1
|
Croft D, Lodhia P, Lourenco S, MacKay C. Effectively utilizing publicly available databases for cancer target evaluation. NAR Cancer 2023; 5:zcad035. [PMID: 37457379 PMCID: PMC10346432 DOI: 10.1093/narcan/zcad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/12/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
The majority of compounds designed against cancer drug targets do not progress to become approved drugs, mainly due to lack of efficacy and/or unmanageable toxicity. Robust target evaluation is therefore required before progressing through the drug discovery process to reduce the high attrition rate. There are a wealth of publicly available databases that can be mined to generate data as part of a target evaluation. It can, however, be challenging to learn what databases are available, how and when they should be used, and to understand the associated limitations. Here, we have compiled and present key, freely accessible and easy-to-use databases that house informative datasets from in vitro, in vivo and clinical studies. We also highlight comprehensive target review databases that aim to bring together information from multiple sources into one-stop portals. In the post-genomics era, a key objective is to exploit the extensive cell, animal and patient characterization datasets in order to deliver precision medicine on a patient-specific basis. Effective utilization of the highlighted databases will go some way towards supporting the cancer research community achieve these aims.
Collapse
Affiliation(s)
- Daniel Croft
- Cancer Research Horizons, The Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Puja Lodhia
- Cancer Research Horizons, The Francis Crick Institute, London, NW1 1AT, UK
| | - Sofia Lourenco
- Cancer Research Horizons, The Francis Crick Institute, London, NW1 1AT, UK
| | - Craig MacKay
- Cancer Research Horizons, The Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| |
Collapse
|
2
|
Knoblaugh SE, Hohl TM, La Perle KMD. Pathology Principles and Practices for Analysis of Animal Models. ILAR J 2019; 59:40-50. [PMID: 31053847 DOI: 10.1093/ilar/ilz001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/03/2019] [Indexed: 12/18/2022] Open
Abstract
Over 60% of NIH extramural funding involves animal models, and approximately 80% to 90% of these are mouse models of human disease. It is critical to translational research that animal models are accurately characterized and validated as models of human disease. Pathology analysis, including histopathology, is essential to animal model studies by providing morphologic context to in vivo, molecular, and biochemical data; however, there are many considerations when incorporating pathology endpoints into an animal study. Mice, and in particular genetically modified models, present unique considerations because these modifications are affected by background strain genetics, husbandry, and experimental conditions. Comparative pathologists recognize normal pathobiology and unique phenotypes that animals, including genetically modified models, may present. Beyond pathology, comparative pathologists with research experience offer expertise in animal model development, experimental design, optimal specimen collection and handling, data interpretation, and reporting. Critical pathology considerations in the design and use of translational studies involving animals are discussed, with an emphasis on mouse models.
Collapse
Affiliation(s)
- Sue E Knoblaugh
- Department of Veterinary Biosciences, and Comparative Pathology & Mouse Phenotyping Shared Resource, The Ohio State University, Columbus, Ohio
| | - Tobias M Hohl
- Infectious Diseases Service, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Krista M D La Perle
- Department of Veterinary Biosciences, and Comparative Pathology & Mouse Phenotyping Shared Resource, The Ohio State University, Columbus, Ohio
| |
Collapse
|
3
|
Begley DA, Sundberg JP, Krupke DM, Neuhauser SB, Bult CJ, Eppig JT, Morse HC, Ward JM. Finding mouse models of human lymphomas and leukemia's using the Jackson laboratory mouse tumor biology database. Exp Mol Pathol 2015; 99:533-6. [PMID: 26302176 DOI: 10.1016/j.yexmp.2015.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 01/22/2023]
Abstract
Many mouse models have been created to study hematopoietic cancer types. There are over thirty hematopoietic tumor types and subtypes, both human and mouse, with various origins, characteristics and clinical prognoses. Determining the specific type of hematopoietic lesion produced in a mouse model and identifying mouse models that correspond to the human subtypes of these lesions has been a continuing challenge for the scientific community. The Mouse Tumor Biology Database (MTB; http://tumor.informatics.jax.org) is designed to facilitate use of mouse models of human cancer by providing detailed histopathologic and molecular information on lymphoma subtypes, including expertly annotated, on line, whole slide scans, and providing a repository for storing information on and querying these data for specific lymphoma models.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, NIAID, NIH, Bethesda, MD USA
| | | |
Collapse
|
4
|
Eppig JT, Richardson JE, Kadin JA, Ringwald M, Blake JA, Bult CJ. Mouse Genome Informatics (MGI): reflecting on 25 years. Mamm Genome 2015; 26:272-84. [PMID: 26238262 PMCID: PMC4534491 DOI: 10.1007/s00335-015-9589-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 12/02/2022]
Abstract
From its inception in 1989, the mission of the Mouse Genome Informatics (MGI) resource remains to integrate genetic, genomic, and biological data about the laboratory mouse to facilitate the study of human health and disease. This mission is ever more feasible as the revolution in genetics knowledge, the ability to sequence genomes, and the ability to specifically manipulate mammalian genomes are now at our fingertips. Through major paradigm shifts in biological research and computer technologies, MGI has adapted and evolved to become an integral part of the larger global bioinformatics infrastructure and honed its ability to provide authoritative reference datasets used and incorporated by many other established bioinformatics resources. Here, we review some of the major changes in research approaches over that last quarter century, how these changes are reflected in the MGI resource you use today, and what may be around the next corner.
Collapse
Affiliation(s)
- Janan T. Eppig
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | - Joel E. Richardson
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | - James A. Kadin
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | - Martin Ringwald
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | - Judith A. Blake
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | - Carol J. Bult
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME 04609 USA
| |
Collapse
|
5
|
Bult CJ, Krupke DM, Begley DA, Richardson JE, Neuhauser SB, Sundberg JP, Eppig JT. Mouse Tumor Biology (MTB): a database of mouse models for human cancer. Nucleic Acids Res 2014; 43:D818-24. [PMID: 25332399 PMCID: PMC4384039 DOI: 10.1093/nar/gku987] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Mouse Tumor Biology (MTB; http://tumor.informatics.jax.org) database is a unique online compendium of mouse models for human cancer. MTB provides online access to expertly curated information on diverse mouse models for human cancer and interfaces for searching and visualizing data associated with these models. The information in MTB is designed to facilitate the selection of strains for cancer research and is a platform for mining data on tumor development and patterns of metastases. MTB curators acquire data through manual curation of peer-reviewed scientific literature and from direct submissions by researchers. Data in MTB are also obtained from other bioinformatics resources including PathBase, the Gene Expression Omnibus and ArrayExpress. Recent enhancements to MTB improve the association between mouse models and human genes commonly mutated in a variety of cancers as identified in large-scale cancer genomics studies, provide new interfaces for exploring regions of the mouse genome associated with cancer phenotypes and incorporate data and information related to Patient-Derived Xenograft models of human cancers.
Collapse
Affiliation(s)
- Carol J Bult
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | - Debra M Krupke
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | - Dale A Begley
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | | | | | - John P Sundberg
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | - Janan T Eppig
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| |
Collapse
|
6
|
Begley DA, Krupke DM, Neuhauser SB, Richardson JE, Schofield PN, Bult CJ, Eppig JT, Sundberg JP. Identifying mouse models for skin cancer using the Mouse Tumor Biology Database. Exp Dermatol 2014; 23:761-3. [PMID: 25040013 PMCID: PMC4183210 DOI: 10.1111/exd.12512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2014] [Indexed: 11/29/2022]
Abstract
In recent years, the scientific community has generated an ever-increasing amount of data from a growing number of animal models of human cancers. Much of these data come from genetically engineered mouse models. Identifying appropriate models for skin cancer and related relevant genetic data sets from an expanding pool of widely disseminated data can be a daunting task. The Mouse Tumor Biology Database (MTB) provides an electronic archive, search and analysis system that can be used to identify dermatological mouse models of cancer, retrieve model-specific data and analyse these data. In this report, we detail MTB's contents and capabilities, together with instructions on how to use MTB to search for skin-related tumor models and associated data.
Collapse
Affiliation(s)
| | | | | | | | - Paul N. Schofield
- The Jackson Laboratory, Bar Harbor, ME USA
- Dept. of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
7
|
Begley DA, Krupke DM, Neuhauser SB, Richardson JE, Bult CJ, Eppig JT, Sundberg JP. The Mouse Tumor Biology Database (MTB): a central electronic resource for locating and integrating mouse tumor pathology data. Vet Pathol 2011; 49:218-23. [PMID: 21282667 DOI: 10.1177/0300985810395726] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Mouse Tumor Biology Database (MTB) is designed to provide an electronic data storage, search, and analysis system for information on mouse models of human cancer. The MTB includes data on tumor frequency and latency, strain, germ line, and somatic genetics, pathologic notations, and photomicrographs. The MTB collects data from the primary literature, other public databases, and direct submissions from the scientific community. The MTB is a community resource that provides integrated access to mouse tumor data from different scientific research areas and facilitates integration of molecular, genetic, and pathologic data. Current status of MTB, search capabilities, data types, and future enhancements are described in this article.
Collapse
Affiliation(s)
- D A Begley
- The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609-1500, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The laboratory mouse has long been an important tool in the study of the biology and genetics of human cancer. With the advent of genetic engineering techniques, DNA microarray analyses, tissue arrays and other large-scale, high-throughput data generating methods, the amount of data available for mouse models of cancer is growing exponentially. Tools to integrate, locate and visualize these data are crucial to aid researchers in their investigations. The Mouse Tumor Biology database (http://tumor.informatics.jax.org) seeks to address that need.
Collapse
Affiliation(s)
- Debra M Krupke
- Jackson Laboratory, Mouse Tumour Biology Database, 600 Main Street, Bar Harbor, Maine 04609, USA.
| | | | | | | | | |
Collapse
|
9
|
Begley DA, Krupke DM, Vincent MJ, Sundberg JP, Bult CJ, Eppig JT. Mouse Tumor Biology Database (MTB): status update and future directions. Nucleic Acids Res 2006; 35:D638-42. [PMID: 17135195 PMCID: PMC1751545 DOI: 10.1093/nar/gkl983] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Mouse Tumor Biology (MTB) database provides access to data about endogenously arising tumors (both spontaneous and induced) in genetically defined mice (inbred, hybrid, mutant and genetically engineered mice). Data include information on the frequency and latency of mouse tumors, pathology reports and images, genomic changes occurring in the tumors, genetic (strain) background and literature or contributor citations. Data are curated from the primary literature or submitted directly from researchers. MTB is accessed via the Mouse Genome Informatics web site (). Integrated searches of MTB are enabled through use of multiple controlled vocabularies and by adherence to standardized nomenclature, when available. Recently MTB has been redesigned and its database infrastructure replaced with a robust relational database management system (RDMS). Web interface improvements include a new advanced query form and enhancements to already existing search capabilities. The Tumor Frequency Grid has been revised to enhance interactivity, providing an overview of reported tumor incidence across mouse strains and an entrée into the database. A new pathology data submission tool allows users to submit, edit and release data to the MTB system.
Collapse
Affiliation(s)
- Dale A Begley
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Krupke D, Näf D, Vincent M, Allio T, Mikaelian I, Sundberg J, Bult C, Eppig J. The Mouse Tumor Biology Database: integrated access to mouse cancer biology data. Exp Lung Res 2005; 31:259-70. [PMID: 15824024 DOI: 10.1080/01902140490495633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mice have long been used as models for the study of human cancer. The National Cancer Institute has included among its research areas of extraordinary opportunity the development of new mouse genetic models of human cancer and the exploration of cancer imaging as a research tool. Because of the volume and interconnectedness of relevant data, the creation and maintenance of bioinformatics resources of mouse tumor biology is necessary to facilitate current and future cancer research. The Mouse Tumor Biology (MTB) Database provides electronic access to data generated through the study of spontaneous and induced tumors in genetically defined mice (inbred, hybrid, spontaneous and induced mutant, and genetically engineered strains of mice).
Collapse
|
11
|
Johnson FM. The "rodent carcinogen" dilemma: formidable challenge for the technologies of the new millennium. Ann N Y Acad Sci 2001; 919:288-99. [PMID: 11083119 DOI: 10.1111/j.1749-6632.2000.tb06889.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- F M Johnson
- Toxicology Operations Branch, Environmental Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
12
|
Bult CJ, Krupke DM, Näf D, Sundberg JP, Eppig JT. Web-based access to mouse models of human cancers: the Mouse Tumor Biology (MTB) Database. Nucleic Acids Res 2001; 29:95-7. [PMID: 11125059 PMCID: PMC29782 DOI: 10.1093/nar/29.1.95] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Mouse Tumor Biology (MTB) Database serves as a curated, integrated resource for information about tumor genetics and pathology in genetically defined strains of mice (i.e., inbred, transgenic and targeted mutation strains). Sources of information for the database include the published scientific literature and direct data submissions by the scientific community. Researchers access MTB using Web-based query forms and can use the database to answer such questions as 'What tumors have been reported in transgenic mice created on a C57BL/6J background?', 'What tumors in mice are associated with mutations in the Trp53 gene?' and 'What pathology images are available for tumors of the mammary gland regardless of genetic background?'. MTB has been available on the Web since 1998 from the Mouse Genome Informatics web site (http://www.informatics.jax.org). We have recently implemented a number of enhancements to MTB including new query options, redesigned query forms and results pages for pathology and genetic data, and the addition of an electronic data submission and annotation tool for pathology data.
Collapse
Affiliation(s)
- C J Bult
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| | | | | | | | | |
Collapse
|
13
|
Blake JA, Eppig JT, Richardson JE, Bult CJ, Kadin JA. The Mouse Genome Database (MGD): integration nexus for the laboratory mouse. Nucleic Acids Res 2001; 29:91-4. [PMID: 11125058 PMCID: PMC29788 DOI: 10.1093/nar/29.1.91] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Mouse Genome Database (MGD) is the community database resource for the laboratory mouse, a key model organism for interpreting the human genome and for understanding human biology and disease (http://www.informatics.jax.org). MGD provides standard nomenclature and consensus map positions for mouse genes and genetic markers; it provides a curated set of mammalian homology records, user-defined chromosomal maps, experimental data sets and the definitive mouse 'gene to sequence' reference set for the research community. The integration and standardization of these data sets facilitates the transition between mouse DNA sequence, gene and phenotype annotations. A recent focus on allele and phenotype representations enhances the ability of MGD to organize and present data for exploring the relationship between genotype and phenotype. This link between the genome and the biology of the mouse is especially important as phenotype information grows from large mutagenesis projects and genotype information grows from large-scale sequencing projects.
Collapse
Affiliation(s)
- J A Blake
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA.
| | | | | | | | | |
Collapse
|
14
|
Blake JA, Eppig JT, Richardson JE, Davisson MT. The Mouse Genome Database (MGD): expanding genetic and genomic resources for the laboratory mouse. The Mouse Genome Database Group. Nucleic Acids Res 2000; 28:108-11. [PMID: 10592195 PMCID: PMC102449 DOI: 10.1093/nar/28.1.108] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/1999] [Accepted: 10/07/1999] [Indexed: 11/14/2022] Open
Abstract
The Mouse Genome Database (MGD) is a comprehensive public database of mouse genomic, genetic and phenotypic information (http://www. informatics.jax.org). This community database provides information about genes, serves as a mapping resource of the mouse genome, details mammalian orthologs, integrates experimental data, represents standardized mouse nomenclature for genes and alleles, incorporates links to other genomic resources such as sequence data, and includes a variety of additional information about the laboratory mouse. MGD scientists and annotators work cooperatively with the research community to provide an integrated, consensus view of the mouse genome while also providing experimental data including data conflicting with the consensus representation. Recent improvements focus on the representation of phenotypic information and the enhancement of gene and allele descriptions.
Collapse
Affiliation(s)
- J A Blake
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| | | | | | | |
Collapse
|
15
|
Bult CJ, Krupke DM, Sundberg JP, Eppig JT. Mouse tumor biology database (MTB): enhancements and current status. Nucleic Acids Res 2000; 28:112-4. [PMID: 10592196 PMCID: PMC102417 DOI: 10.1093/nar/28.1.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Mouse Tumor Biology Database (MTB) is a Web-based resource that provides access to information on tumor frequency and latency, genetics and pathology in genetically defined mice (transgenics, targeted mutations and inbred strains). MTB is designed to serve as an information resource for cancer genetics researchers who use the laboratory mouse as a model system for understanding human disease processes. Data in MTB are obtained from the primary scientific literature and direct submissions by the research community. MTB is accessible from the Mouse Genome Informatics Web site (http://www. informatics.jax.org). User support is available for MTB via Email at mgi-help@informatics.jax.org
Collapse
Affiliation(s)
- C J Bult
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| | | | | | | |
Collapse
|
16
|
|
17
|
Blake JA, Richardson JE, Davisson MT, Eppig JT. The Mouse Genome Database (MGD): genetic and genomic information about the laboratory mouse. The Mouse Genome Database Group. Nucleic Acids Res 1999; 27:95-8. [PMID: 9847150 PMCID: PMC148105 DOI: 10.1093/nar/27.1.95] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Mouse Genome Database (MGD) focuses on the integration of mapping, homology, polymorphism and molecular data about the laboratory mouse. Detailed descriptions of genes including their chromosomal location, gene function, disease associations, mutant phenotypes, molecular polymorphisms and links to representative sequences including ESTs are integrated within MGD. The association of information from experiment to gene to genome requires careful coordination and implementation of standardized vocabularies, unique nomenclature constructions, and detailed information derived from multiple sources. This information is linked to other public databases that focus on additional information such as expression patterns, sequences, bibliographic details and large mapping panel data. Scientists participate in the curation of MGD data by generating the Chromosome Committee Reports, consulting on gene family nomenclature revisions, and providing descriptions of mouse strain characteristics and of new mutant phenotypes. MGD is accessible at http://www.informatics.jax.org
Collapse
Affiliation(s)
- J A Blake
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| | | | | | | |
Collapse
|