOT. Unlike the well-characterized lambda Int, IntDOT tolerates heterology in the overlap region between the sites of cleavage and strand exchange. IntDOT also appears to have a different arrangement of active site catalytic residues. It is missing one of the arginine residues that is conserved in other tyrosine recombinases. The excision reaction of CTnDOT is complex, involving excision proteins Xis2c, Xis2d, and Exc, as well as IntDOT and a Bacteroides host factor. Xis2c and Xis2d are small, basic proteins like other recombination directionality factors (RDFs). Exc is a topoisomerase; however, the topoisomerase function is not required for the excision reaction. Exc has been shown to stimulate excision frequencies when there are mismatches in the overlap regions, suggesting that it may play a role in resolving Holliday junctions (HJs) containing heterology. Work is currently under way to elucidate the complex interactions involved with the formation of the CTnDOT excisive intasomes.
Collapse
|
47
|
Abstract
Retrotransposons carrying tyrosine recombinases (YR) are widespread in eukaryotes. The first described tyrosine recombinase mobile element, DIRS1, is a retroelement from the slime mold Dictyostelium discoideum. The YR elements are bordered by terminal repeats related to their replication via free circular dsDNA intermediates. Site-specific recombination is believed to integrate the circle without creating duplications of the target sites. Recently a large number of YR retrotransposons have been described, including elements from fungi (mucorales and basidiomycetes), plants (green algae) and a wide range of animals including nematodes, insects, sea urchins, fish, amphibia and reptiles. YR retrotransposons can be divided into three major groups: the DIRS elements, PAT-like and the Ngaro elements. The three groups form distinct clades on phylogenetic trees based on alignments of reverse transcriptase/ribonuclease H (RT/RH) and YR sequences, and also having some structural distinctions. A group of eukaryote DNA transposons, cryptons, also carry tyrosine recombinases. These DNA transposons do not encode a reverse transcriptase. They have been detected in several pathogenic fungi and oomycetes. Sequence comparisons suggest that the crypton YRs are related to those of the YR retrotransposons. We suggest that the YR retrotransposons arose from the combination of a crypton-like YR DNA transposon and the RT/RH encoding sequence of a retrotransposon. This acquisition must have occurred at a very early point in the evolution of eukaryotes.
Collapse
|
48
|
Abstract
The integron is a powerful system which, by capturing, stockpiling, and rearranging new functions carried by gene encoding cassettes, confers upon bacteria a rapid adaptation capability in changing environments. Chromosomally located integrons (CI) have been identified in a large number of environmental Gram-negative bacteria. Integron evolutionary history suggests that these sedentary CIs acquired mobility among bacterial species through their association with transposable elements and conjugative plasmids. As a result of massive antibiotic use, these so-called mobile integrons are now widespread in clinically relevant bacteria and are considered to be the principal agent in the emergence and rise of antibiotic multiresistance in Gram-negative bacteria. Cassette rearrangements are catalyzed by the integron integrase, a site-specific tyrosine recombinase. Central to these reactions is the single-stranded DNA nature of one of the recombination partners, the attC site. This makes the integron a unique recombination system. This review describes the current knowledge on this atypical recombination mechanism, its implications in the reactions involving the different types of sites, attC and attI, and focuses on the tight regulation exerted by the host on integron activity through the control of attC site folding. Furthermore, cassette and integrase expression are also highly controlled by host regulatory networks and the bacterial stress (SOS) response. These intimate connections to the host make the integron a genetically stable and efficient system, granting the bacteria a low cost, highly adaptive evolution potential "on demand".
Collapse
|
49
|
Abstract
Virus-host associations are usually viewed as parasitic, but several studies in recent years have reported examples of viruses that benefit host organisms. The Polydnaviridae are of particular interest because these viruses are all obligate mutualists of insects called parasitoid wasps. Parasitoids develop during their immature stages by feeding inside the body of other insects, which serve as their hosts. Polydnaviruses are vertically transmitted as proviruses through the germ line of wasps but also function as gene delivery vectors that wasps rely upon to genetically manipulate the hosts they parasitize. Here we review the evolutionary origin of polydnaviruses, the organization and function of their genomes, and some of their roles in parasitism.
Collapse
Affiliation(s)
- Michael R Strand
- Department of Entomology, University of Georgia, Athens, Georgia 30602; ,
| | - Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, Georgia 30602; ,
| |
Collapse
|
50
|
Unmasking the ancestral activity of integron integrases reveals a smooth evolutionary transition during functional innovation. Nat Commun 2016; 7:10937. [PMID: 26961432 PMCID: PMC4792948 DOI: 10.1038/ncomms10937] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/03/2016] [Indexed: 12/28/2022] Open
Abstract
Tyrosine (Y)-recombinases have evolved to deliver mechanistically different reactions on a variety of substrates, but these evolutionary transitions are poorly understood. Among them, integron integrases are hybrid systems recombining single- and double-stranded DNA partners. These reactions are asymmetric and need a replicative resolution pathway, an exception to the canonical second strand exchange model of Y-recombinases. Integron integrases possess a specific domain for this specialized pathway. Here we show that despite this, integrases are still capable of efficiently operating the ancestral second strand exchange in symmetrical reactions between double-stranded substrates. During these reactions, both strands are reactive and Holliday junction resolution can follow either pathway. A novel deep-sequencing approach allows mapping of the crossover point for the second strand exchange. The persistence of the ancestral activity in integrases illustrates their robustness and shows that innovation towards new recombination substrates and resolution pathways was a smooth evolutionary process. The integron integrases have evolved to perform recombination of single and double stranded DNA. Here the authors show that the ancestral pathway is still functional at double stranded sites, revealing the evolution towards the modern resolution pathway.
Collapse
|